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Abstract. In this work we considerably improve the state-of-the-art
SMT solving on first-order quantified problems by efficient machine
learning guidance of quantifier selection. Quantifiers represent a sig-
nificant challenge for SMT and are technically a source of undecid-
ability. In our approach, we train an efficient machine learning model
that informs the solver which quantifiers should be instantiated and
which not. Each quantifier may be instantiated multiple times and the
set of the active quantifiers changes as the solving progresses. There-
fore, we invoke the ML predictor many times, during the whole run
of the solver. To make this efficient, we use fast ML models based on
gradient boosted decision trees. We integrate our approach into the
state-of-the-art cve5S SMT solver and show a considerable increase of
the system’s holdout-set performance after training it on a large set of
first-order problems collected from the Mizar Mathematical Library.

1 Introduction

The use of machine learning methods in various fields of automated
reasoning is an emerging research topic with successful applica-
tions [8, 21, 39]. Machine learning methods were previously inte-
grated into various provers, solvers, and related systems [25, 18].
Here, we focus on the task of selecting quantifiers within the state-of-
the-art Satisfiability Modulo Theory (SMT) solver, cvcS, where vari-
ous instantiation methods are applied to quantified formulas to refine
problem representation. While cvc5’s instantiation methods generate
instantiations for all applicable quantified formulas, we aim to fil-
ter out the formulas considered by the instantiation module using a
machine-learned predictor trained on previously proved similar prob-
lems. We refer to this process as quantifier selection for simplicity.
In contrast to previous research efforts that concentrated on fine-
grained control of the solver at the term level [26, 28] , we simplify
the problem by shifting our focus to controlling the solver at the
quantifier level. This simplification allows us to employ our method
basically with any quantifier instantiation method supported by cvcS.
Our methods also improve upon a related method of offline premise
selection [1, 18], where initial quantified assumptions are filtered
only once before launching the solver. Since this filtering can re-
sult in an irrecoverable mistake (a deletion abstraction [30] resulting
in a too weak theory) when a necessary assumption is deleted, our
method ensures that every quantified formula will be considered for
instantiations with a non-zero probability. This yields a more com-
plex, probabilistically guided framework implementing deletion and
instantiation abstractions in the framework proposed in [30]. As we
employ an efficient version of gradient boosting decision trees with
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Figure 1. Schema of quantifier instantiation in SMT, adapted from [27].

simple, but easily computable bag of words features, our implemen-
tation produces only a minimal overhead over the standard cvc5 run.

The simplicity of our approach allows us to apply it extensively
and train on a large number of problems from the Mizar Mathemat-
ical Library (MML). The method is also remarkable for its cross-
strategy model transfer, where a model trained on samples from one
strategy improves the performance of virtually any other strategy.
This allows us to improve the state-of-the-art performance of cvcS
on MML by more than 20% in both the single strategy and portfolio
scenarios. Our best machine-learned strategy, alone, outperforms the
state-of-the-art cveS’s portfolio from the latest CASC competition by
more than 10%.

2 Background: SMT solving

To solve formulas without quantifiers (aka ground formulas), SMT
solvers combine SAT solving with theory solving [5]. The SAT
solver handles the boolean structure of the formula and theory solvers
reason about concrete theories, such as theory or reals, integers, etc.
Problems in FOL do not contain such theories explicitly and there-
fore, to reason about FOL, an SMT solver needs to only support un-
interpreted functions and equality (combination known as EUF). For
reading this paper, it is not essential to understand how exactly the
SMT solvers solve ground formulas; we refer the interested reader to
relevant literature [14, 3, 5, 12].

Formulas with with quantifiers represent a significant challenge for
SMT. In general, SMT solvers use instantiations—unless they deal
with decidable quantified theories [13, 7, 37]. Instantiations are done
with the goal of achieving a contradiction. This style of reasoning
can be seen as a direct application of the Herbrand’s theorem. For
example, for (Vz : R.x > 0) instantiating = with the value 0 yields
0 > 0, which immediately gives a contradiction (in the theory of
reals).

Input formulas do not need to be in prenex form, which
effectively means that the solver may activate only some of
the quantified subformulas. For this purpose, a subformula
(Vx1...2n ¢) is seen as a generator of lemmas of the form
(Vz1 ... 20 @) = @lz1/t1,...,Tn/tn], with ¢; ground terms. For



J. Jakubiiv et al. / Machine Learning for Quantifier Selection in cveS 4337

example, Vz R(f(x), c) may be instantiated as (Vz R(f(z),c)) —
R(f(c), ¢). Existential quantifiers are removed by skolemization.

