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Abstract. We address the challenge of devising neural network
architectures to extract facial descriptors across diverse mobile and
edge devices. Employing neural architecture search, we introduce a
novel framework that selects optimal subnetworks from a SuperNet
using an evolutionary search. Using a surrogate gradient boosting
classifier to avoid direct accuracy estimation of subnetworks on vali-
dation sets, our approach swiftly delivers the most efficient and accu-
rate models tailored to specific devices within minutes. Demonstrat-
ing versatility through an Android demo app, our framework excels
in tasks like face recognition and emotion understanding across var-
ious devices, achieving real-time processing and superior accuracy
compared to existing mobile models.

1 Introduction

A lot of real-world applications, e.g., human-machine interaction and
video surveillance [22, 31], need to solve facial classification tasks,
such as facial expression recognition (FER) [6, 12, 32] and face
recognition [11, 19]. Due to privacy issues, it is typically required
to solve these tasks on-device [4, 10, 25]. However, the landscape of
mobile and edge computing is characterized by a rich diversity of de-
vices, each endowed with unique processing capabilities [20, 33, 38].
This heterogeneity poses a significant hurdle in developing a uni-
versal neural network architecture for tasks such as facial descriptor
extraction [29, 27]. Addressing this challenge head-on, our research
studies AutoML techniques to devise tailored neural networks opti-
mized for specific devices [7, 18].

Training a custom descriptor for each device poses significant time
constraints. Hence, the central to our study is the concept of a Super-
Net [34, 24]. It is a comprehensive Once-for-All architecture encom-
passing many potential subnetworks with shared weights [7], so it is
possible to extract specific subnetworks suitable for a concrete de-
vice. A particular procedure to train SuperNet was proposed in [2]
based on the Pareto ranking between its subnets. The SuperNet ex-
ploits the lottery ticket hypothesis [13] that suggests that large neural
networks can be pruned to smaller models with comparable accuracy,
emphasizing the need to navigate this pruning process efficiently.
Unfortunately, the original Once-for-All network [7] falls short in
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addressing the requirements of facial processing for generating high-
quality descriptors rather than solely optimizing classification accu-
racy on validation sets.

In this paper, leveraging the concept of SuperNet, we craft a
methodology (Fig. 1) that navigates the complexity of device vari-
ations to extract accurate facial descriptors. In particular, it harnesses
the power of genetic algorithms with surrogate binary classifiers to
identify the most promising subnetworks within the SuperNet. This
innovative approach bypasses the need for direct accuracy estima-
tion on validation sets, streamlining the model selection process and
significantly reducing computational overhead. The result is a neu-
ral network architecture optimized for each specific device, tailored
to strike the delicate balance between computational efficiency and
accuracy of facial classification [14, 15].

The source code of our demo application and several pretrained
neural networks are publicly available'. The demonstration video for
this framework and mobile demo application is available at’.

2 Methodology
2.1 Proposed Approach

The proposed methodology contains several steps. We begin by train-
ing the Once-for-All SuperNet [7, 30, 35] for a specific face classi-
fication task. This paper examines two problems, namely, FER and
face identification [1]. In the former case, the training part of manu-
ally labeled facial photos from the AffectNet dataset [21] was used.
Each photo is associated with one of eight classes: Anger, Contempt,
Disgust, Fear, Happiness, Neutral, Sadness, and Surprise. The val-
idation part of AffectNet is a balanced set of 4000 images (500
per class). In the latter case, the SuperNet was trained to recognize
celebrities from the VGGFace?2 dataset [8]. The training and valida-
tion sets contain 3,067,564 and 243,722 photos of 9131 celebrities.
As a result, we obtained two SuperNets for FER and face recogni-
tion, respectively.

Next, extracting the optimal subnetwork suitable to extract facial
descriptors on a specific device with a restriction in the inference
time ¢ is necessary. The architecture of a subnetwork is described

1 https://github.com/av-savchenko/mobile-face-recognition
2 https://youtu.be/xE3SHEIYzM4
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Figure 1. Proposed methodology to obtain device-specific facial
descriptors

by the number d € {2, 3,4} of layers in each of the five groups
of blocks, where each block is a convolutional layer with a kernel
size ks € {3,5,7} and a scaling factor e € {3,4,6}. Hence, the
number of different subnetworks is enormous (~ 2 - 10'9), so it is
necessary to use evolutionary search to “win the lottery”. Searching
for the best subnetwork requires comparing the accuracy of two ar-
bitrary subnetworks. The most obvious way to do it is to estimate the
accuracy using a validation set. Unfortunately, this procedure may
be very time-consuming, and evolutionary algorithms typically re-
quire to compare thousands of subnetworks. As a result, a surrogate
classifier is needed.

