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Abstract. Balancing exploration and exploitation has been an im-
portant problem in both adversarial games and automated planning.
While it has been extensively analyzed in the Multi-Armed Ban-
dit (MAB) literature, and the game community has achieved great
success with MAB-based Monte Carlo Tree Search (MCTS) meth-
ods, the planning community has struggled to advance in this area.
We describe how Upper Confidence Bound 1’s (UCB1’s) assump-
tion of reward distributions with known bounded support shared
among siblings (arms) is violated when MCTS/Trial-based Heuris-
tic Tree Search (THTS) in previous work uses heuristic values of
search nodes in classical planning problems as rewards. To address
this issue, we propose a new Gaussian bandit, UCB1-Normal2, and
analyze its regret bound. It is variance-aware like UCB1-Normal and
UCB-V, but has a distinct advantage: it neither shares UCB-V’s as-
sumption of known bounded support nor relies on UCB1-Normal’s
conjectures on Student’s t and χ2 distributions. Our theoretical anal-
ysis predicts that UCB1-Normal2 will perform well when the esti-
mated variance is accurate, which can be expected in deterministic,
discrete, finite state-space search, as in classical planning. Our empir-
ical evaluation confirms that MCTS combined with UCB1-Normal2
outperforms Greedy Best First Search (traditional baseline) as well
as MCTS with other bandits.

1 Introduction

From the early history of AI and in particular of automated planning
and scheduling, heuristic forward search has been a primary method-
ology for tacking challenging combinatorial problems. A rich variety
of search algorithms have been proposed, including Dijkstra search
[13], A∗/ WA∗ [22], and Greedy Best First Search [8, GBFS]. They
are divided into three categories: optimizing, which must guarantee
the optimality of the output, satisficing, which may or may not at-
tempt to minimize solution cost, and agile, which ignores solution
cost and focuses on finding a solution quickly. This paper focuses on
the agile setting.

Unlike optimizing search, theoretical understanding of satisfic-
ing and agile search has been limited. Recent theoretical work on
GBFS [24, 26, 25, 35] refined the concept of search progress in ag-
ile search, but only based on a post hoc analysis that depends on
oracular information, making their insights difficult to apply to prac-
tical search algorithm design, although it has been recently applied
to a learning-based approach [16]. More importantly, their analy-
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sis is incompatible with a wider range of randomized algorithms
[41, 28, 32, 55, 57, 58, 59, 60, 3, 35] that outperform the determinis-
tic baseline with randomized explorations; as a result, their detailed
theoretical properties are largely unknown except for probabilistic
completeness [55]. It is unsurprising that analyzing randomized al-
gorithms requires a statistical perspective, which is also growing
more important due to recent advances in learned heuristic functions
[54, 15, 51, 17, 47, 20, 19].

In this paper, we tackle the problem of balancing exploration and
exploitation in classical planning through a statistical lens and from
the perspective of MABs. Previous work showed that traditional for-
ward search algorithms (A*, GBFS) can be seen as a form of MCTS,
but we refine and recast this paradigm as a repeated process of col-
lecting a reward dataset and exploring the environment based on es-
timates obtained from this dataset. This perspective reveals several
theoretical issues in GreedyUCT [50], a MCTS modified for classi-
cal planning that uses UCB1. Among other things, the optimization
objective of classical planning has no a priori known bound, which
violates the bounded reward assumption of UCB1.

To apply MAB to classical planning correctly, we propose UCB1-
Normal2, a new Gaussian bandit, and GreedyUCT-Normal2, a new
agile planning algorithm that combines MCTS with UCB1-Normal2,
and show that GreedyUCT-Normal2 outperforms traditional ag-
ile algorithms (GBFS), state-of-the-art diversified search (Softmin-
Type(h) [35]), existing MCTS-based algorithms (GreedyUCT,
GreedyUCT*), MCTS combined with other variance-aware bandits
(UCB1-Normal and UCB-V [4]) or simple-regret bandits (TTTS
[49]).

While most of our empirical analyses are based on Pyperplan-
based implementation and focus on algorithmic efficiency rather than
on low-level performance, we also re-implemented the algorithms
in C++/Fast-Downward and performed evaluations in IPC 2018 sat-
isficing instances, where GUCT-Normal2 outperformed Softmin-
Type(h) on the number of instances solved.

In summary, our core contributions are as follows.
• We identify theoretical issues that arise when applying UCB1 to

planning tasks.
• To address these issues, we present UCB1-Normal2, a new Gaus-

sian bandit. We analyze its regret bound, which improves as the
estimated variance is closer to the true variance, and is constant
when they match. This makes it particularly powerful in a deter-
ministic and finite state space such as classical planning.

• GreedyUCT-Normal2, a new forward search algorithm that com-
bines UCB1-Normal2 with MCTS, outperforms existing algo-
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rithms in agile classical planning.
The supplemental materials containing proofs and additional plots

are available on arxiv.org/abs/2305.09840 [56].

2 Background

We define a propositional STRIPS Planning problem as a 4-tuple
[P,A, I,G] where P is a set of propositional variables, A is a set
of actions, I ⊆ P is the initial state, and G ⊆ P is a goal condi-
tion. Each action a ∈ A is a 4-tuple [PRE(a), ADD(a), DEL(a), C(a)]
where C(a) ∈ Z

0+ is a cost, PRE(a) ⊆ P is a precondition and
ADD(a), DEL(a) ⊆ P are the add-effects and delete-effects. A state
s ⊆ P is a set of true propositions (all of P \ s is false), an ac-
tion a is applicable when s ⊇ PRE(a) (read: s satisfies PRE(a)),
and applying action a to s yields a new successor state a(s) =
(s \ DEL(a)) ∪ ADD(a).

