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Abstract. CNOT optimization plays a significant role in noise re-
duction for Quantum Circuits. Several heuristic and exact approaches
exist for CNOT optimization. In this paper, we investigate more com-
plicated variations of optimal synthesis by allowing qubit permuta-
tions and handling layout restrictions. We encode such problems into
Planning, SAT, and QBF. We provide optimization for both CNOT
gate count and circuit depth. For experimental evaluation, we con-
sider standard T-gate optimized benchmarks and optimize CNOT
sub-circuits. We show that allowing qubit permutations can further
reduce up to 56% in CNOT count and 46% in circuit depth. In the
case of optimally mapped circuits under layout restrictions, we ob-
serve a reduction up to 17% CNOT count and 19% CNOT depth.

1 Introduction

Quantum Computing promises speedup in solving computationally
hard and classically intractable problems. Logical formulations of
such problems are compiled to enable execution on quantum pro-
cessors. The Quantum compilation pipeline broadly consists of two
main stages, Circuit Synthesis and Layout Synthesis. Circuit Synthe-
sis mainly focuses on the decomposition of abstract circuits to a tar-
get gate set. Layout Synthesis instead focuses on satisfying hardware
restrictions. For instance, not all physical qubits interact with each
other in some current quantum processors. Thus, quantum gates that
act on 2 qubits can only be scheduled on adjacent physical qubits.
In the current Noisy Intermediate Scale Quantum (NISQ) era, noise
is inherent to quantum computers. Every execution of a gate can in-
crease the error in the computation. For practical quantum comput-
ing, error reduction is of utmost importance. Optimization techniques
are applied throughout the compilation pipeline. In particular, reduc-
ing gate count and circuit depth can directly impact the error rate.

While an optimal synthesis for the whole compilation pipeline is
ideal, it is an extremely hard problem. For instance, [23] proposes
SMT-based synthesis under hardware connectivity restrictions and
target gate set. From [23], it is clear that synthesis beyond 4 qubits
is impractical. Essentially, to optimize a n qubit circuit one needs to
consider its 2n × 2n unitary matrix. The alternative is to optimize
error-prone gates like 1-qubit T-gates and 2-qubit CNOT-gates for
error reduction. Several approaches are applied for T-gate optimiza-
tion [2, 1] in tools like T-par1 and Feynman.2 While such tools reduce

1 https://github.com/meamy/t-par
2 https://github.com/meamy/feynman

T-gate count and depth, they can significantly increase CNOT-gate
count. As a result, CNOT optimization without changing the T-gate
count has been proposed, based on Gaussian elimination [3], Greedy
algorithms [8, 9], Steiner tree [20, 15], SAT [21], and ASP [27, 26].
While heuristic techniques are well studied, exact approaches are still
unexplored in many variations.

Contributions We consider two variations of CNOT synthesis, one
with qubit permutation and one with CNOT restrictions. For qubit
permutation, we define weak equivalence (W) where the order of
output qubits is free. This allows for more – often smaller – solu-
tions than exact synthesis with strong equivalence (S). For CNOT
restrictions (R), we only allow CNOT gates on adjacent qubits, i.e.,
layout-aware synthesis. We are in particular interested in 4 variants:
S, S+R, W, and W+R. Adding restrictions makes the problem NP-
hard [19], while the complexity without them is still open [19]. We
encode such hard problems into Classical Planning, Propositional
satisfiability (SAT), and Quantified Boolean Formulas (QBF). For the
first time, we provide optimal encodings for W and W+R synthesis
variants. For the S, S+R and W variants, we experiment with peep-
hole optimization on arbitrary quantum circuits, in which individual
CNOT-slices are optimized. We validate this on standard T-gate op-
timal benchmarks. We extended our open source tool Q-Synth v33 to
include all encoding variants of CNOT synthesis mentioned above.

2 Preliminaries

2.1 CNOT circuits

In this paper, we focus on special circuits called CNOT circuits,
which consist solely of 2-qubit CNOT gates (controlled-NOT). A
CNOT gate takes two inputs, a control qubit with a and a target qubit
with b, and outputs a ⊕ b on the target qubit. For example, Table 1
shows a CNOT circuit with 6 CNOT gates.