The authors of the Once-For-All framework [7] trained a multi-
layer perceptron to predict the validation accuracy for a given archi-
tecture of a subnetwork. Unfortunately, it was noticed that training
such a regression model is very difficult as it usually overestimates
the predicted accuracy. In this paper, we propose to compare the ac-
curacy of two subnetworks with a special binary gradient-boosting
classifier. We generate a diverse training set of 16000 random sub-
networks, estimate their accuracy on a validation set, and train the
surrogate binary classifier (LightGBM) to determine the relative ac-
curacy of two given subnetworks.

To facilitate hardware-specific optimization, we measure the run-
ning time of each layer of the Once-for-All network on a concrete
device. Leveraging the obtained Look-Up Tables (LUTs) alongside
the trained gradient boosting classifier and maximal inference time
t, we implement a genetic algorithm to select the subnetwork with
maximal expected accuracy while meeting latency requirements. By
utilizing a QuickSelect partition algorithm, this algorithm ensures
linear complexity dependent on the number of iterations and pop-
ulation size, expediting the search process significantly.

Finally, the last classification layer of the selected subnetwork is
removed. The resulting model is implemented in PyTorch with FP32
weights. PyTorchMobile is now 1.5-2 times slower than TensorFlow
Lite. Unfortunately, automatic conversion from PyTorch to ONNX
leads to rather slow models. Hence, we implemented custom scripts
to create a subnetwork from scratch in TensorFlow and then copy
the weights from PyTorch to TensorFlow format. The latter is au-
tomatically converted to TensorFlowLite for deployment on mobile
devices.

2.2  Our Framework
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Figure 2. Our framework

The proposed approach was implemented in a special Python
framework (Fig. 2) that lets the user 1) generate a dataset for accuracy
prediction and train the surrogate binary classifier; 2) prepare LUT
for each OFA’s layer; and 3) generate subnetwork in PyTorch format
given latency constraint and convert it to TensorFlowLite model. In
addition, a special face_rec_model_tester Jupyter notebook is avail-
able to test the quality of subnetworks. Our demo makes SuperNets
for FER and face identification publicly available. In our experi-
ments, we used the Raspberry Pi 4 mini-computer and two mobile
devices with Android: Xiaomi Mi 10T with Qualcomm Snapdragon
865 and Xiaomi Mi 10 Lite with Snapdragon 765g. We extracted
two subnetworks by setting the maximal inference time relative to
the inference time ¢z ne: of the EfficientNet-BO (TFLite) model. As
aresult, we obtained subnetwork 1 and 2 for 0.6t gne: and 0.4t g net,
respectively.
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Figure 3. Sample UI of our demo application

Finally, we developed a special demo application for Android de-
vices (Fig. 3). The source code is made publicly available in our
GitHub repository. It supports the following functionality. First, we
support facial matching on two photos from a mobile device gallery.
Here, all faces are detected on both photos and facial descriptors are
extracted and compared mutually. The red line is drawn between
corresponding faces if the cosine similarity between descriptors is
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higher than a predefined threshold. Secondly, it is possible to cap-
ture the frontal camera, detect facial region using MTCNN [37], and
recognize facial expressions with one of the selected subnetworks.
Thirdly, we support measuring the average inference time of several
subnetworks and existing models for facial feature extraction.

3 Experimental results
3.1 Facial Expression Recognition

In the first experiment, the validation set of the AffectNet dataset
is used. We compare our subnetworks with baseline AlexNet [21],
SL+SSL inpanting (EfficientNet-B0) [23], ViT-base + MAE [17],
and EmotiEffNet-B0/B2 [26]. Table 1 contains the validation accu-
racy o for 8 classes and average CPU running times t g, tses, t765 for
Raspberry Pi4, Xiaomi Mi 10T and Xiaomi Mi 10 Lite, respectively.
As one can notice, our lightweight models found an ideal balance
between speed and accuracy. It is worth mentioning that despite low
inference time of the baseline AlexNet, it has 3-5 times greater num-
ber of weights than our models, which may be very important for
edge and mobile devices [33].

