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Abstract. In this paper, we tackle the problem of planning in com-
plex numerical domains, where actions are indexed by control pa-
rameters, and their effects may be described by neural networks.
We propose a lazy, hierarchical approach based on two ingredients.
First, a Satisfiability Modulo Theory solver looks for an abstract plan
where the neural networks in the model are abstracted into uninter-
preted functions. Then, we attempt to concretize the abstract plan
by querying the neural network to determine the control parameters.
If the concretization fails and no valid control parameters could be
found, suitable information to refine the abstraction is lifted to the
Satisfiability Modulo Theory model. We contrast our work against
the state of the art in NN-enriched numerical planning, where the
neural network is eagerly and exactly represented as terms in Satisfi-
ability Modulo Theories over nonlinear real arithmetic. Our system-
atic evaluation on four different planning domains shows that avoid-
ing symbolic reasoning about the neural network not only leads to
substantial efficiency improvements, but also enables their integra-
tion as black-box models.

1 Introduction

Planning is a fundamental step in the flexible operation of real-world
domains, where complex physical processes must be sequentially
controlled in order to achieve different states or products. For exam-
ple, planning for factory automation requires the ability to streamline
the proper tasks (first blending, then cooking) and to define the re-
spective control parameters (e.g., temperature, humidity) in a recipe-
based production environment (e.g., electroplating). In this context,
some features, e.g., the evolution of physical processes, can hardly be
modeled in a rule-based, symbolic representation formalism. How-
ever, in many cases, a representation based on neural networks (NNs)
can be learned by analyzing the actual simulation traces [8].

We refer to this general setting first described in Heesch et al. [14]
for the specialized field of production planning as NN-enriched Nu-
merical Planning with Control Parameters (N3PCP). In [14], the au-
thors addressed the N3PCP problem with an eager and exact encod-
ing into Satisfiability Modulo Theories (SMT), with the NN being
logically represented in the form of exact SMT terms. Unfortunately,
this approach suffers from several problems. First, the NN may come
as a black box, where the network’s architecture, weights, and biases
are unknown, so that it is impossible to convert it into logical terms.
Second, even if the NN is a full-access white box model, reason-
ing symbolically about it may be challenging due to the NNs com-
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plexity. NNs with transcendental activation functions, e.g., sigmoid
activation functions, require the non-standard SMT theory of non-
linear real arithmetic, for which only a limited number of solvers
exist [4, 9]. Even with piecewise linear activation functions, the size
of the NN may cause inefficiencies, despite the recent developments
of dedicated verification approaches [16, 11].

In this paper, we propose the Lazy Neural Planer (LNP). The LNP
is a hierarchical, lazy approach to N3PCP, where the NNs are not
symbolically modeled as part of the SMT encoding of the (bounded)
planning problem, but are rather abstracted as (partly axiomatized)
uninterpreted functions. The analysis of the NNs is delayed un-
til the SMT solver finds a valid assignment, i.e., an abstract plan.
When an abstract plan is found, the particular values to the NN’s
inputs/outputs are extracted in order to concretize the plan. This con-
cretization checks if the values guessed in the abstract planning phase
can actually be realized for some control parameter valuation. If not,
they are blocked by way of conflict clauses, and the abstract search
is resumed.

Our approach can be seen as a variant of the “incremental lin-
earization” approach [4] in the SMT paradigm [1], where the con-
cretization checks and the subsequent lifting are carried out by a
dedicated theory solver. In our approach, the NN can be executed
instead of being analyzed with formal reasoning.

We differentiate three types of NN models: (i) full-access white
box models, whose architecture, weights, and biases are known, (ii)
function-access black box models, where the architecture, weights,
and biases are unknown, but specific functionalities, such as back-
propagation, can be accessed via dedicated functions, (iii) no-access
black box models, where the architecture, weights, and biases are un-
known and no such functional interfaces are available, reducing the
model to an executable with a pure input-output interface.

For the first two scenarios, given a pair of concrete states, gradient-
based optimization techniques are employed in order to find suit-
able values for the control parameters. In the third scenario, an unin-
formed search algorithm is used to determine these values, enabling
the integration of arbitrary network types and architectures.

In order to reduce the production of spurious counterexamples in
the abstract state, we limit the search space by applying a variant of
static learning that aims at conjecturing which variables are affected
by a given NN and which ranges are possible for the variations of the
various fluents. This information can be derived during the training
of the NN or from running the NN on a given data set (either the one
used for the training of the network, if available, or a sampling of the
data space). Within this paper, we will focus on the former approach.
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The proposed approach is correct, i.e., if it finds a plan it is indeed a
solution plan, but incomplete, i.e., it may be unable to find a solution
plan when one exists. We trade off the completeness of the eager,
symbolic NN encoding into SMT [14] for generality (since checking
via execution is basically agnostic with respect to the nature of the
activation functions) and efficiency (symbolic reasoning about NNs
is still very computationally expensive).

The planning approach has been instantiated in a framework where
the domain is based on a vector representation, i.e., the state is consti-
tuted by a set of discrete and real-valued variables, similar to an infi-
nite state symbolic transition system. In principle, N3PCP problems
could be concretized in a fluent-based representation with PDDL-
style modeling. However, from a representational standpoint, model-
ing the influence of NNs in PDDL is very hard.

We carried out an experimental evaluation based on multiple plan-
ning problems from four different numerical planning domains with
control parameters, including both piecewise linear and nonlinear
transcendental activation functions.