The task of classical planning is to find a sequence of actions called
a plan (a1, · · · , an) where, for 1 ≤ t ≤ n, s0 = I , st ⊇ PRE(at+1),
st+1 = at+1(st), and sn ⊇ G. A plan is optimal if there is no plan
with lower cost

∑
t C(at). A plan is otherwise called satisficing. In

this paper, we assume unit-cost: ∀a ∈ A; C(a) = 1.
A domain-independent heuristic function h in classical planning is

a function of a state s and the problem [P,A, I,G], but the notation
h(s) usually omits the latter. It returns an estimate of the cumula-
tive cost from s to one of the goal states (which satisfy G), typically
through a symbolic, non-statistical means including problem relax-
ation and abstraction. Notable state-of-the-art functions that appear
in this paper include hFF, hmax, hadd, and hGC [27, 8, 18]. Their
implementation details are beyond the scope of this paper, and are
included in the appendix [56, Sec. S1].

2.1 Multi-Armed Bandit (MAB)

MAB [53, 48, 9] is a problem of finding the best strategy to choose
from multiple unknown reward distributions. It is typically depicted
by a row of K slot machines each with a lever or “arm.” Each time the
player plays one of the machines and pulls an arm (a trial), the player
receives a reward sampled from the distribution assigned to that arm.
Through multiple trials, the player discovers the arms’ distributions
and selects arms to maximize the reward.

The most common optimization objective of MAB is Cumulative
Regret (CR) minimization. Let ri (1 ≤ i ≤ K) be a random variable
(RV) for the reward that we would receive when we pull arm i. We
call p(ri) an unknown reward distribution of i. Let ti be a RV of
the number of trials performed on arm i and T =

∑
i ti be the total

number of trials across all arms.

Definition 1. The cumulative regret Δ is the gap between
the optimal and the actual expected cumulative reward: Δ =
T maxi E[ri]−∑

i E[ti]E[ri].

Algorithms whose regret per trial Δ/T converges to 0 with
T → ∞ are called zero-regret. Those with a logarithmically upper-
bounded regret, O(log T ), are also called asymptotically optimal be-
cause this is the theoretical optimum achievable by any algorithm
[36]. Regret bounds tell the speed of convergence, thus its proof is
stronger than that of the convergence proof.

Upper Confidence Bound 1 [6, UCB1] is a logarithmic CR MAB
for rewards ri ∈ [0, c] with a known c. Let ri1 . . . riti ∼ p(ri) be
ti i.i.d. samples obtained from an arm i. Let μ̂i = 1

ti

∑ti
j=1 rij .

To minimize CR, UCB1 selects i with the largest Upper Confidence
Bound defined below.

UCB1i = μ̂i + c
√

2 log T/ti

LCB1i = μ̂i − c
√

2 log T/ti
(1)

For reward (cost) minimization, LCB1 instead selects i with the
smallest Lower Confidence Bound defined above (e.g., in Kishimoto
et al. [33]), but we may use the terms U/LCB1 interchangeably.
UCB1’s second term is often called an exploration term. Generally,
an LCB is obtained by flipping the sign of the exploration term in
a UCB. U/LCB1 refers to a specific algorithm while U/LCB refers
to general confidence bounds. c is sometimes set heuristically as a
hyperparameter called the exploration rate.

2.2 Forward Heuristic Best-First Search

Classical planning problems are typically solved as a path finding
problem defined over a state space graph induced by the transition
rules, and the current dominant approach is based on forward search.
Forward search maintains a set of search nodes called an open list.
They repeatedly (1) (selection) select a node from the open list, (2)
(expansion) generate its successor nodes, (3) (evaluation) evaluate
the successor nodes, and (4) (queueing) reinsert them into the open
list. Termination typically occurs when a node is expanded that sat-
isfies a goal condition, but a satisficing/agile algorithm can perform
early goal detection, which immediately checks whether any succes-
sor node generated in step (2) satisfies the goal condition. Since this
paper focuses on agile search, we use early goal detection for all al-
gorithms.

Within forward search, forward best-first search defines a partic-
ular ordering in the open list by defining node evaluation criteria
(NEC) f for selecting the best node in each iteration. Let us de-
note a node by n and the state represented by n as sn. As NEC,
Dijkstra search uses fDijkstra(n) = g(n) (g-value), the minimum
cost from the initial state I to the state sn found so far. A∗ uses
fA∗(n) = g(n) + h(sn), the sum of g-value and the value returned
by a heuristic function h (h-value). GBFS uses fGBFS(n) = h(sn).
Forward best-first search that uses h is called forward heuristic best-
first search. Dijkstra search is a special case of A∗ with h(s) = 0.

Typically, an open list is implemented as a priority queue ordered
by NEC. Since the NEC can be stateful, e.g., g(sn) can update its
value, a priority queue-based open list assumes monotonic updates
to the NEC because it has an unfavorable time complexity for re-
movals. A∗, Dijkstra, and GBFS satisfy this condition because g(n)
decreases monotonically and h(sn) is constant.

MCTS is a class of forward heuristic best-first search that repre-
sents the open list as the leaves of a tree. We call the tree a tree-based
open list. Our MCTS is based on the description in [30, 50]. Overall,
MCTS works in the same manner as other best-first search with a few
key differences. (1) (selection) To select a node from the tree-based
open list, it recursively selects an action on each branch of the tree,
start from the root, using the NEC to select a successor node, de-
scending until reaching a leaf node. (Sometimes the action selection
rule is also called a tree policy.) At the leaf, it (2) (expansion) gen-
erates successor nodes, (3) (evaluation) evaluates the new successor
nodes, (4) (queueing) attaches them to the leaf, and backpropagates
(or backs-up) the information to the leaf’s ancestors, all the way up
to the root.

