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Abstract. Accurately and safely predicting the trajectories of sur-
rounding vehicles is essential for fully realizing autonomous driv-
ing (AD). This paper presents the Human-Like Trajectory Predic-
tion model (HLTP++), which emulates human cognitive processes to
improve trajectory prediction in AD. HLTP++ incorporates a novel
teacher-student knowledge distillation framework. The “teacher”
model, equipped with an adaptive visual sector, mimics the dynamic
allocation of attention human drivers exhibit based on factors like
spatial orientation, proximity, and driving speed. On the other hand,
the “student” model focuses on real-time interaction and human
decision-making, drawing parallels to the human memory storage
mechanism. Furthermore, we improve the model’s efficiency by in-
troducing a new Fourier Adaptive Spike Neural Network (FA-SNN),
allowing for faster and more precise predictions with fewer parame-
ters. Evaluated using the NGSIM, HighD, and MoCAD benchmarks,
HLTP++ demonstrates superior performance compared to existing
models, which reduces the predicted trajectory error with over 11%
on the NGSIM dataset and 25% on the HighD datasets. Moreover,
HLTP++ demonstrates strong adaptability in challenging environ-
ments with incomplete input data. This marks a significant stride in
the journey towards fully AD systems.

1 Introduction

As the field of autonomous vehicles (AVs) approaches a transforma-
tive phase, the core challenge extends beyond engineering to endow-
ing these systems with cognitive capabilities that parallel those of hu-
man drivers [19]. The central task within this framework is trajectory
prediction, which requires a sophisticated understanding of the exter-
nal driving environment coupled with a comprehension of the cog-
nitive mechanics of human decision-making [13]. While traditional
deep learning approaches in AVs have advanced in data processing
and pattern recognition, they often falter in complex or incomplete
data scenarios. Inspired by the ability of human drivers to navigate
complicated environments through adaptability and anticipation, our
research aims to replicate these human cognitive processes to im-
prove the predictive accuracy of our trajectory prediction models.

∗ Corresponding Author. Email: zhenningli@um.edu.mo
1 Equal contribution.

Figure 1. Illustration of our proposed model HLTP++. The “teacher” model
is designed to imitate the attention distribution in human driving by capturing
contextual data such as surrounding agents and temporal-spatial interactions,
generating prior knowledge. The “student” model, guided by this knowledge
and leveraging FA-SNN, emulates neural transmission and provides efficient
and human-like trajectory prediction with only 50% of the observations pro-
vided to the “teacher” model.

In the intricate process of human driving decision making, a com-
plex network of neural functions involving multiple brain regions
plays a critical role. Visual processing is handled by the occipital
and temporal lobes, while the prefrontal and parietal cortices handle
decision-making and spatial reasoning [26]. This coordinated func-
tion allows drivers to anticipate hazards and make decisions by inte-
grating current sensory data with past experience.

Inspired by these neurological processes, our Human-Like Tra-
jectory Prediction (HLTP++) model seeks to mimic human decision
making in driving. Leveraging knowledge distillation to balance ef-
ficiency with cognitive processing, the HLTP++ framework uses a
"teacher" model designed to mimic the brain’s method of visual data
processing. This model uses advanced visual pooling strategies to
analyze and prioritize visual input, similar to the functions of the oc-
cipital and temporal lobes. Subsequently, the "student" model incor-
porates a novel Spike Neural Network, FA-SNN, which simulates the
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decision-making functions similar to those of the prefrontal and pari-
etal cortices. Our goal is to develop a model that not only processes
information with brain-like efficiency, but also adapts quickly to new
information while maintaining both flexibility and precision, thus
overcoming the challenges associated with high parameter counts
and less human-like trajectory predictions. Overall, the contributions
of HLTP++ are multifaceted:

• We introduce a novel visual pooling mechanism to emulate the
dynamic visual sector of human observation and adaptively self-
adjust its attention to different agents in central and peripheral vi-
sion in real time under different scenes. Additionally, the Fourier
Adaptive Spike Neural Network (FA-SNN) is proposed to handle
traffic scenes with missing data by mimicking the neuronal pulse
propagation process in human brain.

• The HLTP++ presents a heterogeneous teacher-student knowledge
distillation framework by using enhanced Knowledge Distillation
Modulation (KDM) for multi-level tasks. This approach automat-
ically adjusts the ratio between loss functions, significantly facili-
tating model training in complex trajectory distillation situations.

• Benchmark tests on the NGSIM, HighD, and MoCAD datasets
have shown that the HLTP++ outperforms existing top baselines
by considerable margins, demonstrating its superior robustness
and accuracy in various traffic conditions, including highways and
dense urban environments. Notably, it exhibits remarkable perfor-
mance even with fewer input observations and missing data.