For those with nonlinear activations, as well as for those with
piecewise linear activation functions, the latter can be encoded into
the SMT theory QF-LRA, we show that the proposed approach is
significantly faster and more effective than [14].

As the limitation of the search space by application of the static
learning of NN constraints leads to incompleteness, we investigated
the effectiveness of different styles of integration into the abstracted
problem. Furthermore, we demonstrate that our approach can handle
not only full-access white box, but also no-access black box mod-
els or executables that are only accessible via a pure input-output
interface. Finally, we analyzed the runtime behavior with increasing
complexity of the NNs, showing that the runtime increases linear at
most.

Structure of the paper: Section 2 presents some background on
SMT and NNs. Section 3 defines NN-enriched numerical planning
with control parameters. Section 4 presents our novel planning al-
gorithm, which integrates an SMT-based planning approach with
pre-trained, encapsulated machine learning models. Section 5 pro-
vides an overview of existing planning approaches capable of ad-
dressing numerical planning problems with control parameters. Sec-
tion 6 delivers a comprehensive evaluation of our algorithm, includ-
ing comparisons with other state-of-the-art approaches. Finally, we
draw some conclusion and outline the directions for future work in
Section 7.

2 Background

2.1 Logical Preliminaries

We work in the setting of first order logic. Terms are either constants
or individual variables, or n-ary function symbols applied to n terms.
Atoms are either propositional variables or n-ary predicates applied
to n terms. Formulae are either atoms or the application of the stan-
dard boolean connectives ¬,∧,∨,→,↔ to formulae, or the applica-
tion of a quantifier ∃, ∀ to one or more variables and a formula. We
adopt the standard semantic notions of interpretation, model, satisfi-
ability, and validity [26].

We follow the Satisfiability Modulo Theories (SMT) paradigm,
where the interpretation of a given set of symbols is restricted accord-
ing to a given theory. In this paper, we consider the theory of nonlin-
ear arithmetic with transcendental symbols (NTA). We have numer-
ical constants, real-valued variables, the standard function symbols

+,−, ·, / and predicate symbols <,≤, >,≥. We also assume tran-
scendental functions (e.g., tan).

An SMT solver is a software tool that, given a formula, decides
whether it is satisfiable or not (and may return a satisfying assign-
ment or a proof of unsatisfiability). Most modern SMT solvers adopt
a lazy paradigm: a SAT solver is used to enumerate satisfying assign-
ments of the boolean abstraction of the formula, and theory solvers
are used to check the satisfiability of the set of constraints corre-
sponding to the assignment at hand. If the theory solver detects that
the set of constraints is consistent, then a model is found. Otherwise,
clauses are produced to block the generation of satisfying assign-
ments failing for the same reason.

We use a symbolic representation for infinite state transition sys-
tems [5]. Given 〈V, I(V ), T (V, V ′)〉, with the symbolic representa-
tion a state is an assignment to V . I(V ) is an SMT formula charac-
terizing the set of initial states, i.e., a state s is initial if it satisfies I ,
written s |= I . T is the transition relation, with V and V ′ denoting
the state before and after the transition, respectively. There is a tran-
sition from s to s′ iff s · s′ |= T ; we say that s′ is a successor of s
(and s a predecessor of s′).

Given a state transition system Γ, a trace is a sequence of states
s0, s1, . . . such that s0 is initial and for all i si+1 is a successor of
si. Linear temporal logic [19] is used to express the properties of
traces. The model checking problem Γ |= φ, with φ a temporal for-
mula, checks if all the paths of Γ satisfy φ. A number of verification
problems exist, based on induction, interpolation and IC3, both for
the finite-state and the infinite-state case. We focus on the bounded
model checking [2] approach (BMC), that is based on the reduction
of bounded reachability to satisfiability, by “unrolling” the transition
relation on k + 1 replicas of the state vector V . The formula

I(V0) ∧ T (V0, V1) ∧ . . . T (Vk−1, Vk) ∧G(Vk) (1)

is satisfiable iff there exists a path of k transitions from an initial
state to a goal state in G. The path is the satisfying assignment to the
V0, V1, . . . , Vk variables.

2.2 Neural Networks and Logical Paradigms

Neural Networks are the quintessential models for approximating
complex functions, such as the transition relation T (V, V ′), in Ma-
chine Learning [10]. The most basic variant, the Feedforward Neural
Network, is defined as a mapping function f(x;ψ) = y between an
input x and an output y, with learnable parameters ψ. f(x) itself is a
chain of functions that consist of a linear part f (i)(x) = ΣwTx+ b
with i describing the depth, w describing weights, and b describ-
ing biases, which is fed into a nonlinear part, the activation function,
g(·). There is a wide variety of activation functions [18] ultimately
allowing to approximate any continuous function, given the network
has at least two layers [15]. NNs with at least two hidden layers are
denoted as Deep Neural Networks [7]. In a supervised setting, train-
ing a NN uses gradient descent and backpropagation of a loss metric
to adapt ψ in the NN.

The application of trained NNs together with logical paradigms
primarily focuses on the verification of individual NNs with SMT.
The NN verification problem refers to the challenge of certifying
that a NN behaves in compliance with a specified property of in-
terest, ρ [12]. Here, ρ is defined by the formula ρin ⇒ ρout , where
ρin describes a property concerning the input of the NN, x, and ρout
relates to a property of the NN’s output, y. The mapping function
f(x;ψ) = y, which includes architecture-specific characteristics
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along with activation functions, weights, and biases, is directly trans-
lated into an SMT formula F . By incorporating the property ρ, for
which the NN is to be verified, into F an SMT solver can be uti-
lized to prove the NN’s compliance with this property or to show
that there exists a counter-example for which F is falsified. Moti-
vated by the verification domain, new and more efficient frameworks
such as NeuralSAT, which is based on the same DPLL architecture
as modern SMT solvers, have been developed [7]. However, these
frameworks cannot handle nonlinear transcendental activation func-
tions, and hence are limited to piecewise linear activation functions.

