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Abstract. The distribution of fuel gases is undergoing major
changes due to decarbonization efforts: Non-fossil gases such as
biomethane or renewable hydrogen can lead to the reuse of existing
gas infrastructure for gas storage, transport, and distribution to re-
duce greenhouse gas emissions while maintaining a high energy se-
curity. For safe and efficient operation, we propose Gas Grid Copilot
(GGC) as a demonstrator of a multi-objective reinforcement learning
agent that trains in a simulated gas grid environment to control a grid
by modifying its inflow into a mass storage. Multiple, possibly con-
flicting reward signals are included. Their conflicts and synergies of
rewards are analyzed using techniques from multi-criteria decision
making, more specifically a conflict interaction matrix based on ex-
tended fuzzy logic. That way, dispatchers of a gas grid can explore
the effects of reward prioritizations and their consequences safely.

1 Introduction
National and international natural gas distribution systems undergo
massive changes due to the ongoing energy transition [2]. Until the
infrastructure allows for a fully renewable heating system, ensuring
an uninterrupted energy supply for industry and households remains
a critical challenge – the total length of Germany’s gas grid alone is
more than 500,000 km with natural gas being the second most impor-
tant primary energy source in Germany’s energy mix [13]. This fact
is also reflected in the decision to include natural gas in the EU taxon-
omy for sustainable transformation [12]. Additionally, as the supply
and demand for non-fossil gases, such as biogas or green hydrogen
obtained from power-to-gas, continues to grow [11], AI methods de-
veloped for currently available gas grids can be readily applied to
retrofitted/repurposed existing gas infrastructure.

A gas network dispatcher must ensure that gas (natural gas includ-
ing synthetic one, biogas, hydrogen) is delivered safely, reliably, and
efficiently from suppliers to industrial, commercial, and residential
consumers, thereby respecting physical constraints such as pressure
limits and transmission velocities. The dispatchers’ decisions must
account for a large diversity of parameters: linepack (i.e., the to-
tal volume of gas contained within the system), gas pressure, and
demand and weather forecasts – esp. when it comes to heating de-
mands. Simultaneously, the decisions must, in general, fulfill multi-
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Figure 1. Gas Grid Copilot system overview.

ple objectives: all consumer demands are fulfilled, the linepack and
gas pressure are within defined limits, the oscillations in gas entry
flow are minimal.

We showcase Gas Grid Copilot (GGC), our demonstrator ca-
pable of learning to control the inflow of gas within a gas dis-
tribution grid modeled in pandapipes [5], while accounting for
multiple objectives that can be prioritized at runtime.

GGC’s purpose is to illustrate, on a simplified use case (see Fig-
ure 2), how a dispatcher can be supported in the decision-making
processes required for managing a gas network [1]. Generally, ac-
tions include the management of inflow into hydraulic groups at a
certain point in time or opening/closing valves. Effects, and there-
fore rewards, are typically delayed by several hours due to inertia.
Aiming for effective assistance with a human in the loop, GGC sim-
ulates the situation in a control room, where measurements of the
state of the gas grid are continuously monitored and control actions
are recommended to the dispatcher – depending on the current prior-
itization of the objectives. This is how an AI-based recommendation
would be deployed in production: it will observe the grid’s state and
dispatcher’s actions, but have no access to the grids’s control system,
due to regulation of critical infrastructure. In order to also address
expectation conformity, Imitation Learning (IL) will be employed.

GGC’s main contributions are:
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1. it combines a simulator of a gas grid with MORL
2. it showcases how a Multi-Objective RL (MORL) agent can as-

sist a dispatcher with multiple policies corresponding to different
reward prioritization in fictional grid states, and

3. it shows how the expected returns of a given policy interact (i.e.,
tradeoffs, synergies, etc.) using extended fuzzy logic and multi-
criteria decision making.

2 System overview

The Gas grid simulator, RL agent, and MORL algorithm (see Fig-
ure 1) represent GGC’s main components, of which the MORL al-
gorithm is the one interacting directly with the dispatcher (user of
the demo).2 The interaction between the Gas grid simulator and RL
agent forms the reinforcement learning loop, and allows the RL agent
to find out the effects of its control actions, in terms of multiple re-
wards and, therefore, returns. Once trained, the user can step back
and forth in a timeline and investigate the actions the agent suggests
as well as the consequences over time, along with the rewards. The
Gas grid simulator uses the pandapipes library [5] to describe the
topology of the gas grid and simulate the flow of the gas within it,
depending on the control actions applied to its active components
(valves, compressors, flow rates). Despite its simplicity, pandapipes
is a versatile tool for hydraulic and thermodynamic steady-state and
quasi-stationary simulation, thereby enabling quick prototyping and
evaluation of complex RL algorithms. The RL agent takes as observa-
tional input the complete state of the gas grid, and outputs the control
actions which will be applied to the network’s active components. RL
agent’s policy is implemented as a neural network coded in PyTorch,
based on StableBaselines3 [8].