The evaluation obtains a heuristic value h(sn) of a leaf node n.
In adversarial games like Backgammon or Go, it is obtained either
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by (1) hand-crafted heuristics, (2) playouts (or rollouts) where the
behaviors of both players are simulated by uniformly random actions
(default policy) until the game terminates, or (3) a hybrid truncated
simulation, which returns a hand-crafted heuristic after performing a
short simulation [21]. In recent work, the default policy is replaced
by a learned policy [52].

Trial-based Heuristic Tree Search [30, 50, THTS], a MCTS for
classical planning, is based on two key observations: (1) the rollout is
unlikely to terminate in classical planning due to sparse goals, unlike
adversarial games, like Go, which are guaranteed to finish in a limited
number of steps with a clear outcome (win/loss); and (2) a tree-based
open list can reorder nodes efficiently under non-monotonic updates
to NEC, and thus is more flexible than a priority queue-based open
list, and can readily implement standard search algorithms such as
A∗ and GBFS without significant performance penalty. In this paper,
we use THTS and MCTS interchangeably.

Finally, Upper Confidence Bound applied to trees [34, UCT]
is a MCTS that uses UCB1 for action selection and be-
came widely popular in adversarial games. Schulte and Keller
[50] proposed several variants of UCT including GreedyUCT
(GUCT), UCT*, and GreedyUCT* (GUCT*). We often abbrevi-
ate a set of algorithms to save space, e.g., [G]UCT[*] denotes
{UCT,GUCT,UCT∗,GUCT∗}. In this paper, we mainly discuss
GUCT[*] due to our focus on the agile satisficing setting that does
not prioritize minimization of solution cost.

2.3 Base MCTS for Graph Search

Alg. 1 shows the pseudocode of MCTS adjusted for graph search,
taken from [50]. Aside from what was described from the main sec-
tion, it has a node-locking mechanism that avoids redundant effort.

Following THTS, our MCTS has a hash table that implements a
CLOSE list and a Transposition Table (TT). A CLOSE list stores the
generated states and avoids instantiating nodes with duplicate states.
A TT stores various information about the states such as the parent
information and the action used at the parent. The close list is imple-
mented by a lock mechanism.

Since an efficient graph search algorithm must avoid visiting the
same state multiple times, MCTS for graph search marks certain
nodes as locked, and excludes them from the selection candidates.
A node is locked either (1) when a node is a dead-end that will never
reach a goal (detected by having no applicable actions, by a heuristic
function, or other facilities), (2) when there is a node with the same
state in the search tree with a smaller g-value, (3) when all of its chil-
dren are locked, or (4) when a node is a goal (relevant in an anytime
iterated search setting [45, 46], but not in this paper). Thus, in the ex-
pansion step, when a generated node n has the same state as a node
n′ already in the search tree, MCTS discards n if g(n) > g(n′), else
moves the subtree of n′ to n and marks n′ as locked. It also implic-
itly detects a cycle, as this is identical to the duplicate detection in
Dijkstra/A∗/GBFS.

The queueing step backpropagates necessary information from the
leaf to the root. Efficient backpropagation uses a priority queue or-
dered by descending g-value. The queue is initialized with the ex-
panded node p; each newly generated node n that is not discarded
is inserted into the queue, and if a node n′ for the same state was
already present in the tree it is also inserted into the queue. In each
backpropagation iteration, (1) the enqueued node with the highest
g-value is popped, (2) its information is updated by aggregating its
children’s information (including the lock status), (3) and its parent
is queued.

Algorithm 1 High-level general MCTS. Input: Root node r, succes-
sor function S, NEC f , heuristic function h, priority queue Q sorted
by g. Initialize ∀n; g(n) ← ∞.

while True do

Parent p ← r
while not leaf p do # Selection

p ← argminn∈S(p) f(n)
Q ← {p}
for n ∈ S(p) do # Expansion

return n if n is goal. # Early goal detection
if ∃n′ already in tree with same state sn′ = sn then

if g(n) > g(n′) then

continue

Lock n′, S(n) ← S(n′), Q ← Q ∪ {n, n′}
else

Compute h(sn) # Evaluation
Q ← Q ∪ {n}

while n ← Q.POPMAX() do # Backpropagation
Update n’s statistics and lock status
Q ← Q ∪ {n’s parent}

3 Existing MCTS-based Classical Planning

We revisit GBFS implemented as THTS/MCTS from a MAB per-
spective. Let S(n) be the set of successors of a node n, L(n) be
the set of leaf nodes in the subtree under n, and the NECs of GBFS
as fGBFS(n) = hGBFS(n). We expand the definition of the backup
functions presented by Keller and Helmert [30] recursively down to
the leaves, assuming hGBFS(n) = h(sn) if n is a leaf where h is a
heuristic.

hGBFS(n) = minn′∈S(n)[hGBFS(n
′)]

= minn′∈S(n)[minn′′∈S(n′)[hGBFS(n
′′)]]

= . . . = minn′∈L(n)[h(sn′)].

Keller and Helmert [30] called the min operator a Full-Bellman
backup and compared it with Monte-Carlo backup in GUCT that
uses the average, as expanded to the leaves below as well:

hGUCT(n) =
1

|L(n)|
∑

n′∈S(n) |L(n′)|hGUCT(n
′)

= 1
|L(n)|

∑
n′∈S(n)

���|L(n′)|
���|L(n′)|

∑
n′′∈S(n′) |L(n′′)|hGUCT(n

′′)

= . . . = 1
|L(n)|

∑
n′∈L(n) h(sn′).