2 Related Work

Trajectory Prediction. Deep learning has significantly advanced the
use of various neural network frameworks within autonomous vehi-
cle (AV) systems, focusing extensively on improving both spatial and
temporal data extraction from trajectories. Techniques such as Recur-
rent Neural Networks (RNNs) [30], social pooling mechanisms [12],
Graph Neural Networks (GNNs) [20], attention schemes [37], gen-
erate models [16], and the Transformers architecture [38] have been
instrumental. Recent research has concentrated on merging human
cognitive science with trajectory prediction tasks. Li et al. [18] were
pioneers in analyzing the observation habits of human drivers, rec-
ommending a focus on the central vision field, akin to how drivers
emphasize their main visual area. Building on this, Liao et al. [24]
mimicked the differential allocation of attention to different visual
regions during driving, facilitating models to capture essential spa-
tiotemporal relationships. In addition, several significant studies have
tackled the task through the lenses of behavioral science and per-
ceived safety [23], adeptly modeling the ongoing driving patterns of
human drivers. This strategy aids models in comprehending the in-
herent uncertainty in traffic conditions, resulting in predictions that
are more akin to human drivers. While efforts like these enhance
model capabilities in safety and multimodality, the computational
demands in existing models often reduce their effectiveness in real-
time applications. To address these challenges, this study presents a
Brain-Inspired model designed to replicate the structure and func-
tionality of the human brain, aiming to improve the model’s reason-
ing abilities. Compared to our previous work, HLTP [21], the newly
proposed HLTP++ model shows differences in several crucial as-
pects: (1) HLTP++ more effectively manages the trade-off between
inference speed and prediction accuracy, delivering performance on
par with HLTP while needing significantly less inference time. (2)
By refining a teacher-student heterogeneous knowledge distillation
network, HLTP++ achieves outstanding results with fewer observa-

Figure 2. Overall “teacher-student” architecture of the HLTP++. The
“teacher” model employs encoders to capture spatio-temporal interactions,
followed by a fusion module that integrates features. The “student” model ac-
quires knowledge from the “teacher” model through the KDM training strat-
egy and incorporates FA-SNN for efficient, human-like trajectory prediction.

tion inputs than HLTP. (3) The introduction of an innovative learn-
ing strategy allows HLTP++ to attain state-of-the-art (SOTA) perfor-
mance with shorter training periods, which is not only computation-
ally efficient but also skillfully emulates human driving behavior for
improved real-time prediction accuracy.

Knowledge Distillation. Originating from Hinton et al.’s foun-
dational work [11], knowledge distillation facilitates the transfer of
complex knowledge from a ’teacher’ model to a more streamlined
’student’ model. This method, initially developed for model size re-
duction, now also augments model generalization and accuracy [29],
while limiting computational overhead [2]. Despite its sparse appli-
cation in autonomous driving [21], this study uses knowledge distil-
lation to embed human-like decision-making processes into AVs, en-
suring that the ’student’ model learns effectively and emulates prag-
matic driving intelligence.

Spike Neural Network. The emerging need for edge computing
solutions has catalyzed interest in third-generation neural networks,
particularly Spike Neural Networks (SNNs) [32], which are inspired
by biological neural processes. Known for their efficiency and low
power consumption, SNNs offer significant advantages for embed-
ded systems in vehicles [8]. However, conventional SNNs often sac-
rifice adaptability and temporal accuracy due to their rigid threshold-
ing mechanism. To overcome these limitations, this study introduces
the Flexible Adaptability Spike Neural Network (FA-SNN), which
improves both adaptability and temporal accuracy in trajectory pre-
diction models.
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3 Methodology

3.1 Problem Formulation

The principal objective of this study is to predict the trajectory of
the target vehicle, encompassing all traffic agents within the sens-
ing range of the AV in a mixed autonomy environment where AVs
coexist with human-driven vehicles. At any time t, the state of the
ith traffic agents can be denoted as pit, where pit = (xi

t, y
i
t) repre-

sents the 2D trajectory coordinate. Given the trajectory coordinate
data of the target vehicle (superscript 0) and all its observed traf-
fic agents (superscripts from 1 to n) in a traffic scene in the inter-
val [1, Tobs], denoted as X = {p0:nt }Tobs

t=1 ∈ R
(n+1)×Tobs×2, the

model aims to predict a probabilistic multi-modal distribution over
the future trajectory of the target vehicle, expressed as P (Y |X).
Here, Y = {y0

t }Tf

t=Tobs+1 ∈ R
Tf×2 is the predictive future tra-

jectory coordinates of the target vehicle over a time horizon Tf ,
and y0

t = {(p̃0,1t ; c̃0,1t ), (p̃0,2t ; c̃0,2t ), · · · , (p̃0,Ct ; c̃0,Ct )} encompasses
both the potential trajectory and its associated maneuver likelihood
(Σ1

Cc0,it = 1), with C denoting the total number of potential tra-
jectories predicted. In this study, we concentrate on optimizing the
"student" model’s output, where the future trajectory coordinates Y
are defined as Y stu

t = Y .