Approaches that extend NN verification into contexts like SMT-
planning problems [14] also rely on the exact and eager encoding of
the NN into SMT.

3 Problem Definition

An NN-enriched Numerical Planning with Control Parameters
(N3PCP) problem is a tuple:

P = 〈B,N,A,Θ, T,M, I,G〉 (2)

B and N denote the set of propositional and numerical state vari-
ables. These sets characterize the state-space S: each state si ∈ S is
uniquely defined by attributing specific values to the numerical vari-
ables within N , and by designating each variable in B as either true
or false. Adopting a standard representation from symbolic model
checking, a state is an assignment toB∪N . Without loss of general-
ity, we assume thatB andN are ordered, and we denote withX their
concatenation. The state-space S is the set of possible assignments
to X . A denotes the set of actions, and Θ is the set of control pa-
rameters. An action describes the possible transitions from a state si
to a state s′i, given a valuation to the control parameters Θ. A char-
acterizing feature of our framework is that actions may come with
two possible representations: as symbolic transition function and/or
executable transition function. The set T denotes the set of symbolic
transition functions and M denotes the set of executable transition
functions. The set of initial conditions is denoted as I . G represents
the set of goal conditions, where the goal conditions and the precon-
ditions of actions within NN-enriched planning problems span state
spaces instead of explicit states.

A symbolic transition function describes – as standard in planning
(e.g., PDDL, ANML) – the preconditions and effects in a logical
language. An executable transition function returns, given a state and
a control parameter valuation, a new state. Such executables could
be neural networks, possibly in the form of black boxes, without the
model being accessible.

Each action a ∈ A is associated with a symbolic representation
Ta, which is an SMT formula Ta(X,Θ, X

′), and/or with an exe-
cutable representation Ma, which is an imperative-style, loop-free
program mapping a vector X and a vector Θ to a next-state vec-
tor X ′. We assume that there is a 1:1 correspondence between the
symbolic variables and the corresponding vectors in the executable
representation, and we use them interchangeably. In the following,
we will refer to actions with an executable representation as neural
actions.

From the symbolic representation of a transition Ta it is straight-
forward to generate a corresponding executable representation
toExec[Ta]. The symbolic representation can be used, e.g., to gen-
erate artificial data. A NN trained on these data, can serve as exe-
cutable representation. For each a we require that Ta and Ma agree
on all the states, i.e., for every state s and control parameter valuation
ΘMa(s,Θ) = toExec[Ta](s,Θ).

An action a ∈ A may not always be applicable to all states in
S, so that Ta and Ma are actually partial functions. We denote with
Sin

(a) ⊆ S the applicability set of a. The control parameters can be
subject to similar restrictions. We denote with LegalPa(Θ) the space
of legal assignments to control parameters for action a. For example,
each control parameter θ ∈ Θ could be subject to an interval con-
straint of the form lb ≤ θ ∧ θ ≤ ub, where lb denotes the lower and
ub denotes the upper bound.

4 A Hierarchical Approach to N3PCP

We propose a novel lazy planning approach to N3PCP, which incor-
porates pre-trained, encapsulated NNs without translating and inte-
grating them directly into the SMT planning problem (cf. Figure 1).
The basic idea is to delay the analysis of actions that are hard or
impossible to deal with at the symbolic level, i.e., the ones that are
represented by NNs, until the SMT solver finds a solution to the sat-
isfiability problem on the abstract level. Therefore, on the abstract
level, the satisfiability problem incorporates lifted, generalized in-
formation about the effects of neural actions. The integration of the
lifted information allows clearly specifying the intermediate states
between the actions. Based on these intermediate states, the encap-
sulated NNs are queried to concretize the abstract plan, determining
the feasibility of the input-output evaluations, as well as the control
parameters of the actions via optimization of the input.

The integration of the lifted information at the abstract level limits
the solution space and increases the efficiency of the algorithm at the
cost of completeness due to the potential incompleteness of this lifted
information. To reduce this potential risk, we propose to extract the
lifted information during the training process of the NNs, assuming
that the NNs are trained on data, that represent the full capabilities of
the neural action without any noise.

For modelling the N3PCP problem, we opted to modify the
feature-vector-based state-space representation [14], rendering it ap-
plicable to NN3PCP problems more broadly. In this framework, each
domain has an infinite n-dimensional state-space, where n is equiv-
alent to the number of variables in X . Each state, si ∈ S, is repre-
sented by a feature-vector of length n, which assigns a value to each

Figure 1. A high level view on our Lazy Neural Planner. The planning
algorithm initially generates an abstracted satisfiability problem in SMT

which is solved by the SMT solver, resulting in an abstract plan. Based on
this abstract plan and the pre-trained, encapsulated ML models, the
concretization either returns ’unconcretizable’ or the set of control

parameters Θ and the updated state variables of the resulting state. These are
either integrated into the satisfiability problem, checking for validity, or a
blocking lemma is generated and added. If the set of control parameters is

valid, the parameterized plan is returned.
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of these variables.
In the following, we describe the process of encoding the N3PCP

problem as a satisfiability problem, along with the integration of
lifted information regarding neural actions and the interaction be-
tween the SMT solver and the encapsulated NNs (cf. 4.1). Subse-
quently, we introduce the concretization of the abstract plans via the
trained NNs (cf. 4.2). Lastly, we describe the extraction of the lifted
information from these NNs via an auxiliary function, which we call
the observer function (cf. 4.3).