The interactions between the Gas grid simulator, RL agent, MORL
algorithm, and IL algorithm (which provides one or multiple re-
wards that represent conformity to observed policies) form the train-
ing loops. The MORL algorithm will continuously strive to improve
the RL agent’s capabilities of achieving the different objectives while
making trade-offs which are increasingly acceptable for dispatchers.

The interaction between the MORL algorithm and the dispatcher
forms the feedback loop, and allows the RL agent to: 1) signal to the
dispatcher the imminent risks of having some parameters exceeding
the predefined limits and propose control actions which should effec-
tively mitigate these risks, and 2) collect and learn from the feedback
of the dispatcher on how valid the signaled risks and how effective
the proposed mitigating actions were. The feedback loop is of par-
ticular importance because, by allowing human intervention during
training, this loop enables the development of safe RL algorithms [9].

3 Features and functionalities

GGC focuses on a relatively simple scenario (see Figure 2): a small
gas grid is defined in pandapipes, consisting of an external grid
source, a local gas source (e.g., a biogas plant), a local sink (e.g.,
an industrial plant), and a mass storage – the main asset to be con-
trolled. These components are available in the pandapipes core li-
brary and connected using pipe segments based on realistic dimen-
sions (i.e. pressure limits, distances, material constants, and diam-
eters). In this scenario, the agent can control the mass storage in-
flow/outflow such that ideally, locally sourced gas is conserved for
when it is later needed – again locally. The external grid can supply
or consume – depending on what is currently needed. Pandapipes

2 Source code: https://github.com/AImotion-Bavaria/gas_grid_copilot

is capable of performing steady-state hydraulic and thermodynamic
simulation to solve for velocities and pressures occurring in the grid
– and detecting feasibility of the hydraulic flows, in the first place. It
does so by iteratively solving a non-linear system of equations using
a CPU-based Newton-Raphson solver. All of that together makes up
the Gas grid simulator part.

Figure 2. The minimalistic sample gas grid of this demonstrator,
consisting of an external grid (in orange), a local source such as, e.g., a
biogas plant, a mass storage, and a local sink, e.g., an industrial plant.

To train RL agents on top of pandapipes, a wrapper for the classi-
cal Gymnasium environment as well as the MO-Gymnasium [4] (for
multiobjective environments) by the Farama foundation is included
in the demo. As the gymnasium interfaces requires a step method
that the agent calls repeatedly during training and inference episodes,
we had to implement a wrapper that allows for one-timestep progres-
sion of the pandapipes time series simulation. Usually, it is intended
for analysis of multiple time steps at once. The gas flows of the local
source and sink are predefined–loaded from a time series, the ex-
ternal grid’s flow are calculated in simulation, as are the velocities
and pressure values. Three reward signals are derived from the states
calculated in simulation:

1. Reward Storage If the fill percentage of the mass storage is be-
tween 25% and 75%, positive reward is issued with a maximum at
50%. This is implemented as a piecewise linear, triangular func-
tion.

2. Reward External Grid Mass Flow The negative absolute value of
external in or outflow in kg/s which optimally should be 0. This
represents the goal of self-sufficiency.

3. Reward Difference Ideally, dispatchers do not have to change the
inflow settings frequently. Therefore, the negative absolute differ-
ence between the previous inflow At−1 and At is returned as a
reward.

They define the three-dimensional reward r = [r1, r2, r3] of the en-
vironment which is not immediately scalarized.