The solving process alternates between a ground solver and an
instantiation module (Figure 1), where the ground solver perceives
quantifiers as opaque propositions. After identifying a model for the
ground part, control shifts to the instantiation module. This module
generates new instances of the quantified sub-formulas that are cur-
rently meant to hold. A new instance is added to the ground part of
the formula, thus making it stronger. The process stops if the ground
part becomes unsatisfiable, if ever (model-based quantifier instantia-
tion can also lead to satisfiable answers [16]).

The cvc5 solver implements several instantiations methods. Some
of those can be seen as syntactic-driven approaches, e-matching [14]
or syntax-guided instantiation [31]. Other methods are semantic-
driven such as model-based [16, 35] or conflict-based [36]. A
straightforward, but complete for FOL is enumerative instantia-
tion [27, 38] which exhaustively generates all possible instantiations.
Both e-matching and enumerative instantiation require the solver to
maintain a database of ground terms. This database grows as new in-
stantiations are performed. In the case of enumerative instantiation,
the terms are selected systematically going from the oldest to the
newest. E-matching tries to instantiate in a way to match an exist-
ing term. We dedicate Sections 2.1 and 2.2 to describing these two
prominent methods because they are the most effective for quanti-
fier instantiation, and we anticipate that they will derive the greatest
benefit from machine learning.

All these techniques target the quantifiers individually, i.e., the in-
stantiation of one quantifier does not directly influence the instanti-
ation of another one. The default implementation of cvc5 is to iter-
ate over all currently-active quantifiers and instantiate them, one by
one. If such instantiation step is superfluous, the generated lemma
not only burdens the underlying SAT solver, but it also pollutes the
considered set of terms with all the lemma’s subterms.

2.1 Enumerative instantiation

This enumerative instantiation mode enumerates all possible tuples
of terms from the term database that can be used to instantiate a quan-
tified expression [38, 27]. Given an ordering of the suitable ground
terms for each quantifier, the strategy enumerates tuples by starting
at the tuple that contains the first term in each quantifier-term order-
ing, and moves further into the orderings by incrementing the indices
that retrieve further terms in the quantifier-term index.

The particular criterion for term ordering that is used in enumer-
ative instantiation is the age of the ground terms, with terms with
higher age being preferred. That is, ground terms that were in the
original problem have the highest priority for being tried. As an ex-
ample of the logic of the procedure, imagine that there is a ground
part {p(c)} and a quantified expression Vz. ¢(f(z)). In this case, the
ground term c is available at the start of the procedure and therefore
will be tried first. This creates a ground lemma that is a consequence
of the quantified expression, ¢(f(c)). The solver would now recog-
nize that f(c) is also an available ground term, insert it into the term
database and it would be used in the next round of instantiations.
With nested terms, many new ground terms may be created by a sin-
gle instantiation step.

2.2  E-matching

The e-matching instantiation procedure searches for instantiations
that match some already available ground term [14], taking term

equality into account. Of course, at any point and especially late in
the procedure when many terms have been generated, there can be
many possible ways to create such matching terms. The e-matching
instantiation process is therefore focused using triggers, which are
user-supplied or heuristically generated patterns.

We show the following example for a more concrete perspec-
tive. In the example, we assume that a theory module that can eval-
vate integer arithmetic statements is available. Given the follow-
ing ground facts {p(a),a = f(24)} and the quantified expression
Vz.=p(f(z)) Vo < 0. A trigger in the form p(f(z)) leads to =
being instantiated with the ground term 24 as there is an existing
ground term p(f(24)), when taking equality into account. Instantiat-
ing with 24 generates the consequent lemma —p(f(24)) vV 24 < 0.
This lemma contradicts the other ground facts (as the theory of inte-
ger arithmetic knows that in fact 24 > 0), and therefore the solver
stops and reports that a contradiction (unsat) was found. An auto-
mated trigger generation method is implemented in the e-matching
module of cvc5, and its behavior can be influenced through various
options provided by the user.

3 Machine-learned quantifier selection

In this section, we detail our quantifier selection method and its im-
plementation in the cvc5 solver, covering the process from extraction
of training examples to model training, and integration.

3.1 Instantiation modules

The instantiation methods supported by cvcS are implemented
through various instantiation modules that share a common inter-
face. An instantiation module is invoked via its check method to
refine information about quantified formulas by introducing appro-
priate formula instances. Each module is provided with information
about currently asserted quantified formulas, and it selects formulas
and generates their instances in accordance with the implemented in-
stantiation method. Subsequently, control is returned to the ground
solver.