To search, GUCT subtracts an exploration term from hGUCT(n)
based on LCB1, where p is a parent of n. |L(p)| and |L(n)| respec-
tively correspond to T and ti in Eq. 1.

fGUCT(n) = hGUCT(n)− c
√

(2 log |L(p)|)/|L(n)|
While Keller and Helmert [30] managed to generalize various al-

gorithms focusing on the procedural aspects (e.g., recursive backup
from the children), we focus on its mathematical meaning. One key
observation missing in Keller and Helmert [30] and is made clear by
these expansions is that the set L(n) of n’s leaves is a dataset, the
heuristic h(n′) at each leaf n′ is a reward sample, and the NECs esti-
mate its statistic such as the mean and the minimum. (The minimum
is known as an order statistic; other order statistics include the top-k
element, the q-quantile, and the median = 0.5-quantile.) Backprop-
agation from the expanded leaves to the root one step at a time is
merely an efficient implementation detail that avoids computing the
statistic (min,max,mean) over all leaves every time. Understanding
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each h(n) is a sample of a random variable representing a reward for
MABs, we can focus on the theoretical efficiency guarantees and see
how existing MCTS/THTS for classical planning fail to leverage it.

First, UCB1 assumes that all reward random variables, each asso-
ciated with an arm, have a shared, known bounds, where each arm
corresponds to each successor node during action selections. Heuris-
tic values in classical planning lack such a priori known bounds,
unlike adversarial games whose rewards are either +1/0 or +1/-1 rep-
resenting a win/loss. Also, usually the range of heuristic values in
each subtree of the search tree substantially differ from each other.

Although Schulte and Keller [50] claimed to have addressed this
issue by modifying the UCB1, but their modification does not fully
address the issue. Let us call their variant GUCT-01. It normal-
izes the first term of the NEC to [0, 1] by taking the minimum and
maximum among n’s siblings sharing the parent p. Given M =
maxn′∈S(p) hGUCT(n

′), m = minn′∈S(p) hGUCT(n
′), and a hy-

perparameter c, GUCT-01 modifies fGUCT into fGUCT-01 (Eq. 2).

fGUCT-01(n) =
hGUCT(n)−m

M−m
− c

√
2 log |L(p)|

|L(n)| (2)

However, the node ordering by the GUCT-01’s NEC is same when
all arms are shifted and scaled by the same amount, thus GUCT-01
is identical to the standard UCB1 with a reward range [0, c(M−m)]
(Eq. 3); we additionally note that this version avoids a division-by-
zero issue for M −m = 0.

m+ (M −m)fGUCT-01(n)

= hGUCT(n)− c(M −m)
√

2 log |L(p)|
|L(n)| (3)

Here are two issues of GUCT-01: First, GUCT-01 does not address
the fact that different subtrees have different ranges of heuristic val-
ues: When selecting an action, it assumes that all children have the
same reward range [0, c(M −m)]. Although M −m differs among
parents, and thus it adjusts its exploration rate in each action selection
at a different depth of the tree, it does not do so for each child, thus
it is depth-aware but not breadth-aware. Second, we expect GUCT-
01 to explore excessively, because the range [0, c(M − n)] obtained
from the data of the entire subtree of the parent is always broader
than that of each child, since the parent’s data is a union of those
from all children.

Further, in an attempt to improve the performance of [G]UCT,
Schulte and Keller [50] noted that using the average is “rather odd”
for planning, and proposed UCT* and GreedyUCT* (GUCT*) which
combines Full-Bellman backup with LCB1 without statistical justifi-
cation.

Finally, these variants failed to improve over traditional algorithms
(e.g., GBFS) unless combined with various other enhancements such
as deferred heuristic evaluation (DE) and preferred operators (PO).
The theoretical characteristics of these enhancements are not well
understood, rendering their use ad hoc and the reason for GUCT-
01’s performance inconclusive, and motivating a better theoretical
analysis.

4 Bandit for Unbounded Distributions

To handle reward distributions with unknown supports that differ
across arms, we need a MAB that assumes an unbounded reward
distribution spanning the real numbers. We use the Gaussian distri-
bution here, although future work may consider other distributions.
Formally, we assume each arm i has a reward distribution N (μi, σ

2
i )

for some unknown μi, σ
2
i . As σ2

i differs across i, the reward uncer-
tainty differs across the arms. By contrast, the reward uncertainty of
each arm in UCB1 is expressed by the range [0, c], which is the same
across the arms. We now discuss the shortcomings of MABs from
previous work (Eq. 4-6), and present our new MAB (Eq. 7).

UCB1-Normali = μ̂i + σ̂i

√
(16 log T )/ti (4)

UCB1-Tuned1 = (5)

μ̂i + c

√
min(1/4, σ̂2

i +
√

2 log T/ti) log T/ti

UCB-Vi = μ̂i + σ̂i

√
(2 log T )/ti + (3c log T )/ti (6)

UCB1-Normal2i = μ̂i + σ̂i

√
2 log T (7)

The UCB1-Normal MAB [6, Theorem 4], which was proposed
along with UCB1 (idem, Theorem 1), is designed exactly for this
scenario but is still unpopular. Given ti i.i.d. samples ri1 . . . riti ∼
N (μi, σ

2
i ) from each arm i where T =

∑
i ti, it chooses i that max-

imizes the metric shown in Eq. 4. To apply this bandit to MCTS,
substitute T = |L(p)| and ti = |L(n)|, and backpropagate the statis-
tics μ̂i, σ̂

2
i (see the appendix [56, Sec. S4]). For minimization tasks

such as classical planning, use the LCB. We refer to the GUCT vari-
ant using UCB1-Normal as GUCT-Normal. An advantage of UCB1-
Normal is its logarithmic upper bound on regret [6, Appendix B].
However, it did not perform well in our empirical evaluation, likely
because its proof relies on two conjectures which are explicitly stated
by the authors as not guaranteed to hold.