3.2 Scene Representation

HLTP++ describes scenarios by focusing on the relative positions
of traffic agents, aligning with human spatial understanding. It pre-
processes historical data into two key spatial forms: 1) visual vec-
tors S that capture relative position, velocity, and acceleration S =
{SΔp,SΔs,SΔa} ∈ R

(n+1)×Tobs×4 of the target vehicle relative to
its neighbors; 2) context matrices M describing speed and direction
angle differences M = {MΔs,MΔθ} ∈ R

(n+1)×Tobs×2 among
the surrounding agents.

3.3 Overall Architecture

Figure 2 illustrates the architecture of HLTP++. We use a novel pool-
ing mechanism with an adaptive visual sector for data preprocessing.
This sector dynamically adapts to capture important cues in differ-
ent traffic situations, which is similar to attention allocation. Ad-
ditionally, the model also employs a teacher-student heterogeneous
network distillation approach for human-like trajectory prediction. i)
The “teacher” model. The Temporal Encoder and the Spatial En-
coder within the “teacher” model process visual vectors and con-
text matrices to produce temporal and spatial feature vectors, respec-
tively. These vectors are then fed into the Fusion Module to fuse
two modalities. The output of the Fusion Module is then fed into
the Teacher Multimodal Decoder, which enables the prediction of
different potential maneuvers for the target vehicle, each with asso-
ciated probabilities. ii) The “student” model. The Fourier Adaptive
SNN first processes trajectory temporal information from the Visual
Pooling by imitating the transmission of neurons. Then the output
matrix is fed into the Student Multimodal Decoder which is simi-
lar to the teacher. Besides self-training, the “student” model acquires
knowledge from the “teacher” model using a Knowledge Distillation
Modulation (KDM) training strategy. This approach ensures accurate
trajectory predictions while requiring fewer input observations.

3.4 Visual Pooling Mechanism

Research [33] shows that human drivers, constrained by brain’s
working memory, focus mainly on a few external agents in their cen-
tral visual field, especially in high-risk situations. The driver’s visual
sector, influenced by speed, narrows at higher speeds for focused at-
tention and widens at lower speeds for broader awareness.

HLTP++ introduces a visual pooling mechanism that emulates this
adaptive visual attention. It features an adaptive visual sector that ad-
justs the field of view based on vehicle speed. Specifically, in con-
trast to models with uniform attention distribution, we propose a vi-
sual weight matrix H that adapts to changing focus in the central vi-
sual field at different speeds. Speed thresholds at 0km/h, 30km/h,
60km/h, and 90km/h define distinct values of the visual sectors.
This approach refines the understanding of attention during driving.
The visual weight matrix Hvision is then integrated by the input visual
vectors S. Formally,

S̃ = Hvision � S, (1)

This equation produces visual vectors S̃ that encapsulate human
drivers’ varying attention patterns.

3.5 Teacher Model

The “teacher" model integrates Temporal and Spacial encoders to
closely emulate human visual perception, mirroring the retinal pro-
cessing of the human drivers. As an enhancement, it further em-
ploys the iTransformer framework in the decoder to effectively ex-
tract spatio-temporal interactions.
Temporal Encoder. In real-world driving, the human brain, with its
limited processing capacity, prioritizes information to facilitate effi-
cient decision-making. Therefore, allocating distinct attention to dif-
ferent features is essential, as it reduces the cognitive load on the
brain in processing non-essential information. We employ a LSTM
layer to process temporal information, followed by a multi-head at-
tention mechanism for attention allocation.
Spatial Encoder. Human drivers focus on their central vision while
continuously monitoring their peripheral vision through side and
rear-view mirrors to understand their surroundings, including nearby
vehicles, pedestrians, and road conditions. To replicate this periph-
eral monitoring, especially during maneuvers, we introduce the Spa-
tial Encoder. It processes a quarter of the time-segmented matrices

M ∈ R
(n+1)×Tobs

4
×2 with a 1 × 1 convolutional layer for channel

expansion, followed by a 3 × 3 layer for specific feature extraction,
incorporating batch normalization and dropout for robustness. En-
hanced with Graph Attention Networks and ELU activation, it pro-
duces spatial vectors Os.
Fusion Module. The combined outputs of the Spatial Encoder Os

and the Temporal Encoder Ot are fused and then fed into the iTrans-
former architecture [25] for advanced spatio-temporal interaction
analysis, generating hidden states I. Furthermore, we use the dispari-
ties between temporal and spatial features to generate a loss, denoted
as Lst, which serves as one of the loss functions for training the
“teacher” model.
Teacher Multimodal Decoder. The decoder of the “teacher" model,
based on a Gaussian Mixture Model (GMM), accounts for uncer-
tainty in trajectory prediction by evaluating multiple possible ma-
neuvers and their probabilities. Specifically, built on the base layer
of estimated maneuvers C, the model assumes that the probability
distribution for trajectory predictions follows a Gaussian framework:

PΩ(Y |C,X) = N(Y |μ(X),Σ(X)) (2)
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Figure 3. Overall architecture of the FA-SNN.

where X represents the input to our model, and Ω =[
Ωt+1, . . . ,Ωt+tf

]
symbolizes the estimable parameters of the dis-

tribution. Each Ωt = [μt,Σt] represents the mean and variance for
the predicted trajectory at time t. Then, in the next layer, the multi-
modal predictions are conceptualized as a GMM:

P (Y |X) =
∑
∀i

P (ci|X)PΩ (Y |ci,X) (3)

where ci denotes the i-th maneuver in C. Then, the hidden states
are processed through softmax activation and a MLP layer, forming
a probability distribution Otea over potential future trajectories. This
approach balances the precision and validity, which is critical for dy-
namic and uncertain driving environments.

3.6 Student Model

The FA-SNN is introduced in the “student” model, which emphasizes
the short-term and fewer observations, with visual vectors S̃ (Tobs =
8), utilizing visual vectors and a lightweight architectural design for
efficient learning. In a departure from the complex framework of the
“teacher” model, the “student” model employs a more lightweight
architecture to produce a multimodal prediction distribution Ostu.
By learning the behavioral paradigm from the “teacher” model, the
“student” model is able to make human-like predictions even when
constrained by limited observations.

Specifically, The FA-SNN proposed in this study is an enhanced
version of the traditional SNN model. It addresses the challenge
of fitting difficulties during training by introducing adaptive adjust-
ments and optimizing temporal feature extraction. The approach is
based on the idea that neurons in an SNN should adapt to different
scenarios, which is mainly reflected in the adjustment of the thresh-
old magnitude. Inspired by the Leaky Integrate-and-Fire (LIF) mech-
anism, the Fourier Transform (FT) is used to extract specific features.
More specifically, the FA-SNN’s forward propagation involves three
essential processes: Charging, Leakage, and Firing Processes.
Charging Process. Similar to traditional perceptron neurons, the
current neuron is charged by aggregating input spike sequences from

previous neurons through varying weights at discrete time steps
{t0, t1, ..., tn, ..., tN}.
Leakage Process. In the LIF mechanism, neurons experience leak-
age due to voltage differences in their surroundings. The internal
voltage V of the spiking neuron tends towards an equilibrium voltage
U over time t, adhering to the differential equation U−V = −η dV

dt
,

where η = 1 denote the leakage decay rate, indicating the magnitude
of voltage decay. This dynamic is pivotal for the neuron’s voltage
stabilization, allowing the calculation of future voltage states. After
solving the above equation, we can obtain:

V (tn) = U − Ce
− tn

η (4)

where C is a constant value. This allows us to calculate the voltage
at the next moment tn+1:

V (tn+1) = V (tn + dt) = e
− dt

η (V (t)− U) + U (5)

Firing Process. The firing process is activated based on the spike
magnitude through an activation function. Given a spike threshold
U0, the voltage V ′(tn+1) can be defined as follows:

V ′(tn+1) =

{
V (tn+1)− U0, V (tn+1) > U0

V (tn+1), V (tn+1) ≤ U0

(6)

Unlike traditional models with a fixed spike threshold, the proposed
FA-SNN employs a learnable threshold, adjusting dynamically to
preserve temporal features. Importantly, a Fast Fourier Transform
(FFT) is applied to the pre-firing spike value V (tn+1) to incorpo-
rate frequency information, enhancing the representation capability:

F [V (tn+1)] =
N∑

τ=0

V (tn+1) · e− 2πi
N+1

(n+1)τ (7)

where i is the imaginary unit. According to Euler’s formula:

e−
2πi
N+1

(n+1)τ = cos[−2π(n+ 1)

N + 1
τ ] + isin[−2π(n+ 1)

N + 1
τ ], (8)

where A = cos[− 2π(n+1)
N+1

τ ] and B = sin[− 2π(n+1)
N+1

τ ] respectively

represent the real and imaginary parts of e−
2πi
N+1

(n+1)τ . We then
compute the power spectrum W = (|A| + |B|)2 to serve as the
output feature, where “||” represent the absolute value symbol.

Backpropagation. Due to the discontinuity of the activation func-
tion used during SNN firing, conventional chain-rule differentiation
is infeasible. To circumvent this, the gradient G is redefined, factor-
ing in the spike threshold and introducing parameters like the abso-
lute width wa, gradient width wg and gradient scale s:

G(V ′(tn+1)) =
s

wa
× exp

(
−|V ′(tn+1)− U0|

wa

)
(9)

where wa = U0 · wg , and wg = 0.5, s = 1.0.