4.1 Planning Algorithm

To solve N3PCP problems, we propose the Lazy Neural Planner
(LNP). The LNP initially transforms the planning problem P into
a satisfiability problem in SMT denoted as F (cf. Alg. 1, line 1).
For the set of propositional variables B, the set of numerical vari-
ables N and the initial I and goal G conditions, the corresponding
entities within the satisfiability problem are generated directly. The
actionsA and the corresponding symbolic transition functions T and
the trained NNsM are excluded at this point. The algorithm operates
iteratively, starting with an assessment of whether the initial condi-
tions, denoted as I , already meet the goal conditions,G and no action
is required (cf. Alg. 1, line 2).

Algorithm 1 The Lazy Neural Planer (LNP) takes an N3PCP prob-
lem as input and returns either a plan Γ or no plan found.
Require: N3PCP P = 〈B,N,A,Θ, T,M, I,G〉
Ensure: Plan Γ to P or no plan found

1: F ← initialize(B,N,Θ, I, G)
2: solved = check_satisfiability(I ∧G)
3: while ¬solved & k ≤ maxlength do

4: An ← instantiate(A)
5: F ← add_clauses(An)
6: while F == satisfiable do

7: solved = True
8: for all Ma in Γ do

9: Θ, ŝ′ ← concretization(Ma, s, s
′)

10: if check_satisfiability(Θ ∧ ŝ′)! = sat then

11: solved = False
12: F ← add_clauses(blocking_clauses(s_model(F )))
13: break
14: end if

15: end for

16: if solved == True then

17: return Plan Γ to P
18: end if

19: end while

20: end while

21: return no plan found

If not, it incrementally increases the number of actions. To en-
able multiple executions of actions, the algorithm utilizes instances
of actions and the corresponding control parameters. For each action
a ∈ A, a new instance is generated. All instances of the actions of
this step i as well as the clauses, specifying their preconditions and
their effects, are collected in the setAi (cf. Alg. 1, line 4). This set of
clauses is then added to the satisfiability problem F (cf. Alg. 1, line
5).

For actions with logically described effects, the algorithm inte-
grates the mathematical expressions that describe their effects on

each variable x ∈ X . The lifted information about the action’s ef-
fects is provided by the observer procedure (Alg. 2) and integrated
into the satisfiability problem.

The observer procedure returns the three vectors
effchange

(a), efflow
(a) and effup

(a) for each of the learned actions
(cf. Alg. 2). The LNP initiates the integration of this information by
examining each position in the vector effchange

(a). If the value at the
position l is zero, this indicates, that the action a does not affect xl
and the algorithm adds the clause a → x′l = xl to the satisfiability
problem. Otherwise, a new constant�xl is generated and the clause
a→ x′l = xl +Δxl with efflow

(a)
l ≤ Δxl ≤ effup

(a)
l is added.

After adding another step to the plan, the LNP uses the SMT solver
to check, whether there is a valid assignment for the satisfiability
problem on the abstract level (cf. Alg. 1, line 6). When the SMT
solver identifies a valid assignment, it returns the satisfiability model
s_model . For those actions, whose transition functions are modelled
using mathematical expressions, these expressions already contain
the dependencies of the control parameters. Thus, the control param-
eters for these actions are already determined by the SMT solver and
no further proceeding is needed. To determine the remaining control
parameters of the neural actions, the encapsulated, pre-trained NNs
are used.

The integration of the lifted information of these actions restricts
the solution space and permits the algorithm to explicitly determine
the intermediate states between the different actions. For every NN
Ma ∈ M , describing the effect of the neural action a, the planning
algorithm captures both the state to which the action is applied, s,
and the state the application leads to, s′. Subsequently, the trained
NNs are utilized to determine the sets of control parameters using
the concretization, described in section 4.2 (cf. Alg. 1, line 8). The
concretization takes the trained NN Ma and the two states s and
s′ as input and returns either unconcretizable or the set of control
parameters Θ and the actual state ŝ′ reached by applying the neural
action with set Θ to the state s.

Subsequently, the planning algorithm checks the results of the con-
cretization for validity (cf. Alg. 1, line 10). When the planning algo-
rithm initially transforms the planning problem into a satisfiability
problem (cf. Alg. 1, line 1), it also included the limits of the con-
trol parameters lb and ub. Within this step, for each neural action a
and every control parameter θ ∈ Θ returned by the concretization,
it is checked whether it is a legal assignment LegalPa(Θ), where
lb ≤ θ ∧ θ ≤ ub. Additionally, for each neural action it has to be
checked, whether the actual resulting state ŝ′ is violating any pre-
conditions of the subsequent actions and the goal conditions can still
be reached by the original plan, considering the deviation between s′

and ŝ′. If all concretizations are valid, a valid plan to the N3PCP
problem is found and the planning algorithm returns the detected
plan Γ (cf. Alg. 1, line 17).