Theorem 1 (From [6]). UCB1-Normal has a logarithmic regret-per-
arm 256

σ2
i log T

Δ2
i

+ 1 + π2

2
+ 8 log T if, for a Student’s t RV X

with s degrees of freedom (DOF), ∀a ∈ [0,
√

2(s+ 1)];P (X ≥
a) ≤ e−a2/4, and if, for a χ2 RV X with s DOF, P (X ≥ 4s) ≤
e−(s+1)/2.

To avoid relying on these two conjectures, we need an alternate
MAB that similarly adjusts the exploration rate based on the vari-
ance. Candidates include UCB1-Tuned [6] in Eq. 5, and UCB-V [4]
in Eq. 6, but they all have various limitations. UCB1-Tuned assumes
a bounded reward distribution, lacks a regret bound, and is outper-
formed by UCB-V. UCB-V improves UCB1-Tuned with a regret
proof but it still assumes a bounded reward distribution.

We present UCB1-Normal2 (Eq. 7) and analyze its regret bound
(which is one of our main contributions). To understand its behav-
ior, see Fig. 1 which shows a MCTS selecting an action at a state
S (which is equivalent to selecting a node from the open list, see
Sec. 2.2). S has two successors A and B. The subtrees of A and B
contain h-values {9, 2, 6, 3} and {3, 7, 4, 6}, therefore their back-
propagated statistics are N (μ, σ) = N (5, 3.16) and N (5, 1.83). A
has a larger σ, thus the algorithm expects a higher chance of find-
ing a lower h-value under A, as shown in the green plot. Although
there is also a higher chance of finding a bad node (high h) under
A, it avoids such branches during further recursions (e.g., prefer D
over C). In other words, when the means are equal, it avoids low
variances which is likely to contain mediocre heuristic values h ≈ 5
all the time. This mechanism generalizes the concept of escaping
heuristic plateaus during search [10]: The low σ of B indicates that
its subtree contains a set of nodes with different but similar values.
A heuristic plateau is a special case of σ = 0. In contrast, GUCT
does not use σ and prefers A and B equally (both nodes have LCB

= μ− c
√

2 log T
ni

= 5− c
√

2 log 8
4

).
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Figure 1. Search behavior. Larger σ assigns more probability on the lower
h values we get in the next expansion.

Theorem 2 (Main Result). Let α ∈ [0, 1] be an unknown problem-
dependent constant and χ2

1−α,n be the critical value for the tail prob-
ability of a χ2 distribution with significance α and DOF n that sat-
isfies P (tiσ̂

2
i /σ

2
i < χ2

1−α,ti) = α. UCB1-Normal2 has a following
worst-case polynomial, best-case constant regret-per-arm where C
is a finite constant if each arm is pulled at least M = inf{n|8 <
χ2
1−α,n} times.

−4(logα)σ2
i log T

Δ2
i

+1 + 2C +
(1− α)T (T + 1)(2T + 1)

3

α→1−−−→ 1 + 2C

Proof. (Sketch of the appendix [56, Sec. S3].) We use Hoeffding’s
inequality for sub-Gaussian distributions as Gaussian distributions
belong to sub-Gaussian distributions. Unlike in UCB1 where the
rewards have a fixed known support [0, c], we do not know the
true reward variance σ2

i . Therefore, we use the mathematical truth
(not a conjecture) that, when ri1 . . . riti ∼ N (μi, σ

2
i ) and σ̂i

2 =
1
ti

∑ti
j=1 r

2
ij − ( 1

ti

∑ti
j=1 rij)

2, then tiσ̂i
2/σ2

i follows a χ2 distri-
bution and P (tiσ̂i

2/σ2
i < χ2

1−α,ti) = α for some α. We use
union-bound to address the correlation and further upper-bound the
tail probability. We also use χ2

1−α,ti ≥ χ2
1−α,2 = −2 logα for

ti ≥ 2. The resulting upper bound contains an infinite series C. Its
convergence condition dictates the minimum pulls M that must be
performed initially. �

Polynomial regrets are generally worse than logarithmic regrets of
UCB1-Normal. However, UCB1-Normal relies on unproven conjec-
tures and our experimental results shows UCB1-Normal is outper-
formed by UCB1-Normal2, suggesting that these conjectures do not
hold. Our regret bound also improves over that of UCB1-Normal if
T is small and α ≈ 1 (logα ≈ 0 therefore 1 − α ≈ 0). α repre-
sents the accuracy of the sample variance σ̂2 toward the true variance
σ2. In deterministic, discrete, finite state-space search problems like
classical planning, α tends to be close to (or sometimes even match)
1 because σ = σ̂ is achievable. Several factors of classical planning
contribute to this. Heuristic functions in classical planning are deter-
ministic, unlike rollout-based heuristics in adversarial games. This
means σ = σ̂ = 0 when a subtree is linear due to the graph shape.
Also, σ = σ̂ when all reachable states from a node are exhaustively
enumerated in its subtree. In statistical terms, this is because draws
from heuristic samples are performed without replacements due to
duplication checking in search algorithms.

Unlike UCB1-Normal, which pulls arms uniformly until all arms
satisfy ti ≥ �8 log T �, UCB1-Normal2 does not need such initial-
ization pulls because every node is evaluated once and its heuristic

value is used as a single sample. This means we assume M = 1, thus

α > ERF(2) > 0.995 because 8 < χ2
1−α,1 ⇔ 1 − α <

γ( 1
2
, 8
2
)

Γ( 1
2
)

=

1 − ERF(2). In classical planning, α > 0.995 is more realistic than
the conjectures used by UCB1-Normal.