4 Training

4.1 Teacher Training

For the “teacher” model, we follow a standard protocol, using 3 sec-
onds of observed trajectory for input (Tobs = 16) and predicting a
5-second future trajectory (Tf = 25). To extract complex knowl-
edge from the dataset, we allow slight overfitting during training. The
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training loss function of the teacher model consists of three parts:
trajectory loss Ltea

traj , maneuver loss Ltea
man and temporal-spacial loss

Lst from iTransformer.
Trajectory Loss. In our trajectory prediction process, we treat the
output 2D trajectory coordinates P = (x, y) as a bivariate Gaus-
sian distribution. Therefore, we could use Negative Log-Likelihood
(NLL) loss Ltea

traj to measure the disparity between the prediction
and the ground truth. Considering the total number C of potential
trajectories predicted, with P tea

pred and Pgt representing the teacher
model’s predicted trajectory coordinates and the ground truth coor-
dinates respectively, the trajectory loss Ltea

traj for the teacher model
can be formulated as: Ltea

traj =
∑Tf

t

∑C
c LN (P tea

pred, Pgt). Mathe-
matically, for a specific data point, given the model’s predicted prob-
ability distribution P (Y |X), where Y represents the output future
trajectory and X denotes the input features, the NLL Loss LN is
defined as follows:

LN = −log(P (Y |X)), (10)

Maneuver Loss. To address the potentially detrimental effects of
mis-classifying maneuver types on trajectory prediction accuracy
and robustness, we adopt the Mean Squared Error (MSE) loss Ltea

man

to measure the disparity between the predicted maneuver types
M tea

pred and the ground truth maneuver types M tea
gt , which is for-

mulated as: Ltea
man =

∑Tf
t

∑C
c LM (M tea

pred,Mgt), so the total loss
function of teacher model is formulated as follows:

Ltea = Ltea
traj + Ltea

man + Lst, (11)

4.2 Student Training

The “student” model is trained to predict 5-second future trajectories
with fewer input observations. To improve its predictive performance
with limited observations, we decouple the total loss function of the
student model L as the student loss (especially refers to the loss func-
tion exclusively associated with the “student” model) Lstu and dis-
tillation loss Ldis. The student loss, similar to that of the “teacher”
model, quantifies the discrepancy between the model’s predicted tra-
jectories, maneuvers and their ground truths. Formally,

Lstu = Lstu
traj + Lstu

man

=

Tf∑
t

C∑
c

(
LN (P stu

pred, Pgt) + LM (Mstu
pred,Mgt)

)
,

(12)

where P stu
pred and Mstu

pred represent the predicted 2D coordinates and
maneuvers of the “student” model. Moreover, we apply the MSE loss
to measure the disparity between the outputs of the teacher and the
“student” model:

Ldis = Ldis
traj + Ldis

man

=

Tf∑
t

C∑
c

(
LM (P stu

pred, P
tea
pred) + LM (Mstu

pred,M
tea
pred)

)
,

(13)
Hence, the total loss function of the “student” model is formulated
as L = Lstu +Ldis. Then, we propose a method for tuning multiple
tasks that evaluates the importance of different loss functions and
automatically adjusts the weights between them for efficient training.

4.3 Knowledge Distillation Modulation

Given that L is composed of sub-loss functions from multiple tasks,
determining the proportionality relationships between them poses a

challenging problem. Both Lstu and Ldis are further decomposed
into maneuver loss function Ltraj and trajectory coordinate loss
function Lman:

Lstu = Lstu
traj + Lstu

man, Ldis = Ldis
traj + Ldis

man, (14)

Drawing the inspiration from the notable work [14], we incorpo-
rate the KDM to weight the trajectory loss and the distillation loss,
with homoscedastic uncertainty. To the best of our knowledge, we
are the first to propose a multi-level, multi-task hyperparameter tun-
ing approach to autonomously adjust knowledge distillation hyperpa-
rameters during training in this field. Our approach defines a multi-
level task where the overarching training loss function is composed
of an ensemble of sub-loss functions. Each of these sub-loss func-
tions is further composed of additional sub-loss functions that share
some degree of similarity.

Following the approach outlined in Kendall et al. [14] for the first
level of the loss function, we obtain the following equation:

Lstu =
1

2σ2
t

Lstu
traj(W) +

1

2σ2
m

Lstu
man(W) + logσtσm,

Ldis =
1

2σ2
t

Ldis
traj(W) +

1

2σ2
m

Ldis
man(W) + logσtσm,

(15)

where σt, σm are the learnable uncertainty variances, W represents
trainable parameters of the model. Since L is composed of Lstu and
Ldis, we use the multi-task tuning approach for the second level:

L =
1

2σ2
s

Lstu(W) +
1

2σ2
d

Ldis(W) + logσsσd, (16)

Combining Eq. 15 and Eq. 16, we obtain the following formulation:

L(W,σt, σm, σs, σd) =
1

2σ2
s

(
1

2σ2
t

Lstu
traj +

1

2σ2
m

Lstu
man)

+
1

2σ2
d

(
1

2σ2
t

Ldis
traj +

1

2σ2
m

Ldis
man) + F (σt, σm, σs, σd),

(17)

where F equals to logσtσm( 1
2σ2

s
+ 1

2σ2
d
) + logσsσd. To ensure uni-

formity in the derived equations from different level-segmenting ap-
proach, we modify F as F = log(σtσmσsσd).