If either, the concretization returns unconcretizable or the results
of the concretization are detected to be not valid (cf. Alg. 1, line 10),
a new set of clauses is generated and added to the satisfiability prob-
lem, blocking the satisfiability model s_model previously found by
the SMT solver (cf. Alg. 1, line 12). Subsequently, the planning algo-
rithm searches again for a valid plan on the abstract level, using the
SMT solver (cf. Alg. 1, line 6). If there is no other valid assignment
for the satisfiability problem available with the considered number of
actions, the algorithm takes one step backwards and extends the num-
ber of actions leading from I to G. This procedure is repeated until
a valid plan with a valid set of control parameters for each action is
found, or the algorithm has not found a solution within a maximum
number of actions (cf. Alg. 1, line 3).
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4.2 Concretization

Let s and s′ be the input and output values for a neural ac-
tion a found by the symbolic search. The concretization checks if
∃Θ.Ta(X,Θ, X

′)[X/s,X ′/s′], i.e., if there exists a valuation to
the control parameters such that the network computes the output
s′ given the input s.

Notice that, in principle, for full-access white box models, this step
could be done with an SMT solver, provided the model is known and
can be represented as an SMT formula. In practice, for full-access
white box and function-access black box models, we adopt an opti-
mization approach inspired by the works of [27] and [21]. For no-
access black box models that are only available as pure input-output
interfaces, a search algorithm, e.g., beam search, is required. The fo-
cus of this paper is on full-access and function-access models of neu-
ral networks; thus, only the former will be described in detail in this
section.

For full-access and function-access models, we employ backprop-
agation combined with stochastic gradient descent to optimize the
missing input values, specifically Θ in this context, rather than the
weights of Ma. It is a well-founded assumption that certain control
parameters do not affect the outcome of neural actions; these are sys-
tematically excluded from the gradient computation. Concurrently,
we incorporate Θ(a) ⊆ Θ, which delineates the subset of control pa-
rameters that do influence the neural actions, into the gradient tree.

We set the initial values of Θ(a) to zero and infer ŝ′. The discrep-
ancy between ŝ′ and the actual s′ is propagated backward through the
fixed weights ofMa, allowing for the iterative refinement ofΘ(a) to-
wards convergence.

To mitigate the risk of converging to local optima, we employ
an ensemble strategy alongside dropout in the hidden layers during
inference. We additionally reduce the risk of generating erroneous
plans, e.g., due to a local optimum, by establishing a threshold for
the loss during the optimization phase. In detail, we focus on the
distance between s′ and ŝ′. Should the loss exceed the predefined
threshold, the concretization returns unconcretizable and the plan-
ning algorithm blocks the current assignment. This allows us to omit
network-input-output combinations that do not fit the observed ac-
tion functionality. We determine the threshold value as validation loss
from the training phase of M and a factor τ . If the loss not exceed
the predefined threshold, the set of control parameters Θ(a) as well
as the actual state ŝ′ resulting from the application of a with Θ(a) to
s is returned.

4.3 Lifting the Neural Network

To obtain lifted information about the neural actions, that are inte-
grated into the abstract level of the satisfiability problem, we intro-
duce the procedure observer (cf. Algorithm 2). This procedure is ap-
plied during the training phase of the NNs. In each training iteration,
the observer assesses the transformation, which an action a performs
on a state s within the given data sample.

Initially, the procedure creates three n-dimensional zero-filled
vectors eff (a)

change , eff (a)
low and eff (a)

up , where n is the number of vari-
ables in X . For each training step, it examines the input state vector
s, and the resulting output state vector s′ for each feature separately.
If a value changes in the transition from s to s′, the effect of the
action a is updated in the corresponding eff

(a)
change vector (cf. Alg.

2, line 5). Additionally, the procedure assesses the magnitude of the
action’s effect on the feature. If the observed difference is smaller
than the previously recorded minimum value for a feature that was

Algorithm 2 The procedure observer extracts lifted information
from a data sample.
Require: states before (s) and after (s′) the action
Ensure: eff

(a)
change , eff

(a)
low , eff

(a)
up

1: procedure observer:
2: eff

(a)
change , eff

(a)
low , eff

(a)
up ← create(s)

3: for l = 0, l < n do

4: if s[l] �= s′[l] then

5: eff
(a)
change [i] = 1

6: eff
(a)
low [l] = min(eff

(a)
low [l ], (s

′[l ]− s[l ]))
7: eff (a)

up [l] = max (eff (a)
up [l ], (s

′[l ]− s[l ]))
8: end if

9: end for

10: return effchange
(a), efflow

(a), effup
(a)

already stored within efflow
(a), the procedure updates this minimum

value accordingly (cf. Alg. 2, line 6). Maxima are equivalently up-
dated in the vector effup

(a) (cf. Alg. 2, line 7).
At the end of the training phase, the procedure returns the three

vectors (cf. Alg. 2, line 10) containing lifted information on the tran-
sition, the trained NN Ma is describing. The first vector effchange

(a)

indicates whether a feature is modified, represented by ones and ze-
ros. The remaining two vectors efflow

(a) and effup
(a) specify, the rel-

ative lower and upper bounds of the transition caused by the action a
in the given training data.

5 Related Work

The concept of planning with control parameters was introduced by
Savaş et al. [24], enhancing the applicability of planning approaches
to real-world scenarios. In these domains, a planner tasked with ad-
dressing a planning problem involving control parameters must de-
termine the values of these parameters to ensure that actions yield the
intended outcomes [24]. To address this challenge, Savaş et al. [24]
developed the POPCORN planner, which augments the capabilities
of the partial-order planning framework of the POPF planner [6] by
incorporating linear constraints and employing linear programming
to maintain state consistency in order to handle control parameters.
However, the application of POPCORN is restricted to discrete nu-
meric modifications of state variables [24].