Another explanation for the failure of UCB1-Normal is that its
exploration term is made too confident / too small by 1/

√
ti because

it was derived with more assumptions (the χ2 conjecture).
During the discussion, yet another potential explanation related

to the aleatoric and epistemic uncertainty was suggested by one of
the reviewers. The rewards in the typical bandit problems are “truly”
stochastic, i.e., each arm always samples a different reward from the
unknown fixed distribution, thus the uncertainty is aleatoric / an ob-
jective truth. However all rewards in classical planning are determin-
istic, and the uncertainty comes purely from the sampling (search
behavior in the subtree), thus the uncertainty is epistemic / subjective
to the agent. Under this interpretation, the standard regret analysis
above (yielding polynomial regret) may tell little about the actual
performance of the algorithms, potentially suggesting a new chal-
lenge for the bandit community.

5 Experimental Evaluation

We evaluated the algorithms over a subset of the International Plan-
ning Competition benchmark domains,2 selected for compatibility
with the set of PDDL extensions supported by Pyperplan [1]. We
maintain the superset of the results of the experiments under a 10,000
node evaluation limit, a 4,000 node expansion limit, and a 300 sec-
ond runtime limit, and then count the number of instances solved
under each limit. We mainly focus on the node evaluations because
heuristic computation is the main bottleneck in classical planning.
See the appendix [56, Fig. S1-S3] for the results controlled by ex-
pansions and the runtime. Another reason for this focus is the fact
that we used a python-based implementation (Pyperplan) for conve-
nient prototyping. It is slower than C++-based state-of-the-art sys-
tems (e.g. Fast Downward [23]), but our focus on evaluations makes
this irrelevant and also improves reproducibility by avoiding the ef-
fect of hardware differences and low-level implementation details.

In order to limit the length of the experiment, we also removed the
problem instances which Pyperplan took more than 5 minutes and
2GB memory to parse and instantiate the input file. The instantiation
limit removed 47 instances from freecell, 4 from logistics98, 2 from
openstacks, and 24 from pipesworld-tankage. This resulted in 772
problem instances across 24 domains in total. We evaluated various
algorithms with hFF, hadd, hmax, and hGC (goal count) heuristics
[18], and our analysis focuses on hFF. We included hGC because it
can be used in environments without domain descriptions, e.g., in the
planning-based approach [38] to the Atari environment [7]. We ran
each configuration with 5 random seeds and report the average num-
ber of problem instances solved. To see the spread due to the seeds,
see the cumulative histogram plots in the appendix [56, Fig. S1-S3].

We evaluated the following algorithms: GBFS is GBFS imple-
mented in Pyperplan and FastDownward. We evaluated both im-
plementations in order to compare the difference. WA* (w = 5)
based on FastDownward is added because it outperformed GBFS
in [50] in agile setting. GUCT is a GUCT based on the original
UCB1. GUCT-01 is GUCT with ad hoc [0, 1] normalization of the
mean [50]. GUCT-Normal/-Normal2/-V are GUCT variants using
UCB1-Normal/UCB1-Normal2/UCB-V respectively. The * variants
GUCT*/-01/-Normal/-Normal2 are using full-bellman backup. For

2 github.com/aibasel/downward-benchmarks
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Table 1. The number of problem instances solved with less than 10,000 node evaluations; best configurations in bold for each heuristic; each number
represents an average over 5 trials. We show results for both c = 1.0 and c = 0.5 (“best parameter” according to Schulte and Keller [50]) when the algorithm
requires one. Algorithms in the bottom half have no hyperparameter. †: Data missing due to the lack of support of PO for GBFS in Pyperplan. ‡: Data missing

because DE in Fast Downward measures node evaluations differently.

PO:Preferred Operators, DE:Deferred Evaluation.
h = hFF hadd hmax hGC hFF+PO hFF+DE hFF+DE+PO

c = 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1

GUCT 442.8 412.0 435.8 397.8 237.0 228.4 306.6 285.2 484.6 454.0 455.8 389.2 497.4 439.4
* 542.0 458.6 529.2 480.8 248.4 242.2 317.8 310.4 591.6 495.8 480.2 423.6 527.4 471.0
-01 399.8 368.0 375.4 328.8 256.8 237.4 318.4 302.4 441.4 408.4 387.6 361.2 445.0 422.6
*-01 425.6 388.0 404.8 364.4 246.8 233.4 318.0 297.6 470.6 420.6 409.4 378.2 466.8 438.8
-V 361.2 317.4 354.0 310.6 226.2 208.6 278.4 255.4 427.0 389.6 370.8 344.6 431.2 421.0

-Normal - 283.4 - 265.0 - 212.0 - 233.4 - 372.4 - 289.0 - 381.6
*-Normal - 318.8 - 300.0 - 215.2 - 246.2 - 378.1 - 304.4 - 386.7
-Normal2 - 581.8 - 535.8 - 316.6 - 379.0 - 621.0 - 518.0 - 578.0

*-Normal2 - 567.2 - 533.8 - 263.0 - 341.0 - 618.0 - 511.4 - 567.8
TTTS-Normal - 181.0 - 180.0 - 171.4 - 170.8 - 151.0 - 180.6 - 150.6
TTTS-Normal* - 189.4 - 186.4 - 177.4 - 174.4 - 159.4 - 185.8 - 155.8

GBFS(Pyperplan/FastDownward) 538/539 - 518/517 - 224/226 - 354/349 - †/539 - 489/‡ - †/‡
WA∗ (w = 5) (FastDownward) 528 - 522 - 211 - 319 - 528 - ‡ - ‡
Softmin-Type(h) (FastDownward) 576.0 - 542.6 - 297.2 - 357.6 - 575.8 - ‡ - ‡

GUCT and GUCT-01, we evaluated the hyperparameter c with the
standard value c = 1.0 and c = 0.5. The choice of the latter is due to
Schulte and Keller [50], who claimed that GUCT [*]-01 performed
the best when 0.6 < C = c

√
2 < 0.9, i.e., 0.4 < c < 0.63. Our aim

of testing these hyperparameters is to compare them against auto-
matic exploration rate adjustments performed by UCB1-Normal[2].
Other algorithms are explained later.