Table 1. Original CNOT Circuit

q0
q1 • • •
q2
q3 • • •

3 Q-Synth v3, available at https://github.com/irfansha/Q-Synth
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Table 2. Column additions for respective CNOT gates in the example circuit

q0 q1 q2 q3⎛
⎝

⎞
⎠

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

q3,q1−−−−→

⎛
⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1

⎞
⎟⎠ q1,q3−−−−→

⎛
⎜⎝
1 0 0 0
0 1 0 1
0 0 1 0
0 1 0 0

⎞
⎟⎠ q1,q0−−−−→ (· · ·) q3,q1−−−−→ (· · ·) q1,q0−−−−→ (· · ·) q3,q1−−−−→

q0 q1 q2 q3⎛
⎝

⎞
⎠

1 0 0 0
1 1 0 1
0 0 1 0
0 1 0 0

CNOT sub-circuits appear frequently in quantum circuits, since
CNOT is the only binary gate in many quantum platforms. Optimiz-
ing such sub-circuits directly impacts the overall error. Every n-qubit
CNOT circuit can be represented by a so-called parity matrix i.e., a
full-rank n× n matrix in GLn(F2) [3, 23]. Adding column i to col-
umn j (modulo 2) in this matrix corresponds to applying a CNOT
gate with control qubit i to target qubit j. So the minimal CNOT
circuit corresponds to finding the shortest series of column additions
to obtain the goal matrix from the Identity matrix. The parity matrix
formulation for CNOT circuits is much more compact than the usual
2n × 2n complex unitary matrix for arbitrary quantum circuits.

Definition 1. Given a CNOT circuit C on n qubits, we define MC

to be its parity matrix in GLn(F2) generated by applying all CNOT
gates in C to the n× n Identity matrix.

The columns of the parity matrix are labeled with the qubits. Given
a circuit, one can transform the Identity matrix to the final parity
matrix by applying column additions corresponding to the CNOT
gates. For example, Table 2 shows such a transformation via column
additions of our example circuit. The right-most matrix in Table 2
shows the equivalent matrix for the CNOT circuit. In the parity ma-
trix, each column represents the output of the corresponding qubit.
For instance, column q2 has the bit sequence 0, 0, 1, 0 representing
the untouched qubit q2. On the other hand, column q0 with bit se-
quence 1, 1, 0, 0 represents q0 ⊕ q1.

2.2 Classical planning

Given a description of a world, finding a sequence of actions that
transform an initial state to some goal state is Automated Planning.
In Classical Planning [14], the actions are deterministic and there ex-
ists a single initial state. Any reachability encoding can be elegantly
encoded in such a specification. The problem is specified using Do-
main and Problem files in the Planning Domain Definition Language
(PDDL) [13]. A domain file defines the predicates that describe the
world and lists schematic actions that can change the world. A prob-
lem file specifies the objects used, the initial state, and the goal state.
One can then use existing State-of-the-art domain-independent plan-
ners to solve problems. Layout Synthesis of Quantum circuits has
been successfully encoded before in classical planning [31].

2.3 Propositional satisfiability

Given a boolean formula, finding an assignment that makes the for-
mula true is a propositional satisfiability (SAT) problem. In recent
years, many (NP-complete and NP-hard) problems have been suc-
cessfully encoded and solved using SAT [5, 12]. Several synthesis-
related problems in Quantum Computing have been encoded in
SAT [29, 25, 21, 32]. Since we are interested in optimal solutions,
SAT-based solving is a promising technique for proving optimality.

2.4 Quantified boolean formulas

Quantified Boolean Formula (QBF) Logic [4] is an extension of
propositional logic with universal and existential quantifiers. One can
encode a propositional formula in a more compact way taking ad-
vantage of inherent structure. When propositional formulas get too
large to encode, encoding in QBF is an alternative. For instance, us-
ing QBF-based encodings helped in avoiding large Organic Synthesis
encodings based on Planning in [30].

3 Optimal CNOT synthesis

In this section, we discuss CNOT optimization and its variations with
synthesis. We will first establish different notions of equivalence be-
tween CNOT circuits. Then we discuss layout-aware synthesis, in the
presence of connectivity restrictions. Finally, we discuss the relevant
combinations of synthesis variants for the encodings in this paper. In
section 8, we present related work and compare it with our approach.