5 Experiment

5.1 Experimental Setup

Datasets. We conduct experiments using three esteemed datasets:
NGSIM [7], HighD [15], and MoCAD [22]. These three datasets
cover various traffic conditions, including on highways and in dense
urban environments.
Metric. Root Mean Square Error (RMSE) and average RMSE is ap-
plied as our primary evaluation metric, which is commonly used as
a measure to calculate the square root of the average squared predic-
tion error in autonomous driving.
Implementation Details. HLTP++ is developed using PyTorch and
trained on an A40 48G GPU. We use the Adam optimizer along with
CosineAnnealingWarmRestarts for scheduling, with a training batch
size of 256 and learning rates ranging from 10−3 to 10−5. Unless
specified, all evaluation results are based on the “student” model.

5.2 Experiment Results

Comparison with the State-of-the-art Baselines. Our comprehen-
sive evaluation demonstrates HLTP++’s superior performance com-
pared to SOTA baselines, as detailed in Table 1. It notably achieves
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Table 1. Evaluation results for our proposed model and the other SOTA
baselines in the NGSIM, HighD, and MoCAD datasets. Bold and underlined
values represent the best and second-best performance in each category.
“AVG” is the average value of the RMSE.

Dataset Model
Prediction Horizon (s)

1 2 3 4 5 AVG

NGSIM

S-LSTM [1] 0.65 1.31 2.16 3.25 4.55 2.38
S-GAN [10] 0.57 1.32 2.22 3.26 4.40 2.35

CS-LSTM [7] 0.61 1.27 2.09 3.10 4.37 2.29
MATF-GAN [36] 0.66 1.34 2.08 2.97 4.13 2.22
NLS-LSTM [27] 0.56 1.22 2.02 3.03 4.30 2.23

IMM-KF [17] 0.58 1.36 2.28 3.37 4.55 2.43
MFP [31] 0.54 1.16 1.89 2.75 3.78 2.02
DRBP [9] 1.18 2.83 4.22 5.82 - 3.51
WSiP [34] 0.56 1.23 2.05 3.08 4.34 2.25

CF-LSTM [35] 0.55 1.10 1.78 2.73 3.82 1.99
MHA-LSTM [28] 0.41 1.01 1.74 2.67 3.83 1.91

STDAN [5] 0.39 0.96 1.61 2.56 3.67 1.84
iNATran [4] 0.39 0.96 1.61 2.42 3.43 1.76

DACR-AMTP [6] 0.57 1.07 1.68 2.53 3.40 1.85
FHIF [39] 0.40 0.98 1.66 2.52 3.63 1.84
BAT [22] 0.23 0.81 1.54 2.52 3.62 1.74
HLTP++ 0.46 0.98 1.52 2.17 3.02 1.63

HLTP++ (h) 0.49 1.05 1.64 2.34 3.27 1.76

HighD

S-LSTM [1] 0.22 0.62 1.27 2.15 3.41 1.53
S-GAN [10] 0.30 0.78 1.46 2.34 3.41 1.69
WSiP [34] 0.20 0.60 1.21 2.07 3.14 1.44

CS-LSTM [7] 0.22 0.61 1.24 2.10 3.27 1.48
MHA-LSTM [28] 0.19 0.55 1.10 1.84 2.78 1.29
NLS-LSTM [27] 0.20 0.57 1.14 1.90 2.91 1.34

DRBP[9] 0.41 0.79 1.11 1.40 - 0.92
EA-Net [3] 0.15 0.26 0.43 0.78 1.32 0.59

CF-LSTM [35] 0.18 0.42 1.07 1.72 2.44 1.17
STDAN [5] 0.19 0.27 0.48 0.91 1.66 0.70

DACR-AMTP [6] 0.10 0.17 0.31 0.54 1.01 0.42
GaVa [24] 0.17 0.24 0.42 0.86 1.31 0.60
HLTP++ 0.11 0.17 0.30 0.47 0.75 0.36

HLTP++ (h) 0.12 0.18 0.32 0.52 0.89 0.41

MoCAD

S-LSTM [1] 1.73 2.46 3.39 4.01 4.93 3.30
S-GAN [10] 1.69 2.25 3.30 3.89 4.69 3.16

CS-LSTM [7] 1.45 1.98 2.94 3.56 4.49 2.88
MHA-LSTM [28] 1.25 1.48 2.57 3.22 4.20 2.54
NLS-LSTM [27] 0.96 1.27 2.08 2.86 3.93 2.22