Effective quantifier and instance selection can significantly en-
hance performance, and different instantiation methods offer grounds
for various possible applications of machine learning methods at
a method-specific level [26, 28]. However, we propose a generic
method for quantifier selection by limiting the formulas visible to
the modules. As all instantiation modules iterate over available quan-
tified formulas and process them one by one, we can seamlessly in-
tegrate a quantifier selector into any module and simply skip the pro-
cessing of undesirable quantifiers. To predict the quality of quan-
tifiers, we utilize an efficient implementation of decision tree en-
sembles (LightGBM [29]) that enables easy and fast integration with
cveS. Decision tree models can be trained to classify quantified for-
mulas as positive or negative based on provided training examples.
The trained model can be employed within an instantiation module
to skip the processing of negative quantifiers.

3.2 Feature vectors and training examples

To use decision trees for classifying quantified formulas in cvcS, we
need to represent SMT formulas by numeric feature vectors. SMT
formulas within cvc5 are represented using directed acyclic graphs
with shared node representation. The nodes of the graph are labeled
with symbols representing logical connectives, quantifiers, variables,
and interpreted/uninterpreted theory symbols. Each symbol falls into
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one of finitely many kinds, designating theory-specific (builtin) sym-
bols. Different kinds exist for logical connectives (—, A, V, etc.),
quantifiers (V, 3), interpreted symbols (+, <, 0, etc.), and variables.
There is only one kind for all uninterpreted functions, including unin-
terpreted constants. We utilize cvc5’s kinds as bag of words features,
representing the quantified formula ¢ with the counts of symbols of
each kind k. In particular, we establish an enumeration of the kinds,
and the quantifier ¢ is represented by the vector 4, where ¢4 [i] de-
notes the number of symbols of kind ¢ in g. More than 300 different
kinds are defined in cvcS5.

The usefulness of a quantified formula might depend on the con-
text of the problem being solved. Hence it is essential to allow our
models to produce context-dependent predictions. We achieve this
by embedding the problem features within the feature vector. First,
we represent the problem being solved (P) by the vector ¢p, ob-
tained as the sum > fep Pf Where @y is the feature vector of each
formula f asserted in problem P. Second, the context vector ¢p
and the quantifier vector ¢, are concatenated into the double-length
vector (pp, pq) representing the quantified formula ¢ when solv-
ing problem P. This enables problem-specific predictions. To gen-
erate training examples, we utilize cveS’s option to dump instantia-
tions (dump-instantiations) employed in solving a problem.
When this option is combined with the produce-proofs option,
only instantiations necessary for the proof are printed. We use this
differentiation to classify formulas as positive or negative as follows.
Following a successful (unsat) run of cvcS on problem P, we gather
all the quantified formulas ¢ processed by instantiation modules dur-
ing the run. To construct training examples, we label a feature vector
(¢p,@q) as positive if ¢ generated an instantiation required by the
proof of P, otherwise we label it as negative. Training examples can
thus be extracted from both ML-guided and unguided runs.

3.3  Model training

To construct a training dataset, we collect labeled training vectors
from a large set of successful runs of cvc5. Note that no training data
is extracted from unsuccessful runs, as there is no reference point
to label processed formulas as positive or negative. It is essential to
collect a substantially large amount of training data to enhance the
generalization capabilities of the model. The gradient boosting de-
cision tree models can be easily constructed using the LightGBM
library [29], which is known to handle large training data well. A
model consists of a sequence of decision trees, where each tree is
trained to correct any imprecision introduced by the previous trees in
the sequence. The number of different trees in the model is one of
the many LightGBM hyperparameters that influence the process of
model training and also the performance of the resulting model.

In order to prevent overfitting of the model to the training data, we
split the data into training and development sets. This split is done
at the problem level, ensuring that all training vectors from a single
problem contribute to the same set. We use binary classification as
the model objective and we train several models on the training set
with various values of selected hyperparameters. Out of these mod-
els, we select the model with the best performance on the develop-
ment set.

The performance of the model on the development set is measured
in terms of prediction accuracy. That is, all vectors from the devel-
opment set are evaluated using the trained model, and the predicted
labels are compared with the expected labels from the development
set. While processing a redundant quantified formula cannot com-
pletely prevent an SMT solver from finding a solution, omitting to

process an important formula can ultimately close the door to suc-
cess. Hence, it is essential for models for quantifier selection in SMT
to favor recognition of positive examples, that is, to minimize false
negative errors. We achieve this by computing separately the accu-
racies on positive and negative development examples, denoted pos
and neg respectively, and selecting as the model with the best value
of 2 - pos + neg as the final model. In this way, we favor models with
better performance on positive training examples.