The SMTPlan planner, presented by Cashmore et al. [3], encodes a
hybrid planning problem into a satisfiability problem in SMT which
is then iteratively solved using the SMT solver Z3 ([20]). Their em-
pirical evaluations demonstrated the efficacy of an SMT-based ap-
proach in managing planning problems with control parameters, in-
dicating its suitability for such applications [3].

Sapena et al. [23] introduced the NextFLAP planner. The plan-
ner is based on the forward partial-order planner TFLAP [22] that
is combined with a numeric constraint optimizer, the SMT solver z3,
which is used to check for a valid assignment of values to the numeric
variables and to select the optimal one [23].

All approaches discussed previously are capable of addressing nu-
merical planning domains that involve control parameters. However,
none of these approaches solves NN-enriched numerical planning
problems with control parameters.

Introducing the N3PCP problem for the field of production plan-
ning, Heesch et al. [14] also proposed their planning algorithm
RAINER, able to solve this kind of problems in cyber-physical pro-
duction systems based on a new feature-vector-based state-space rep-
resentation. RAINER is based on an eager and exact encoding of the
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NNs, where the NNs are logically represented in exact SMT terms
representing the mathematical relationships inherent in the NNs. To
be able to directly integrate the mathematical relationships within the
NN into the satisfiability problem, the model’s architecture and the
weights have to be known beforehand, excluding the possibility of
integrating models that are not fully accessible as executable func-
tions. Besides this, the main downside of this approach is the chosen
integration method of the NNs into the satisfiability problem. Given
the inherent mathematical relationships among the neurons, weights,
and biases within NNs, direct integration into a satisfiability problem
in SMT significantly increases the runtime of the SMT solver [14].

6 Evaluation

Benchmarks We evaluate our approach on planning problems
from four different planning domains.

The drone domain, featured in the numerical track of the Inter-
national Planning Competition (IPC) 2023 [25], initially lacked con-
trol parameters. To integrate such parameters, we modified the fixed
numerical effect associated with the action recharge, substituting it
with a mathematical expression that includes the control parameter
’energy’.

Introduced during the IPC in 2002, the zenotravel domain also
did not include control parameters, initially.1 To incorporate these,
we modified the fixed numerical effect of the action refuel to a math-
ematical expression that encompasses the control parameter ’fuel’.

The cashpoint domain was introduced by Savaş et al. [24] to be a
numerical domain with control parameters. Within this domain, the
effect of the action withdraw_cash is described using the control pa-
rameter ’cash’. To pose a N3PCP problem, we omitted the temporal
aspect from the domain.

The FliPSi domain, introduced by Krantz et al. [17], simulates a
modular metal processing facility. Within this domain, the facility’s
modules are conceptualized as actions, while the manufactured prod-
ucts are depicted as states.

For each action with control parameters, we trained two types of
NNs. The first type uses piecewise linear ReLU activation functions,
the second type uses nonlinear sigmoid activations. All NNs have
four hidden layers. Their input and output dimensions depend on the
feature numbers from each domain.

Experimental Setup We implemented our LNP approach in
Python 3.12.2 As SMT backend, we used the Z3 solver [20]. All ex-
periments were carried out on an Intel(R) Core(TM) i9-10900K CPU
@ 3.70GHz with the default settings of the Z3 solver. Each variable
was represented numerically, with propositional variables expressed
as ones (true) and zeros (false). We neglected the accuracy of the
trained NNs, representing the effects of the neural actions, as the fo-
cus of this paper is not on the training but on the combination with a
logical paradigm. Because not all network architectures that are used
within the evaluation are equally suited to map the effects of the neu-
ral actions, we relaxed the threshold regarding the concretization as
well as the limits of the control parameters in order to obtain com-
parable results. We set the runtime limit for simulations to 648,000
seconds.

1 https://ipc02.icaps-conference.org/
2 The code for replicating the experiments can be found under https://github.

com/RHeesch/LNP

6.1 Results

Our evaluation of LNP is fourfold: (1) We compare our LNP’s perfor-
mance with the only other planner for NN-enriched planning prob-
lems [14], (2) we conduct an ablation study on the influence of the
observer procedure on our LNP, (3) we compare the runtime with dif-
ferent types of model accesses and (4) we analyze the scalability of
our LNP with complete observer in the dimensions of planning prob-
lem complexity, neural network architecture complexity, and number
of neural actions.

6.1.1 Lazy Planning vs. Eager Planning

To evaluate our LNP algorithm’s performance, we benchmarked it
against the only other planner for NN-enriched planning problems,
RAINER [14], resembling an eager planner. For this purpose, we
selected for each domain three planning problems, each with an
increasing plan length required to reach the optimal solution. We
solved each planning problem four times, using both types of NNs
– with ReLU and sigmoid activation functions – and problem vari-
ants where the NNs are available as full-access and function-access
models. We defined a plan as optimal, if there is no plan with fewer
actions and the set of control parameters is valid and not violating
the thresholds. The results for all problems, domains and configura-
tions are available online, along with the code for reproducing the
experiments.