WSiP [34] 0.70 0.87 1.70 2.56 3.47 1.86
CF-LSTM [35] 0.72 0.91 1.73 2.59 3.44 1.87

STDAN [5] 0.62 0.85 1.62 2.51 3.32 1.78
HLTP++ 0.60 0.81 1.56 2.40 3.19 1.71

HLTP++ (h) 0.64 0.86 1.62 2.52 3.35 1.80

gains of 11.2% for long-term (5s) and 11.4% for average predictions
on the NGSIM dataset. The corresponding outstanding performance
is also evident on the HighD dataset and the MACAD dataset. It is
noteworthy that our model HLTP++(h), despite utilizing only 1.5 sec-
onds of input data (half of the input of other baselines), achieves
comparable prediction accuracy. This highlights the adaptability and
robustness of HLTP++.
Comparing Model Performance and Complexity. As detailed in
Table 2, our benchmarking against SOTA baselines reveals that
HLTP++ models outperform in all metrics while maintaining a min-
imal parameter count. Specifically, HLTP++ reduce parameters by
56.91% and 33.51% compared to WSiP and CS-LSTM, respec-
tively. Compared to HLTP++(SM), the “teacher” model of HLTP++,
HLTP++(TM), achieve the second best score in three datasets,
while maintaining a larger number of parameters and slower infer-
ence speed. However, HLTP++ maintain the lowest inference time
while achieve the best accuracy in trajectory prediction. Utilizing
the Knowledge Distillation Module (KDM), HLTP++ retains the
lightweight advantages of the HLTP++(SM), while concurrently en-
hancing its predictive capabilities by assimilating knowledge gleaned

Table 2. Comparative evaluation of our model with SOTA baselines. Em-
phasizing model complexity via parameter count (Param.). “Avg. IT” repre-
sents the average inference time of the model. HLTP++(TM) is the teacher
model of the HLTP++. HLTP++(SM) is the student model of the HLTP++
without KDM.

Model Param. (K)
Average RMSE (m)

Avg. IT (s)
NGSIM HighD MoCAD

CS-LSTM 194.92 2.29 1.49 2.88 0.0259
CF-LSTM 387.10 1.99 1.17 1.88 0.4565

WSiP 300.76 2.25 1.44 1.86 0.3292
STDAN 486.82 1.87 0.70 1.78 0.0670
HLTP++ 129.60 1.63 0.36 1.62 0.0214

HLTP++(SM) 129.60 1.76 0.52 1.75 0.0214

HLTP++(TM) 453.45 1.74 0.47 1.72 0.0726

Table 3. Different methods and components of ablation study.

Components
Ablation Methods

A B C D E F G

Visual Pooling Mechanism � � � � � � �
Spatial Encoder � � � � � � �
Fusion Module � � � � � � �

FA-SNN � � � � � � �
Multimodal Decoder � � � � � � �

KDM � � � � � � �

from the teacher model, thereby surpassing the performance of the
teacher model itself. This highlights the efficiency and adaptability of
our lightweight “teacher-student” knowledge distillation framework,
offering a balance between accuracy and computational resources.
Qualitative Results. Figure 5 showcase the multimodal probabilistic
prediction performance of HLTP++ on the NGSIM dataset. The heat
maps shown represent the Gaussian Mixture Model of predictions in
challenging scenes. These visualizations show that the highest prob-
ability predictions of our model are very close to the ground truth, in-
dicating its impressive performance. Figure 6 visually demonstrates
our model’s ability to accurately predict complex scenarios such as
merging and lane changing, confirming its effectiveness and safety
in various traffic situations. Interestingly, in certain complex scenar-
ios, the trajectory predictions of the “student” model exceed the ac-
curacy of the “teacher” model. This result illustrates the ability of
the “student” model to selectively assimilate and refine the knowl-
edge acquired from the “teacher” model, effectively “extracting the
essence and discarding the dross”. Moreover, we observed that vehi-
cles in closer proximity to the target vehicle received higher attention
values. This observation aligns with the driving behavior of human
operators who primarily focus on the vehicle ahead, as it has the
most significant influence on the driving trajectory. This also sub-
stantiates the utility of vision pooling in reducing the perturbations
caused by neighboring vehicles, thereby prioritizing the significance
of the leading vehicle.

5.3 Ablation Studies

Ablation Study for Core Components. Table 3 shows that our ab-
lation study evaluates the performance of HLTP++ using six model
variations, each omitting different components. The data in Table 4
clearly indicate that the performance of all models degrades when
components are removed, as compared to the baseline model. No-
tably, integrating the iTransformer and a multimodal probabilistic
maneuvering module significantly improves the accuracy. This un-
derscores their vital function in encapsulating the spatio-temporal
dynamics among vehicles. Furthermore, ablation studies A and B
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Figure 4. Visualizations of the (1) trajectory loss, (2) maneuver loss, (3) teacher model’s loss, (4) student model’s loss without KDM, (5) student model’s loss
with KDM during training.