3.4 Model integration

Since LightGBM provides a C++ interface for model predictions, it
can be easily integrated into the cvc5 codebase, which is also written
in C++. The interface offers methods to load a model and compute
the prediction of a quantified formula represented by a feature vec-
tor. Since we employ binary classification for the model objective,
the prediction function returns a floating-point value between 0 and
1 which is typically compared with a fixed threshold, like 0.5, to
distinguish positive and negative clauses.

However, we do not directly utilize the predicted values in this
manner. Instead, each time we predict a quantified formula, we gen-
erate a random number between O and 1 to serve as the threshold
for the comparison. This approach allows us to process formulas
scored below 0.5, ensuring that every formula will eventually be pro-
cessed with some non-zero probability. In our experiments, the ran-
dom threshold slightly outperformed any fixed threshold, and it fur-
ther guards against potential irreparable errors resulting from false
negative predictions. Moreover, this approach sets our method apart
from a related technique known as offline premise selection [1, 18],
where formulas are filtered in advance and never passed to the solver.

The two most prominent modules for quantifier selection in cvcS
are enumerative instantiation and e-matching. We implement our
machine learning guidance for them, as well as for the modules rely-
ing on conflict-based quantifier instantiation and finite model finding.

4 Experiments on large Mizar dataset

The Mizar Mathematical Library (MML) [2] stands as one of the
earliest extensive repositories of formal mathematics, encompass-
ing a broad spectrum of lemmas and theorems across various math-
ematical domains. We utilize translations of MML problems into
first-order logic, a process facilitated by the MPTP system [41, 42].
The MPTP benchmark has emerged as a valuable resource for ma-
chine learning research, offering a diverse collection of related prob-
lems [33, 23, 39, 34, 19, 10]. In our work, we focus on the easier
bushy variants of MPTP problems, wherein premises are partially
filtered externally beforehand.

We use a train/development/holdout split from other experiments
in literature [25, 17] to allow a competitive evaluation. This splits
the whole set of Mizar problems into the training, development, and
holdout subsets, using a 90 : 5 : 5 ratio, yielding 52,125 problems in
the training set, 2,896 in devel, and 2,896 problems in the holdout
set. We use the training set to collect training examples for machine
learning, and we use the development set to select the best model
out of several candidates trained with different hyperparameters. The
best portfolio constructed on the development is henceforth evalu-
ated on the holdout set and compared with the baseline portfolio. All
strategies in this section are evaluated with the time limit of 60 sec-
onds per strategy and problem.’ Note that this includes the time used

L All the experiments were performed on machines with two AMD EPYC
7513 32-Core processors @ 3680 MHz and with 514 GB RAM.
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by the trained ML predictor, that is, the times used for the guided and
unguided runs are fully comparable.

4.1 Baseline strategies and portfolio

We employ a state-of-the-art portfolio of cvc5 strategies as a base-
line to evaluate our machine learning approach. We incorporate all
16 strategies available in the CASC competition portfolio of cvc5.>
A portfolio consists of strategies that are typically executed sequen-
tially, each for a fraction of the overall time limit. The first success-
ful strategy returns the solution and terminates the portfolio execu-
tion. The CASC competition focuses on problems in automated the-
orem proving, and cvcS has recently demonstrated outstanding per-
formance on problems from theorem proving systems [18]. We uti-
lize the FOF (first-order formulas) portfolio, specifically designed
for problems in the theory of uninterpreted functions (UF), which
aligns well with our intended application on Mizar MML problems
expressed in the same logic.

In addition to the 16 CASC strategies, we also incorporate 3 pub-
licly available strategies® developed recently for the Mizar MML
problems using the Grackle strategy invention system [20]. The
Grackle strategies in that work were tailored for slightly different
versions of Mizar problems, employing a more precise method of
premise selection. However, they also perform well on the bushy ver-
sion of Mizar problems used in our work here.

The selected CASC strategies casc, are detailed in Figure 2,
while the three Grackle strategies grk,, are outlined in Figure 3. In
both cases, strategies are described in terms of their cve5 command
line options, either as a boolean flag or as an option=value
pair. Common options appearing in more than one strategy are
typeset in bold. Options adjusting the trigger behavior of the e-
matching module are highlighted in bold-italics. Note that
almost all the strategies activate enumerative instantiation using
full-saturate—quant, while keeping e-matching and conflict-
based quantifier instantiation (cbgi) turned on by default. The op-
tion cbgi-vo—exp, which activates an experimental mode for vari-
able ordering, often significantly boosts strategy performance. Strate-
gies cascy, cascy, casCig, casci3, and casci4 are selected as the
strongest CASC strategies, with cascis being the best among them.
The rationale behind selecting casce and cascs is revealed later in
Section 4.3. Among the three Grackle strategies, grk, performs the
best. It is worth noting that grk, and grk, are proper extensions of
casci4, while grk; is a proper extension of cascy. The core of a suc-
cessful cve5 strategy for Mizar problems appears to be enumerative
instantiation with appropriate adjustments of triggers for e-matching.