Table 1. The table shows the computation time in seconds of the eager and
the lazy approach for finding an optimal solution in seconds. (TO) denotes
that the algorithm was not able to find a plan within seven days (648,000
seconds). The NNs have ReLU activation functions and are full-access

models.

domain plan length RAINER LNPfull−access

FliPSi
2 actions TO 5.60
3 actions TO 5.37
5 actions TO 5.55

Drone
2 actions TO 5.46
3 actions TO 5.65
15 actions TO 15.69

Zeno
2 actions TO 5.78
3 actions TO 6.06
9 actions TO 8.03

Cashpoint
2 actions TO 5.73
3 actions TO 5.88
6 actions TO 6.49

Table 2. The table shows the computation time in seconds of the eager and
the lazy approach for finding an optimal solution in seconds. (TO) denotes
that the algorithm was not able to find a plan within seven days (648,000
seconds). The NNs have sigmoid activation functions and are full-access

models.

domain plan length RAINER LNPfull−access

FliPSi
2 actions TO 5.44
3 actions TO 5.46
5 actions TO 5.51

Drone
2 actions MO 5.59
3 actions MO 5.57
15 actions MO 15.82

Zeno
2 actions TO 5.73
3 actions TO 5.95
9 actions TO 8.03

Cashpoint
2 actions TO 5.75
3 actions TO 5.90
6 actions TO 6.72
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The eager approach, RAINER, can only handle full-access NNs
with known characteristics, while our proposed LNP can also han-
dle NNs with function-access (cf. subsection 6.1.3). Table 1 sum-
marizes the results for the domains with ReLU activation functions
and fully known, accessible models. The results for the domains with
sigmoid activation functions and fully known, and accessible models
are summed up in Table 2.

Even with known network characteristics, RAINER can never find
a solution within the runtime limit, or can only reach a depth of two to
three steps. Within the drone domain, the SMT solver stops due to a
memory overflow (MO) when sigmoid activation functions are used
in the NNs. The proposed LNP approach, in contrast, successfully
solves all problems across all domains in short runtimes, handling
both ReLU and sigmoid activation functions.

6.1.2 Observer Ablation Study

We conducted an ablation study on the observer procedure based on
the previously introduced planning problems and domains. Table 3
provides an overview of the results for models with ReLU activa-
tion functions and backpropagation capabilities. The results for all
problems and domains, along with the code for reproducing the ex-
periments, are available online.

We considered three scenarios in which we reduce the in-
tegration of information provided by the observer from (i)
LNPcomplete integrating all information provided by the observer,
i.e., eff (a)

change , eff
(a)
low , eff

(a)
up , (ii) LNPpartial only integrating the

information whether a feature is influenced or not, i.e., eff (a)
change , and

(iii) LNPno integrating no information provided by the observer.

Table 3. The table summarizes the computation time of the ablation study
on the observer procedure, in seconds. (TO) denotes that the algorithm was

not able to find a plan within seven days (648,000 seconds).

domain plan
length LNPcomplete LNPpartial LNPno

FliPSi
2 actions 5.60 5.12 15.55
3 actions 5.37 5.67 20.46
5 actions 5.55 5.56 4753.75

Drone
2 actions 5.46 5.50 5.59
3 actions 5.65 5.51 25.43
15 actions 15.69 16.06 TO

Zeno
2 actions 5.78 5.66 6.08
3 actions 6.06 5.77 26.29
9 actions 8.03 8.62 TO

Cashpoint
2 actions 5.73 5.84 5.91
3 actions 5.88 5.80 26.50
6 actions 6.49 6.43 13701.58

The runtime of the LNP, when fully or partially integrating the ob-
server’s information, is similar; on average, the runtime with partial
integration is only milliseconds slower. When no information from
the observer is integrated, the runtime remains similar for the small-
est planning problems, which involve only two steps. However, if
the optimal plan consists of more than two steps, the runtime signifi-
cantly increases, leading to runtimes above the timeout for the largest
planning problems.

6.1.3 Model Accessibilty

We evaluated the performance of our LNP approach under three dis-
tinct types of model access: (i) the model is fully known and acces-
sible (full-access), (ii) the model is unknown, but offers dedicated
functionalities such as backpropagation (function-access), and (iii)

the model is unknown and only available as a pure input-output in-
terface (no-access).

For full-access or function-access models, we use backpropaga-
tion during the concretization process to determine the control pa-
rameters. However, for models available only as executables with a
pure input-output interface, an alternative algorithm is needed.

To evaluate the runtime for these input-output interfaces, we em-
ployed the same functions used to generate the training data for the
NNs. These functions take a concatenation of a state vector s and the
values of control parameters Θ as input and return a new state vector
s′. To search for the required control parameters, we implemented a
beam search algorithm with a perturbation of 0.01 and a beam width
of 10. The algorithm was configured to search for the control param-
eters until the distance between s′ and ŝ′ is smaller than 0.1 within
the valid limits for the control parameters. The runtimes for different
problems and configurations with complete observer information are
shown in Table 4.

Table 4. The table displays the runtime behavior of the LNP with
full-access, function-access and no-access models, in seconds. (TO) denotes

that the algorithm was not able to find a plan within seven days (648,000
seconds).

domain plan length LNPfull LNPfunction LNPno

FliPSi
2 actions 5.60 5.60 TO
3 actions 5.37 5.37 TO
5 actions 5.55 5.55 TO

Drone
2 actions 5.46 5.46 3.05
3 actions 5.65 5.65 2.31

15 actions 15.69 15.69 3.27

Zeno
2 actions 5.78 5.78 5.58
3 actions 6.06 6.06 3.87
9 actions 8.03 8.03 7.94

Cashpoint
2 actions 5.73 5.73 0.38
3 actions 5.88 5.88 0.62
6 actions 6.49 6.49 1.97

Since the concretization for both the full and the function access
model is based on backpropagation, the runtimes are identical. The
evaluation demonstrates that our proposed LNP approach can also
handle executables that are only available as input-output interfaces.
Depending on the range of valid values for the control parameters, it
can perform faster than backpropagation with full-access or function-
access models. However, the runtime significantly increases when
the range of valid values for the control parameters expands, e.g., in
the FliPSi domain, which leads to time-outs.