Schulte and Keller [50] previously reported that two ad hoc en-
hancements to GBFS, PO and DE, also improve the performance of
GUCT [*]-01. We evaluated our equivalent reimplementation. We
did not evaluate PO with heuristics other than hFF, which are not
supported by Pyperplan.

In all comparisons between GUCT-Normal2 and other algorithms
based on FF heuristics below, we performed Welch’s unequal vari-
ances t-test on the coverage scores with 5 different random seeds,
and confirmed p < 0.001 for all comparisons. Note that all algo-
rithms evaluated in this paper are deterministic up to tie-breaking,
including MCTS variants: With the same set of leafs, all NECs are
deterministic, and thus the action selection is deterministic.

Detailed Ablation We first reproduced [50] and provide its more
detailed ablation. Table 1 shows that GUCT [*]-01 is indeed signifi-
cantly outperformed by the baseline algorithm GBFS, indicating that
UCB1-based exploration is not beneficial for planning. Although this
result disagrees with the final conclusion of their paper, their conclu-
sion relied on incorporating the DE and PO enhancements, and these
confounding factors impede conclusive analysis.

We also tested GUCT [*], which lacks the mean normalization
(Eq. 2) of GUCT [*]-01, which was not previously evaluated. GUCT
[*]-01 performs significantly worse, indicating that its normalization
not only fails to address the unknown and different supports, but also
harms the performance by excessive exploration, as predicted by our
analysis in Sec. 3.

GUCT-Normal2 We then compared various algorithms. GUCT-
Normal2 outperformed GBFS, GUCT/-01/-Normal/-V, and their *
variants. The dominance against GUCT-Normal supports our anal-
ysis that in classical planning σ̂2 ≈ σ2, thus P (tiσ̂

2/σ2 <
χ2
1−α,ti) = α ≈ 1, overcoming the asymptotic deficit (the polyno-

mial regret in GUCT-Normal2 vs. the logarithmic regret of GUCT-
Normal). In other words, the logarithmic regret of UCB1-Normal
does not hold in classical planning because the χ2 conjectures tend

to be violated.
While the * variants can be significantly better than the non-* vari-

ants at times, this trend was opposite in algorithms that perform bet-
ter, e.g., GUCT*-Normal2 tend to be worse than GUCT-Normal2.
This supports our claim that Full-Bellman backup proposed by [50]
is theoretically unfounded and thus does not consistently improve
search algorithms. Further theoretical investigation of Full-Bellman
backup is an important avenue of future work.

The table also compares GUCT [*]-Normal[2], which do not re-
quire any hyperparameter, against GUCT [*][/-01/-V] with different
c values. Although c = 0.5 improves the performance of GUCT [*]-
01 as reported by Schulte and Keller [50], it did not improve enough
to catch up with the adaptive exploration rate of GUCT [*]-Normal2.
We also tested c ∈ {0.1, 0.3, 3.0} (see the appendix [56, Sec. S6.3]).
Results indicated that c = 0.1 tends to be better, but it still did not
outperform GUCT-Normal2 (e.g., the best coverage among GUCT
[*][-01] with FF/c = 0.1 was 561.8 by GUCT*, compared to 581.8
by GUCT-Normal2.) This is not surprising, as the limit of c → 0 for
GUCT* is GBFS, which also performs well (538).

Simple Regret Cumulative regret (CR, Eq. 1) bandits maximize
the total rewards, including those obtained during the experimenta-
tion, while simple regret (SR) bandits / best-arm identification algo-
rithms [5, 29] maximize the expected rewards of the incumbent best
arm that is maintained during the experimentation and is returned at
the end. SR MABs can explore more aggressively than CR MABs
because the cost of the experimentation is free for SR. Feldman and
Domshlak [14] showed that SR MABs are superior in online MDPs
where the incumbent corresponds to the action to take next. The con-
cept of incumbent also exists in anytime search [45], e.g., in LAMA
[46], suggesting an interesting future direction. However, the incum-
bent does not exist in agile search, or in the first iteration of anytime
search, so SR MABs are conceptually mismatched with offline agile
search. Table 1 shows the performance of MCTS combined with a
state-of-the-art SR MAB [49, TTTS]. TTTS-Normal/* respectively
uses the Monte-Carlo/Full-Bellman backup. As expected, they are
vastly outperformed by other algorithms. In online planning and act-
ing, the justification for SR is that search is not a commitment, only
the first action of the policy/plan is. However, in agile planning,
search is indeed a commitment to the computational resources (time,
memory) which we minimize, thus it justifies the CR objective.
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Figure 2. Comparing solution length of GUCT [-01/Normal2] and
Softmin-Type(h) (x-axis) against GBFS (y-axis) using hFF.

Preferred Operators In addition to the heuristic value of a state,
some heuristic functions are able to return a list of actions called
“helpful actions” [27] or “preferred operators” [44]. We reimple-
mented Schulte and Keller [50]’s strategy which limits the action
selection to the preferred operators and falling back to the normal
behavior if there are none. Table 1 shows that it also improves GUCT
[*][-Normal2], consistent with the previous report on GUCT [*]-01.