3.1 CNOT circuit equivalence

For optimal synthesis, we first need to establish equivalence between
CNOT circuits. In general, two quantum circuits are equivalent if
their unitary matrices are the same. Intuitively, equivalent circuits
have the same input-output behavior. Note that equivalent circuits
can have different gate counts and circuit depths. The general idea for
optimization is to compute an equivalent circuit with either a lower
gate count or circuit depth.

Strong equivalence (S) Every parity matrix has a corresponding
unitary matrix. For CNOT circuits, we can directly use the parity ma-
trix representation for this equivalence relation. If two CNOT circuits
have the same parity matrix, then they are strongly equivalent [3, 23].

Definition 2. Two CNOT circuits C,C′ are strongly equivalent if
and only if MC = MC′ .

For example, consider the CNOT circuit in Table 1 with the final
matrix in Table 2. Synthesizing optimal column operations to reach
MC is equivalent to synthesizing an optimal circuit C′. One can syn-
thesize the same parity matrix by using only three column additions
on (q1, q0), (q3, q1), and (q1, q3). Thus, the resulting equivalent cir-
cuit as in Table 3 only has 3 CNOT gates (optimal) as instead of 6.

Table 3. Optimized circuit via S, with 3 CNOT gates only

q0
q1 • •
q2
q3 •
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Weak equivalence (W) While one can use strong equivalence for
optimal synthesis, the definition is somewhat restrictive. The order of
input qubits and output qubits is the same in the optimized circuit in
Table 3. However, one could allow permutations of the output qubits
within a circuit, as long as one keeps track of the final “physical”
position of the “logical” output qubits. For example, Table 4 shows
an equivalent circuit where the order of output qubits is changed.

Table 4. Optimized circuit using W (weak equivalence), with 2 CNOTs.
The final position of permuted output qubits are represented using circles.

q0 q0

q1 • • q3

q2 q2

q3 q1

In CNOT circuits, the output qubit permutation simply corre-
sponds to the permutation of columns in the parity matrix.

Definition 3. Given a permutation P and a matrix MC , we define
P (MC) be the column permuted matrix.

Intuitively, it might be possible to reach some permutation of the
matrix in fewer steps. We now define the weak equivalence based on
the permutation of matrices.

Definition 4. Two CNOT circuits C and C′ are weakly equivalent if
and only if there exists a permutation P such that P (MC) = MC′ .

In our example, by using weak equivalence only 2 column opera-
tions are required to reach a permuted matrix. Table 4 shows such an
optimal circuit with only 2 CNOT gates. We use circles to denote the
permuted positions of output qubits.

To convert a weakly equivalent circuit to a strongly equivalent cir-
cuit, one can add tailing swaps to model the permutation of output
qubits. When there are no connectivity restrictions on CNOT gates,
these swap gates have zero-cost. One can remove swaps by simply re-
labelling gates in constant time. In our example, using swaps results
in a strongly equivalent optimized circuit as shown in Table 5.

Table 5. Optimized circuit using W with 2 CNOTs and one SWAP

q0
q1 • • ×
q2
q3 ×

3.2 Restricted CNOT connections (R)

We also explore layout-aware CNOT optimization. In some quantum
platforms, not all qubit pairs are connected thus restricting 2-qubit
gate execution. One can only apply CNOT gates on adjacent pairs of
qubits based on some coupling graph. Usually, Circuit Synthesis and
Layout Synthesis are separated, leading to suboptimal results. For
instance, most Layout Synthesis techniques do not take CNOT gate
cancellation opportunities into account when transpiling.

We integrate these phases, by adapting our CNOT synthesis to re-
spect connectivity constraints. Given a restricted set of CNOT con-
nections, we only allow column additions that correspond to adjacent
qubits when synthesizing the final matrix (or a permutation of it). We
now obtain the minimal CNOT circuit that satisfies the restrictions.