When it comes to training agents, we currently support two im-
plementations: A “naive” MO-RL agent which uses a user-defined
weighting w = [w1, w2, w3] such that a total reward rtotal = wT r
is obtained which can be used with any scalar RL algorithm. Our
demo offers any weighting w ∈ {1, 10, 100}3 which amounts to 27
agents that have each been trained individually for 10,000 timesteps.
This pretraining is carried out such that users may explore differ-
ent trajectories of rewards as well as mass storage fill percentages
and actions interactively. As a “free” add-on, the critic network’s
q-values are visualized to give dispatchers a visual feedback of the
quality of the current state. By contrast, a “true” MORL implementa-
tion is also provided using Multi-Objective Natural Evolution Strate-
gies (MONES) [6] which searches for an approximation of the Pareto
frontier of policies, i.e., all policies whose vector of expected returns
(in different rewards) are not Pareto-dominated. Instead of a single
optimal policy w.r.t. one scalar reward, we get to choose from dif-
ferent tradeoffs. Figure 4 demonstrates a three-dimensional Pareto
landscape where every point refers to one policy and its associated
expected returns in every reward dimension. Dominated policies are
grayed out and shown for demonstration only.
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Figure 3. An exemplary interaction matrix using extended fuzzy logic.

Finally, a special feature of GGC is the integration of conflict and
interaction matrices into the interactive decision phase. For this pur-
poses, sequences S0, A0,R0, S1 . . . are collected from the training
episodes. Then, a multi-criteria conflict and interaction analysis [3]
is performed to check whether the rewards are positively correlated
(“harmonizing goals”) or conflicting. Cooperations, tradeoff situa-
tions, and other possible interaction patterns are visualized in an in-
teraction matrix as shown in Figure 3. Here, we can see that keeping
the external mass flow is a tradeoff with keeping the storage in desir-
able boundaries because we need a certain non-zero external flow to
keep the filling percentage there. On the other hand, reward storage
and reward difference can go hand in hand if the inflow level is suf-
ficiently high that no change still keeps the filling percentage in the
good range. These analyses are performed based on the commercial
software Qualicision AI which can then also be employed to rank a
set of decision alternatives (here, policies) according to a user’s crite-
ria preferences. The theory is derived from extended fuzzy logic (i.e.,
satisfaction membership functions mapping to [−1, 1]) which is why
the reward signals have to be adjusted to fit that range.

Figure 4. The 3D Pareto frontier determined by MONES. Each vector
corresponds to one policy in the population, shaded ones are dominated.

4 Conclusion and Future Work

The main purpose of this demonstration, GGC, is to introduce con-
cepts such as multiple rewards and reinforcement learning to the in-
tended expert audience, dispatchers of a gas grid. Therefore, it was
important to showcase how different policies would act in the same

Figure 5. Qualitative Labeling with Qualicision AI [7].

state of the grid. However, this initial grid is clearly too simplistic for
everyday use. Therefore, a more realistically sized grid is currently
modeled and analyzed.

This next experimental grid is currently prepared in the IKIGas
project [1] by energy provider Avacon along with a more professional
gas grid simulation, PSIGanesi [10]. For this grid, historicized data of
inflow, outflow (consumption), and linepack is available. The IL al-
gorithm based on Generative Adversarial Imitation Learning (GAIL)
will enable the RL agent to learn from past control actions of the dis-
patchers. Discrepancies between proposed and actually taken actions
could then be visualized “in the moment”.

One limitation that we already found in the approach, given his-
torical data, is the current lack of weather forecasts and gas demand
in the observation space. We plan on extending GGC with publicly
available weather information as well as recorded past forecasts: At
one extreme, if the dispatcher’s forecasted demands turn out to be
lower than the real consumption, then the consumers will deplete the
gas supply available in the network and generate shortage. At the
other extreme, the gas network remains overloaded if the predicted
demands turn out higher than the real consumption. Both extremes
generate substantial financial expenses.

For now, GGC uses three reward signals that can be calculated
based on a given state in the simulation. In practice, however, some-
times the dispatchers can only qualitatively deem a state as good or
bad – based on intuition and past reference values. To capture this
kind of “fuzzy” information, we plan to use two additional sources of
reward: i) using Qualitative Labeling with Qualicision (see Figure 5)
[7], time series can be conveniently labeled into different categories,
e.g., using a Likert scale from 1 to 5. The dispatcher is presented with
grid parameter plots, and asked to segment out intervals and label
them with the quality of their values. ii) the anomaly/normalcy scored
reported by trained generative model parameterized by θ, p(s | θ)
could indicate the likelihood of the observed state s (e.g., its linepack
value). A high value of p(s | θ) indicates a “normal” observation that
the agents should strive for, a low value would show an anomaly.

By addressing critical challenges such as forecasting demand, la-
beling grid parameters, and optimizing control strategies, RL agents
can indeed assist a dispatcher to manage also a realistic gas grid.GGC
aims at a first impression for domain experts to familiarize them-
selves with the capabilities of MORL and add it to their workflow.
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