We evaluate the baseline strategies directly on the holdout set to
establish the best possible state-of-the-art portfolio on our Mizar
benchmark. The most effective of the CASC strategies is cascis,
solving 1,406, while the best Grackle strategy, grk,, solves 1,443.
The three most complementary CASC strategies (casci3, casci4, and
cascy) collectively solve 1,516, whereas the three Grackle strate-
gies solve 1,552. The best portfolio of 6 strategies, whether CASC
or Grackle, solves 1,614 holdout problems (55.8 %). Interestingly,
this portfolio includes all three Grackle strategies and CASC strate-
gies cascis, casca, and cascio. Notably, cascy is replaced by casca
compared to the top three CASC strategies. This is expected as cascy
is a proper extension of grks, thus being surpassed by grkg, allow-
ing cascy to enter the best portfolio. It is worth noting that cascy

2 https://github.com/cvcS/cveS/blob/cves-1.1.1/contrib/competitions/casc/

run-script-cascjl1-fof
3 https://github.com/aidreason/cvc5_grackle_mizar

Table 1. Baseline portfolio performance without ML.

strategy ~ model || solves  +new =total adds
grk, — 1,443 41,443 | =1443 | —
cascis — 1,406  +75 =1,518 | +5.20%
grks — 1,365  +45 =1,563 | +2.96%
grky — 1,408  +25 =1,588 | +1.60%
cascy — 740 +14 =1,602 | +0.88%
cascip - 1,268  +12 =1,614 | +0.75%

is the only strategy not relying on enumerative instantiations or e-
matching, instead employing finite model finding [35]. While finite
model finding is not anticipated to perform optimally in the case of
unsatisfiable problems, it can assist in solving specific instances.

A common method for assessing the performance of a strategy
portfolio is through the greedy cover sequence. This sequence is
generated by initially choosing the most powerful individual strat-
egy and marking the problems it solves. Subsequently, the next best
strategy, based on the remaining unsolved problems, is selected, and
this process continues iteratively until it is no longer feasible nor nec-
essary. Through this approach, the greedy cover identifies strategies
that complement each other, thereby optimizing the total number of
solved problems. This method serves as an approximation of the NP-
complete problem of set cover [15], which could be utilized instead
but typically does not yield significantly improved results [11, 6].

The greedy cover sequence of the best portfolio of size 6, consid-
ered henceforth as the baseline portfolio, is presented in Table 1. The
column strategy lists the strategy names in the order determined by
the greedy cover. The column model is reserved for describing an
ML model in later sections (here unused, denoted by “—""). The col-
umn solves indicates the number of holdout problems solved by each
strategy individually, while the column +new shows how many new
problems are contributed by each strategy to the portfolio. The col-
umn fotal denotes the total number of problems solved by the port-
folio up to that point, where total equals new plus the fotal from
the previous line. Finally, the column adds presents the value of new
as a percentage of the current portfolio performance (for instance,
casciz adds 75 problems to the currently solved 1,443, representing
5.20%). The overall performance of the portfolio is reflected in the
bottom value of the =fotal column.

4.2 Training and evaluation

We train two different models, denoted as single and three, using
distinct sets of training examples generated by evaluating baseline
strategies, as described in Section 3.2. We follow two approaches:
(1) utilizing only training data generated by a single strategy, or (2)
combining training examples from various strategies.

Model single: Trained on data generated by the strongest individ-
ual strategy grk,. The model is trained on 25,415 solved train-
ing problems, yielding 2,281,923 training vectors, with 15.7 % of
them being positive. The size of the text training file is 255 M B,
and the model size is 16 MB.

Model three: Trained on data generated by all three Grackle strate-
gies grk,, grk,, and grk,. The model is trained on 27,032 solved
training problems, with up to three solutions per problem, result-
ing in 6,318,660 training vectors, of which 16.2 % are positive.
The size of the text training file is 707 MB, and the model size is
22 MB.