Suppose, we want to optimize our example circuit in Table 1, al-
lowing CNOT gates only on qubit pairs (0, 1), (1, 2), and (2, 3). If
we insist on strong equivalence, we need 8 CNOT gates (optimal) as
shown in Table 6. Note that we need more than the original 6 CNOT
gates, due to connectivity restrictions. Allowing weak equivalence
requires only 5 CNOT gates (optimal) as shown in Table 7.

Table 6. Optimized circuit with S+R, using 8 CNOTs

q0
q1 • • •
q2 • • •
q3 • •

Table 7. Optimized circuit with W+R, using 5 CNOTs. The final
placement of permuted output qubits are represented using circles.

q0 q0

q1 • • • q2

q2 • • q3

q3 q1

3.3 Metrics and relevant synthesis variants

We consider three metrics on quantum circuits in this paper, CNOT-
gate count, depth, and CNOT depth. The CNOT count is simply the
number of CNOT gates in a circuit. The depth of a circuit is the length
of the longest path in the dependency graph of its gates, connected
by direct input-output dependencies. The CNOT depth of a circuit is
the largest number of CNOT gates on any dependency chain. For in-
stance, the circuit in Table 6 has CNOT count 8, but its CNOT depth
is only 7 (since the first two CNOT gates are applied in parallel). For
CNOT circuits, depth and CNOT depth always coincide.

For CNOT and depth optimization, optimal synthesis is a compu-
tationally hard problem. Variants with CNOT restrictions have been
proven to be NP-hard for both gate count and depth optimization [19]
metrics. In fact, for synthesis with CNOT restrictions, even finding
approximate solutions is NP-Hard [18]. We encode such hard prob-
lems in Classical Planning, SAT, and QBF. In particular, we are in-
terested in 4 synthesis variants:

• S: Synthesis with strong equivalence (and no restrictions).
• W: Synthesis with weak equivalence (and no restrictions).
• S+R: Synthesis with strong equivalence and CNOT restrictions.
• W+R: Synthesis with weak equivalence and CNOT restrictions.

Not all variants can be encoded efficiently in every solving technique.
For instance, we found an efficient encoding of the W variant in SAT,
but it seems more difficult in classical planning and QBF. So we en-
code selected variants for each technique:

• Classical Planning: only S and S+R with CNOT gate optimization.
• SAT: All 4 variations for both CNOT count and CNOT depth.
• QBF: S and S+R for both CNOT count and depth optimization.

4 CNOT synthesis as planning

In this section, we first describe the encoding for the S+R variant in
Classical Planning in PDDL. We encode the synthesis as a reachabil-
ity problem, where nodes of a graph represent the state of the matrix
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and edges represent column additions. Given a circuit, we first com-
pute its parity matrix which corresponds to the goal node. The short-
est path from the initial node with the Identity matrix to the goal node
corresponds to the optimal number of CNOT gates.

All our objects, which label rows and columns, are of type qubit.
We use the following two predicates to represent the state:

• (m ?r ?c - qubit): represents a matrix element with ?r row
and ?c column parameters.

• (connected ?a ?b - qubit): static predicate to repre-
sent connected qubit parameters ?a and ?b.

To apply a CNOT gate on two qubits, we encode the correspond-
ing column addition as an action. In preconditions, we specify that
a CNOT gate can be applied only on different qubits and the qubits
must be connected. In effects, for each row, the element in the tar-
get column is flipped if the control column element is true. We use
conditional effects in PDDL to encode the effects. Listing 1 is the
corresponding domain file with all predicates and actions in PDDL.

Listing 1. Domain for S+R CNOT synthesis in PDDL Format

( : p r e d i c a t e s
(m ? r ? c − q u b i t ) ( c o n n e c t e d ? a ? b − q u b i t ) )

( : a c t i o n c n o t
:parameters ( ? c ? t − q u b i t )
: p r e c o n d i t i o n ( and

( not (= ? c ? t ) ) ( c o n n e c t e d ? c ? t ) )
: e f f e c t ( and

( f o r a l l ( ? r − q u b i t )
( when ( and (m ? r ? c ) (m ? r ? t ) )

( not (m ? r ? t ) ) ) )
( f o r a l l ( ? r − q u b i t )