Deferred Evaluation Table 1 shows the effect of deferred heuristic
evaluation (DE) on search algorithms. In this experiment, DE should
perform worse than eager evaluations because DE trades the num-
ber of calls to heuristics with the number of nodes inserted to the
tree, which is limited to 10,000. When CPU time is the limiting re-
source, DE usually solves more instances, assuming the implemen-
tation is optimized for speed (e.g., using C++). However, our Python
implementation (typically 100–1,000 times slower than C++) is not
able to measure this effect because this low-level bottleneck could
hide the effect of speed improvements. What we could learn from
this experiment is therefore whether DE+PO is better than DE, and
if GUCT [*]-Normal2+DE continues to dominate other algorithms
with DE. Table 1 answers both questions positvely: DE+PO tends to
perform better than DE alone, and GUCT [*]-Normal2 is still supe-
rior to other algorithms with DE and DE+PO.

Diversified Search We evaluated Softmin-Type(h) [35], a recent
state-of-the-art diversified search algorithm for classical planning.
We used the original C++ implementation based on Fast Down-
ward. We excluded diversification methods that use state informa-
tion, such as BFWS [37], as they are orthogonal concepts. Ta-
ble 1 shows that UCB1-Normal2 outperforms Softmin-Type(h) with
hFF, hmax, hGC, hFF+PO. See the domain-wise comparisons in the
appendix [56, Sec. S6.5].

Solution Quality Fig. 2 shows that GUCT-Normal2 and Softmin-
Type(h) return longer solutions than GBFS does. GUCT-01 finds so-
lutions with highly varying length, but overall they are not consis-
tently longer or shorter than GBFS. See the appendix [56, Fig. S7-
S10] for more plots. For agile search, we believe that a successful
exploration must sacrifice the solution quality for faster search.

Runtime Comparison To assess the impact of the runtime over-
head required by GUCT-Normal2 to maintain MCTS search tree, we
reimplemented GUCT/-Normal/2 on Fast Downward and evaluated
them on IPC 2018 satisficing instances. Table 2 shows that GUCT-
Normal2 outperforms other algorithms.

6 Related Work

The idea of using variances to guide the search has been proposed
as early as Crazy Stone for computer Go [12]. However, due to
its focus on adversarial games, MCTS literature typically assumes
a bounded reward setting (e.g., 0/1, -1/+1), making applications of
UCB1-Normal scarce (e.g., Google Scholar returns 5900 vs. 60 for

Table 2. IPC 2018 results (average number of instances solved over 3
seeds) using hFF under 5 min time limit and 8GB memory limit. For caldera
and organic-synthesis, we used their action-splitting variants [2] provided by

the organizers. “Softmin” stands for Softmin-Type(h). Best results are
highlighted in bold.

domain GBFS WA* Softmin GUCT Normal Normal2

agricola 9.0 4.0 9.0 8.0 1.0 9.7

caldera 4.0 2.0 7.3 6.0 6.7 6.7
data-net 4.0 5.0 9.0 4.0 2.0 9.7

flashfill 9.0 8.0 9.0 1.0 0.0 6.7
nurikabe 7.0 8.0 7.0 8.0 8.0 8.3

org-syn 9.0 10.0 9.3 10.0 10.3 9.7
settlers 0.0 4.0 5.3 6.3 5.3 2.3

snake 5.0 3.0 5.0 3.3 3.0 16.7

spider 8.0 11.0 8.7 8.7 9.0 9.3
termes 12.0 4.0 12.0 10.0 9.7 6.0

total 67.0 59.0 81.7 65.3 55.0 85.0

keyword “UCB1” and “UCB1-Normal”, respectively) except a few
model-selection applications [39]. While Gaussian Process MAB
[42] has been used with MCTS for sequential decision making in
continuous space search and robotics [31], it is significantly different
from discrete search spaces like in classical planning.

MABs may provide a rigorous theoretical tool to analyze
the behavior of a variety of existing randomized enhancements
for agile/satisficing search that tackle the exploration-exploitation
dilemma. ε-greedy GBFS was indeed inspired by MABs [55, Sec.2].

GUCT-Normal2 encourages exploration in nodes further from the
goal, which tend to be close to the initial state. This behavior is sim-
ilar to that of Diverse Best First Search [28], which stochastically
enters an “exploration mode” that expands a node with a smaller g
value more often. This reverse ordering is unique from other diver-
sified search algorithms, including ε-GBFS, Type-GBFS [60], and
Softmin-Type-GBFS [35], which selects g rather uniformly during
the exploration.

Theoretical guarantees of MABs require modifications in tree-
based algorithms (e.g. MCTS) due to non-i.i.d. sampling from the
subtrees [11, 40]. Incorporating the methods developed in the MAB
community to counter this bias in the subtree samples is an important
direction for future work.

MDP and Reinforcement Learning literature often use discounting
to avoid the issue of divergent cumulative reward: when the upper
bound of step-wise reward is known to be R, then the maximum cu-
mulative reward goes to ∞ with infinite horizon, while the discount-
ing with γ makes it below R

1−γ
, allowing the application of UCB1.

Although it addresses the numerical issue and UCB1’s theoretical
requirement, it no longer optimizes the cumulative objective.

7 Conclusion

We examined the theoretical assumptions of existing bandit-based
exploration mechanisms for classical planning, and showed that ad
hoc design decisions can invalidate theoretical guarantees and harm
performance. We presented GUCT-Normal2, a classical planning al-
gorithm combining MCTS and our Gaussian bandit UCB1-Normal2,
and analyzed it both theoretically and empirically. Future work in-
cludes combinations with other enhancements for agile search in-
cluding novelty metric [37], lazy evaluations and preferred operators
[43], and iterated anytime search [45].
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