The strategy grk, was chosen for the model single due to its status
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strategy cveS command line options

cascy finite-model-find uf-ss=no-minimal

cascg full-saturate-quant trigger-sel=max

cascy full-saturate—-quant multi-trigger-priority multi-trigger-when-single

cascg full-saturate—-quant multi-trigger-cache

cascio full-saturate—quant enum-inst-interleave decision=internal

casci3 full-saturate—-quant pre-skolem—-quant=on

casci4 full-saturate-quant cbqgi-vo-exp

Figure 2. Selected cvcS’s strategies from the CASC portfolio.

strategy cveS command line options
grky full-saturate—-quant cbgi-vo—-exp relational-triggers cond-var-split-quant=agg
grkq full-saturate—-quant cbgi-vo-exp relevant-triggers multi-trigger-priority

ieval=off no-static-learning

miniscope-quant=off

grks full-saturate-quant multi-trigger-priority multi-trigger-when-single

term-db-mode=relevant

Figure 3. Grackle strategies optimized for minimized MML problems.

Table 2. The best development portfolio evaluated on holdout.

Table 3. Best possible ML portfolio on holdout.

strategy ~ model || solves  +new =total adds strategy ~ model || solves  +new =total adds
grk, single 1,781 41,781 | =1,781 — grk, single 1,781  +1,781 | =1,781 -

grk, three 1,715 486 =1,867 | +4.83% grk, three 1,715 486 =1,867 | +4.83%
grks single 1,688 447 =1,914 +2.52% grks single 1,688  +47 =1,914 +2.52%
grk, three 1,763 424 =1,938 | +1.25% grk, three 1,763 +24 =1,938 | +1.25%
grks three 1,674 414 = 1,952 +0.72% cascip single 1,601 415 = 1,953 +0.77%
grk, single 1,715 48 =1,960 | +0.41% grks three 1,674 412 =1,965 | +0.61%

as the strongest individual strategy, while the three Grackle strategies
were selected based on their complementarity. This configuration en-
ables us to examine whether a model trained on data from one strat-
egy can effectively generalize to a different strategy. Additionally, we
aim to investigate the potential success of combining training data
from multiple strategies.

To generate training data, we assess three Grackle strategies on
both the training and development sets. Training examples extracted
from the training set are utilized for model training, while examples
from the development set aid in hyperparameter tuning, as outlined in
Section 3.3. This process results in the creation of two models: single
and three. Subsequently, we evaluate both models using all baseline
strategies on the development set. We determine the best portfolio on
the development set and evaluate its performance on the holdout set.

The resulting ML portfolio, evaluated on the holdout set, is shown
in Table 2. Notably, the combination of the three Grackle strate-
gies with both models dominates the portfolio, surpassing the CASC
strategies. Particularly, the best strategy grk, benefits significantly
from model single, improving from 1,443 to 1,781, representing an
increase of more than 23 %. This top-performing ML strategy alone
now outperforms the initial portfolio’s performance (1,614) by over
10 %. Overall, the ML portfolio demonstrates remarkable im-
provement over the baseline portfolio, increasing from 1,614 to
1,960 (67.7 % of holdout problems), marking a significant en-
hancement of 21.4 %. Notably, our method improves the state-of-
the-art cvc5 portfolio of strategies. In particular, since the term-based
selection methods from the literature [26, 28] have not been inte-
grated into e-matching or compared with any of the stronger cvc5
strategies, we are not aware of any method-specific approach from
the literature that reports a similar achievement for SMT solvers.

To assess the potential for overfitting in our models, we further

evaluate all baseline strategies with all models on the holdout set.
This allows us to determine the best possible portfolio and compare
its performance with our portfolio constructed on the development
set. The best possible portfolio of 6 strategies on the holdout set
is outlined in Table 3. It’s evident that the portfolio constructed on
the development set closely approximates the best possible result.
The only strategy, cascio, paired with the model single, was able to
marginally improve the portfolio by solving 5 additional problems.

The impact of ML models on the performance of the best strat-
egy grk, is further elucidated in Figure 4 through scatter plots. Each
plot compares the runtimes of two strategies, s1 and sz, by plotting a
dot for each problem p at coordinates (r1,72), representing the run-
times of s; and s2 on p. Points clustered around the diagonal line
indicate similar results, while points below the diagonal (depicted in
blue) represent an improvement of sz over s1. In our context, the
first strategy si is consistently grk, (without ML), which is com-
pared with different strategies in various plots.

In Figure 4, the first two plots compare grk, with (1) another run
of itself and (2) a run of grk; with a different random seed. The first
plot illustrates the deterministic nature of the solver, showing similar
performance when launched again on the same problem. However,
certain aspects of cvcS involve randomization, and running with a
different initial random seed can yield different results, as demon-
strated by the second plot. We observe a typical addition of around
2 % between two runs with different random seeds.