6.1.4 Scalability

We evaluated the performance of our LNP approach under increas-
ing planning problem complexity, neural network complexity, and
number of neural actions, on the drone domain.

Therefore, we systematically increased the number of hidden lay-
ers in the NN representing the charge action from two to twelve. Ad-
ditionally, we increased the number of neurons per layer from 14 to
100. We tested NNs with four different activation functions: ReLU,
Sigmoid, Hyperbolic Tangent, and Leaky ReLU. Furthermore, we
replaced the fixed effects of the actions increase-x, increase-y, and
increase-z with control parameters that could take both positive and
negative values, thereby rendering the opposing actions decrease-x,
decrease-y, and decrease-z redundant. We also replaced the fixed ef-
fects of the actions visit_location_1 and visit_location_2 with control
parameters.

The results show that modifications of the NN characteristics only
affect the runtime of the concretization process (cf. Figure 2). The
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Figure 2. Runtime behavior of the LNP with increasing numbers of hidden
layers (top), neurons per layer (middle) and neural actions per domain and

plan (bottom).

runtime increases linearly with the number of hidden layers. Using
different activation functions does not have an effect on the runtime
of the algorithm. Increasing the number of neurons per layer results
in a slightly higher runtime. Doubling the number of neurons per
layer leads to a runtime increase of approximately ten percent. The
runtime also increases linearly with the number of neural actions in
the domain and within the plan.

6.2 Discussion

Our evaluation shows that our proposed lazy approach is significantly
faster than the comparable eager algorithm, RAINER. RAINER al-
ways reaches the timeout, supporting previous findings that SMT
solvers struggle to handle nonlinear activation functions effectively
[13, 12]. As the LNP can manage NNs as not fully-accessible exe-
cutable functions without requiring knowledge of their network char-
acteristics, the type of activation function also has a negligible effect.
In general, the LNP can handle all NN architectures that allow opti-
mization of their input.

Within the regarded problems, the LNP with fully and partial inte-
grated information provided by the observer performs similar. With-
out the integration of any observer information, the LNP is much
less efficient in finding solutions, which leads to significantly longer
runtimes and even timeouts.

From a theoretical perspective, the observer’s information, specif-
ically whether and within what range a feature can be modified by an

action, may reduce the search space in a way that excludes the op-
timal solution, i.e., the shortest plan. However, if we integrate only
partial information from the observer, such as which features can
be modified by an action, this limitation of completeness can be re-
duced, provided the observer is trained on the same data as the NN.
In cases where the data do not reflect a change in a feature that could
be influenced by an action, the NN will also struggle to represent this
feature. As a result, the planning approach with only partial informa-
tion from the observer maintains completeness relative to the model
of the planning domain.

On the other hand, lacking information about the range may lead
to avoidable and time-consuming iterations between the SMT solver
at the top level and the concretization. When the constraints of the
control parameters restrict the transformation an action performs on a
state, and the action must therefore be performed multiple times, this
will result in at least one redundant and unsuccessful concretization.
Starting with only the partial information provided by the observer
and dynamically extending this information by narrowing the range
when a concretization fails appears to be a promising solution to this
issue.

To manage black box models, i.e., executables that are accessi-
ble only as input-output interfaces, an alternative approach to back-
propagation is required for searching the control parameters within
the concretization. But, by selecting an appropriate search algorithm,
the LNP can manage these black-boxes, providing the opportunity to
hide complex mathematical formulas that could not effectively be
handled directly by an SMT solver inside a function. However, em-
ploying an uninformed search algorithm may considerably increase
the runtime of the concretization, particularly if there is a wide range
of valid assignments for the control parameters.

The scalability analysis indicates that our proposed LNP can effec-
tively handle even large network architectures. Nevertheless, plan-
ning problems involving neural actions represented by wider NNs
could be solved faster than those with neural actions represented by
deeper NNs.

7 Conclusion

In this paper, we tackled the problem of numerical planning with con-
trol parameters for domains where actions can also be described with
NNs. We proposed a planning approach based on the following in-
sights: First, the search is hierarchical, and delays the analysis of the
NN’s until an abstract plan is found; Second, the discovery of spuri-
ous counterexamples is limited by the introduction of a form of un-
derapproximating static learning; Third, the refinement is completely
numerical, based on numerical optimization, and does not depend on
complex symbolic reasoning.

With respect to previous approaches to N3PCP [14], our approach
supports a more expressive model, and trades off completeness for
generality and efficiency. The experiments show that our approach
can solve a comprehensive set of numerical planning benchmarks,
including networks with nonlinear activation functions, which cannot
be represented by state-of-the-art solvers.

In the future, we plan to extend this work along the following di-
rections. First, we want to integrate the reasoning about NN’s directly
in the SMT solver in a tighter way, following an online integration
paradigm [1], and to exploit the inherent incrementality of the ap-
proach. We will investigate the integration of some symbolic reason-
ing to limit incompleteness, and finally, we will explore the case of
temporally-extended N3PCP.
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