Table 4. Ablation results for different models. (NGSIM/HighD)

Time (s)
Ablation Methods

A B C D E F

1 0.52/0.11 0.47/0.11 0.53/0.12 0.47/0.11 0.49/0.20 0.50/0.16
2 1.07/0.18 1.03/0.20 1.09/0.23 1.10/0.17 1.10/0.26 1.06/0.32
3 1.68/0.33 1.71/0.34 1.74/0.34 1.67/0.32 1.81/0.44 1.64/0.45
4 2.35/0.49 2.40/0.51 2.41/0.49 2.34/0.50 2.63/0.72 2.33/0.69
5 3.24/0.78 3.39/0.80 3.32/0.79 3.27/0.79 3.67/0.97 3.26/0.98

AVG 1.77/0.38 1.80/0.39 1.82/0.39 1.77/0.38 1.94/0.52 1.76/0.52

Figure 5. Visualizations of the multi-modal probabilistic prediction of
HLTP++ on NGSIM. Heat maps illustrate the GMM of predictions: brighter
areas denote higher probabilities.

provide empirical evidence supporting the utility of incorporating
cognitive mechanisms similar to human brain processes.
Ablation Study for FA-SNN. To further showcase the effective-
ness of our proposed FA-SNN, we conducted an ablation study in
HLTP++ by replacing the FA-SNN with the standard SNN, SNN only
with the Fourier Transform (FT), and the SNN only with the adap-
tive spike threshold (AST). Table 5 demonstrates that incorporating
the AST and FT in SNN can significantly improve the predictive per-
formance of the model. This underscores the FA-SNN’s ability to
capture and extract spatio-temporal interactions in complex scenes.
Ablation Study for KDM. To illustrate the impact of KDM on
HLTP++, we present the loss function curves during training in
Figures 4 (1) and 4 (2). Specifically, Ltea

traj , Lstu
traj , L̃stu

traj(KDM),
and Lstu

traj(KDM) represent the trajectory losses for the teacher
model, the student model without KDM, and the student model with
KDM, respectively. Similarly, Ltea

man, Lstu
man, and Lstu

man(KDM) de-
note the maneuver losses. As shown in Figure 4, Lstu

traj(KDM) and
Lstu

man(KDM) initially start higher but rapidly decrease as training
progresses, indicating efficient early training and finer adjustments
in later stages. Figures 4 (3)-(5) compare the trajectory and maneu-
ver losses between models. Figures 4 (3) and 4 (4) show a signifi-
cant difference in loss values, with a stabilization around a factor of
40 as training progresses. The lack of maneuver loss reduction sug-
gests that, without KDM, there is an imbalance favoring trajectory
fitting over maneuver prediction. In contrast, Figure 4 (5) demon-
strates that KDM facilitates convergence between Lstu

traj(KDM) and
Lstu

man(KDM), enabling balanced optimization across tasks.
Ablation Study for Missing Data. We introduce a missing test set
on the NGSIM dataset, focusing on scenarios where part of the his-

Table 5. Ablation study on FA-SNN.

Models
Components Metrics

AST FT RMSE (5s) AVG

FA-SNN � � 3.02 1.63
F-SNN � � 3.13 1.70
A-SNN � � 3.11 1.69

SNN � � 3.21 1.73

torical data is missing. The set is divided into five subsets based on
varying durations of data absence. For example, subset tm=0.4 in-
dicates a missing trajectory data duration of 0.4 seconds, which was
imputed using linear interpolation. The results in Table 6 show that
HLTP++ outperforms all baselines even with 1.6s missing data, high-
lighting its adaptability and deep understanding of traffic dynamics.

Figure 6. Visualizations of HLTP++ and SOTA baseline on NGSIM.
HLTP++(TM) denotes the “teacher” model of HLTP++.

Table 6. Ablation results for missing data.
Time (s) tm=0.4 tm=0.8 tm=1.2 tm=1.6 tm=2.0 tm=2.4

1 0.46 0.46 0.47 0.48 0.50 0.56
2 0.98 0.99 1.00 1.03 1.07 1.17
3 1.53 1.54 1.57 1.61 1.67 1.79
4 2.20 2.21 2.25 2.31 2.39 2.54
5 3.07 3.10 3.15 3.23 3.32 3.51

6 Conclusion

This study presents a novel trajectory prediction model (HLTP++)
for AVs. It addresses the limitations of previous models in terms of
parameter heaviness and applicability. HLTP++ is based on a multi-
level task knowledge distillation network, providing a lightweight yet
efficient framework that maintains prediction accuracy. Importantly,
HLTP++ adapts to scenarios with missing data and reduced inputs by
simulating human observation and making human-like predictions.
The empirical results indicate that HLTP++ excels in complex traffic
scenarios and achieves SOTA performance. In future work, we plan
to feed multimodal data, such as Bird’s Eye View (BEV), multi-view
camera images and Lidar, into the HLTP++ model to further enhance
the scene understanding of the model.
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