Subsequently, the last two plots compare grk,; without ML with
grk, utilizing the single model on the development set (third plot
from the left) and the holdout set (right). Remarkably, there is no
substantial difference in performance between the development and
holdout sets. Furthermore, it is evident that the impact of ML is much
more significant than that of a different random seed. Notably, there
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Initially, we observe that all Grackle strategies derive equal bene-
fits from both models. While grk, experiences a slightly greater im-
provement from its own data (single), other Grackle strategies also
benefit significantly from the data provided by single. There is no dis-
cernible distinction in their performance, as both models enhance the
performance of all Grackle strategies by more than 20 %. However,
there is evidently a considerable difference in the problems solved by
different models, as evidenced by the inclusion of Grackle strategies

Interestingly, many other CASC strategies also experience signif-
icant benefits from training data generated by Grackle strategies.
However, as an exception, only the best CASC strategy, cascis,
failed to benefit from the training data and achieved only negligi-
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Figure 4. Impact of machine guidance on runtime.
Table 4. Impact of ML models on selected strategies.
w/o ML ML model single ML model three

strategy | solves solves  gain solves  gain
grk, 1,443 1,781 +23.42% | 1,763 +22.18%
grk, 1,408 1,715 421.80% | 1,715  +21.80%
grks 1,365 1,688 +23.66% | 1,674 +22.64%
casci3 1,406 | 1,426 +1.42% 1,407 +0.07%
CcasCi4 1,389 1,696 +2210 % 1,693 +2189 % in the best ML portfolio (Table 2)
cascr 1,354 1,650 +21.86% | 1,631 +20.46%
cascio 1,268 1,601  +26.26% | 1,599 +26.10%
casce 1,147 1,553 +3540% | 1,562 +36.18%
cascs 1,105 1,498 +35.57% | 1,466 +32.67%
cascy 740 805 +8.78 % 788 +6.49 %

is a large number of points below the diagonal and a notable cluster
of points at the right axis, showing problems solved due to ML.

We have also conducted experiments with random quantifier se-
lection, where the quantified formulae to be instantiated are chosen
randomly. The results show a similar behavior to runs with a differ-
ent random seed, as described in Figure 4 (second plot). In summary,
random quantifier selection can solve some new problems, but it also
loses a significant number of solutions. Overall, random quantifier
selection falls short of achieving a 20% improvement over the base-
line (select-all) strategy.

4.3 Cross-strategy model transfer

In this section, we investigate the transferability of knowledge
learned from one strategy to different strategies. Specifically, we ex-
amine how well a model trained on data from one strategy performs
when applied to different strategies. For instance, since the model
single is trained on data from grk;, we aim to compare its perfor-
mance with grk, and with other strategies. Similarly, we seek to
evaluate how the model three performs when applied to the source
Grackle strategies compared to other CASC strategies.

Table 4 provides a summary of the impact of ML models single
and three on selected strategies. The first numeric column (w/o ML
solves) displays the performance of each strategy without any ML
model. The two middle columns (ML model single) illustrate the im-
pact of the model single on the performance of each strategy individ-
ually. The column solves indicates the number of problems solved by
the strategy guided by the model, while the column gain calculates
the improvement over the strategy without ML. The highest values
in each column are highlighted separately for the Grackle and CASC
strategies. The last two columns show the impact of the model three.

ble improvement. Upon inspecting Figure 2, we observe that cascis
is the only strategy that utilizes pre-skolem-quantifier=on.
Since all other strategies without this option were able to improve,
it’s possible that eager skolemization influences feature vectors and
renders the training data incompatible. The second worst result is ob-
served with cascy, which experiences only an 8.78 % improvement.
This is the only strategy that employs finite model finding instead of
enumerative instantiation and e-matching. It is noteworthy that even
a fundamentally different instantiation approach can, at least par-
tially, benefit from knowledge learned from related methods, which
is not always the case [18].

The most improved CASC strategies are casce and cascg, both
of which see improvements of more than 35 %. Notably, both cascg
and cascg utilize options to adjust triggers for e-matching, similar to
Grackle strategies. From this, we conclude that our models generally
transfer well to different strategies. Transfer tends to be more effec-
tive between strategies based on similar methods, particularly among
strategies that adjust trigger behavior. Finally, no significant improve-
ment is gained when merging data from various source strategies.