Table 1. Facial expression recognition accuracy « (%) on AffectNet and
mean inference time per one face tr, tse5, t765 (ms) for Raspberry Pi 4 and
mobile devices with Snapdragon 865, Snapdragon 765, respectively

Model o, % tgr,ms 1865, ms  trgs, ms
AlexNet (baseline)  58.0 62.51 8.33 17.01
EmotiEffNet-BO 61.32  183.15 47.15 122.76
SSL inpanting 61.72 183.61 47.32 123.07
ViT-base + MAE 62.42 108493  487.21 952.50
EmotiEffNet-B2 63.03 358.32 149.87 381.12
Our subnetwork 1 62.05 108.14 11.93 34.02
Our subnetwork 2 61.28 73.26 8.90 22.78

3.2 Face Recognition

In the second experiment, we used our models for face identification
on the LFW (Labeled Faces in the Wild) dataset [16]. We used the
conventional protocol [3], which selects 596 subjects with at least
two photos in the LFW and at least one video in the YouTube Faces
database. One facial photo of each subject is copied into the training
set; the validation set contains all other photos. The average accuracy
of the 1-NN classifier computed using five times randomly repeated
cross-validation is presented in Table 2. Here, we compare two tech-
niques to crop the facial region after face detection [28]:

1. Alignment with similarity transform and conversion to 224x224,
in which background is available.
2. Simple crop of detected faces without any margins.

Our models are compared with traditional InsightFace (IResNet-
50) [11], VGGFace2 (SENet-50) [8], FaceNet (InceptionRes-
Net) [29], PocketNetM-256 [5], MobileFaceNet [9] and EfficientNet-
BO/B2 [26]. As one can notice, our methodology lets us obtain the
fastest models, which show high accuracy for various facial prepro-
cessing techniques. Such reliability is an important factor, as specific
backgrounds in aligned faces may significantly influence the quality
of facial descriptors.

In the final experiment (Table 3), we compare our surrogate bi-
nary classifier with an accuracy predictor trained as described by

Table 2. Face identification accuracy a1, a2 (%) on LEW for aligned and
cropped faces, respectively, mean inference time per one face tge5 (ms) for a
mobile device with Snapdragon 865 and size of the model M (Mb).

Model a1, % w9,% tges,ms M, Mb
InsightFace 99.23 82.34 203.75 166
VGGFace2 97.21 96.61 123.07 167
FaceNet 96.12 96.57 110.63 107
PocketNetM-256 99.70 76.12 407.86 7
MobileFaceNet 97.42 44.23 13.28 6
EfficientNet-BO 94.07 94.70 47.07 16
EfficientNet-B2 95.00 91.53 148.70 30
Our SuperNet 98.97 99.12 34.02 34
Our subnetwork 1~ 98.13 98.71 11.89 18
Our subnetwork 2 96.89 97.34 8.74 13

Table 3. Comparison of the proposed approach with OFA: face _
identification accuracy « for cropped LFW faces and time of search tg

(minutes).
a, % tg, min.
Device Constraint OFA Ours OFA  Ours
Snapdragon t < 0.6tgpne: 9795 98.71  0.05 0.57
865 t<04tpner 9689 97.34 0.20 1.02
Snapdragon t < 0.6tgpne: 9794 98.84 0.72 1.35
765 t<04dtpne:r 9689 9691 414  4.89
Raspberri t<0.6tgne:r 9851 98.78 0.22  0.65
Pi4 t < 04tpne:r 9729 9730 0.19 0.87

the authors of the Once-for-All approach [7]. The proposed method-
ology yields enhancements in face recognition accuracy, with im-
provements of up to 0.9%, particularly under less stringent time
constraints. Despite incorporating a more intricate genetic algorithm
based on the quick sort and employing a binary gradient boosting
classifier instead of a simple multi-layered feed-forward neural net-
work, our search time s only marginally increases by 30 seconds.
Nonetheless, our search duration remains under five minutes, even
with this adjustment.

4 Conclusion

In this paper, we have proposed the framework (Fig. 1) to efficiently
generate optimized neural networks for facial feature extraction tai-
lored to specific hardware and latency constraints. To demonstrate
the efficacy and versatility of our approach, we have developed an
Android demo application (Fig. 3). The source code of our demo ap-
plication and trained FER models are publicly available, while the
code of each step of our methodology will be made available after
peer review. It was experimentally shown that our models exhibit
superior performance across a spectrum of devices, ranging from
smartphones to Raspberry Pi, from face recognition to facial expres-
sion recognition. By achieving real-time processing and outperform-
ing existing lightweight networks in accuracy, our research under-
scores the transformative potential of device-specific neural networks
in shaping the future of mobile and edge computing applications.

The primary limitation of the proposed approach lies in its inabil-
ity to ensure the high quality of extracted facial descriptors. More-
over, our evaluation metrics primarily focus on accuracy and infer-
ence time, potentially overlooking other important aspects such as
robustness, generalization, or interpretability of the models [36]. The
final drawback of our subnetworks is a high number of parameters
(Table 2). Hence, in the future, it is necessary to choose more space-
efficient layers and incorporate such techniques as ArcFace into Su-
perNet training.
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