4.4  Analysis of models and training data

We proceed with an analysis of the trained models by examining fea-
tures present in the training data and their importance in the model.
LightGBM models report for each feature its importance, indicating
how much each feature contributes to the predictions made by the
model. This aids in understanding which features are most relevant
for the model’s performance. We collect the training data produced
by grk, on the development set. Remarkably, only 24 features are uti-
lized in the data, but they exhibit a relatively high number of differ-
ent values, especially in the case of context features. Many features
are present in all training examples. Most of the features describe the
count of logical connectives in a formula (and, or, imply, not, forall,
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Figure 5. Decision tree visualization.

equal). Additionally, the feature uf accumulates the count of first-
order (uninterpreted function) symbols in a formula. Note that we
do not distinguish between different (uninterpreted) symbols names,
and hence our methods are symbol-independent [24]. Other features
count special symbols, like variables (var), bound variables (bvar),
quantified variables (qvar), or skolem symbols (skolem). The key
quantifier feature (marked Q) is symbol count (uf Q) while the count
of equalities (equal®) dominates among context features (C).

Figure 5 presents a visualization of the first decision tree in the
model single. The first of the 100 trees in the model is expected to
contribute significantly to the final prediction. This decision tree is a
binary tree with inner nodes labeled by conditions on feature values,
while the leaves are labeled by scores. Edges labeled by true or false
navigate each feature vector to a unique leaf to compute the score.
Scores from all trees are combined into the final prediction. The root
of the first tree in single is located at the left part of Figure 5. The
root condition checks the count of equalities in the quantified formula
(feature equal?®). If the value is 0, the “yes” edge is followed, and the
next condition uf® < 7 is checked. The first four levels of the tree
are displayed, and the bottom layer indicates the number of leaves in
and the depth of each subtree under that node.

To provide an overview of the complexity of the tree, the full tree
is visualized on the right part of Figure 5. Each edge has a width
proportional to the size of the subtree under this edge. The first two
splits naturally divide the tree into 4 subtrees, and these subtrees are
colored by corresponding colors in both trees. Therefore, it is appar-
ent that more than half of the tree (the blue part) is concerned with
formulas without equality (equal® = 0) and few symbols wfR < 7).
Note that context features (like and®) are used only from the fourth
level of the tree. This tree visualization illustrates that even with a
dozen relatively simple features, decision trees might be quite com-
plex, with more than 1,500 leaves.

5 Conclusions and future work

This paper develops a novel approach that trains a machine learning
model to decide which quantifiers should be instantiated inside an
SMT solver. The approach is conceptually simple: in each instantia-
tion round, each quantifier is considered to be selected for instantia-
tion or not; the exact way how the quantifier is instantiated, is left to
the SMT solver. This enables us to employ our approach for various
instantiation techniques [14, 35, 27]. This contrasts with existing re-

search that always instantiates all active quantifiers and tries to mod-
ify one specific instantiation strategy with an ML model [28, 32]
— and it is limited to that particular instantiation strategy. Also,
in contrast to the existing work, we showed that we can boost the
solver’s performance if we take a portfolio of its configurations. This
is a tall order. Indeed, it is highly challenging to improve one par-
ticular configuration of the solver in a way that is not covered by
another configuration of the solver. Thanks to the versatility of our
approach, we could integrate it with various instantiation strategies,
thereby enhancing multiple solver configurations and achieving a no-
table 21.4% improvement over the baseline state-of-the-art port-
folio. The key aspects contributing to this success include our abil-
ity to implement our selection method with different instantiation
modules and effectively transfer learned knowledge across strate-
gies. This enables us to substantially enhance each individual strat-
egy within the portfolio, consequently boosting the overall portfolio
performance. Our best strategy solves 1,781 Mizar holdout problems
in 60s while it solves 1,743 in 30s. This number can be informa-
tively compared with experiments on the same dataset from the lit-
erature [17], where the state-of-the-art ATP prover E with advanced
machine learning methods, solves only 1,632 of the holdout prob-
lems in 30's.

Our approach differs from existing research that aimed to learn
which quantifiers to select on a single problem instance [26] — using
the multi-armed bandit paradigm (MAB). While previous attempts
failed to achieve experimental improvements, combining MAB with
offline training presents an intriguing avenue for future exploration.

Another research direction is to apply and assess our methodology
on various benchmarks. We conducted evaluations on Mizar MML
problems due to their similarity and relevance, enhancing the poten-
tial for machine learning methods to recognize useful quantified for-
mulas. We anticipate similar outcomes on related problems, such as
those from Isabelle/Sledgehammer [9], since learning-based meth-
ods typically transfer between various ITP corpora [18, 25].

More diverse benchmarks like TPTP [40] or SMT-LIB [4] present
significantly greater challenges. These benchmarks contain problems
from various sources, often with few related instances, limiting learn-
ing opportunities. Furthermore, the transfer of learned knowledge
across different SMT logics complicates the situation with SMT-LIB.
It is remarkable how much can be gained using the minimal bag-of-
words features employed here, yet we anticipate enhanced results
with more sophisticated formula features [22].
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