( when ( and (m ? r ? c ) ( not (m ? r ? t ) ) )
(m ? r ? t ) ) ) ) )

For any CNOT synthesis instance, one can use the same Domain file.
The Problem file, on the other hand, defines instance-specific infor-
mation i.e., objects, initial and goal states. Listing 2 shows snippets
of the problem file for our example (see Table 1). For CNOT synthe-
sis, we define one object per qubit. In the initial state, we encode the
Identity matrix i.e., only diagonal elements are set to true. We spec-
ify which qubits are connected based on an input coupling graph.
In the initial state specification, one only specifies the true proposi-
tions, and unspecified propositions are negated by default. For the
goal state, we encode the final matrix for the given circuit.

Listing 2. Problem snippets in PDDL for the example circuit

( : o b j e c t s q0 q1 q2 q3 − q u b i t )
( : i n i t

(m q0 q0 ) (m q1 q1 ) (m q2 q2 ) (m q3 q3 )
( c o n n e c t e d q0 q1 ) ( c o n n e c t e d q1 q0 )
( c o n n e c t e d q1 q2 ) ( c o n n e c t e d q2 q1 )
( c o n n e c t e d q2 q3 ) ( c o n n e c t e d q3 q2 ) )

( : g o a l ( and
(m q0 q0 ) . . . ( not (m q0 q2 ) ) ( not (m q0 q3 ) )
(m q1 q0 ) . . . ( not (m q1 q2 ) ) (m q1 q3 )

( not (m q2 q0 ) ) . . . (m q2 q2 ) ( not (m q2 q3 ) )
( not (m q3 q0 ) ) . . . ( not (m q3 q2 ) ) ( not (m q3 q3 ) ) ) )

An optimal plan i.e., a plan with minimal actions, corresponds to an
optimal circuit. We can then use any off-the-shelf optimal planners
to synthesize optimal CNOT circuits. One could also use heuristic
planners for fast synthesis in case of large instances. For S synthesis
without restrictions, we simply drop the connected predicate from
the domain and problem files.

5 CNOT synthesis as SAT

Encoding in classical planning is elegant and easy to understand.
However, classical planners are good at finding fast heuristic plans
but face scalability issues for computing optimal plans. Since our
synthesis problem is encoded as a bounded reachability problem, a
SAT encoding for optimal synthesis is promising.

5.1 Gate optimal encoding

For CNOT gate optimality, we apply a standard one-hot reachability
encoding. First, we define variables for matrices which represent the
state at each time step. We represent the matrix element in row r and
column c at time step t as mt

r,c. At each time step, we apply a single
column addition on some control and target columns. We represent
the control column as ctrlt and the target column as trgt at time step
t. For a plan length of k, we define k copies of action variables and
k + 1 copies of state variables.

S+R synthesis The initial state corresponds to the Identity matrix.
We encode it using Exactly-One (EO) constraints on row elements
and unit clauses for diagonal elements.

n−1∧

r=0

EO(m0
r,0, · · · ,m0

r,n−1) ∧
n−1∧

q=0

m0
q,q (1)

For each transition step, exactly one control and target column is
chosen (see Equation 2). Given a coupling graph with a set of con-
nected qubit pairs CP, we only allow corresponding column pairs
(see Equation 3). For state updates, we encode constraints:

• For every row, we update target column matrix variables based on
control column matrix variables. If the control variable is:

– true, then the target variable is flipped (see Equation 4)

– false, then the target variable is propagated (see Equation 5)

• All untouched column variables are propagated (see Equation 6).

For time steps t ∈ {0, · · · , k − 1}, we specify:

EO(ctrlt0, · · · , ctrltn−1) ∧ EO(trgt0, · · · , trgtn−1) (2)
n−1∧

i=0

n−1∧

j=0

({¬ ctrlti ∨¬ trgtj | (i, j) /∈ CP}) (3)

∧

(i,j)∈CP

n−1∧

r=0

(ctrlti ∧ trgtj ∧mt
r,i) =⇒ (mt

r,j �= mt+1
r,j ) (4)

∧

(i,j)∈CP

n−1∧

r=0

(ctrlti ∧ trgtj ∧¬mt
r,i) =⇒ (mt

r,j = mt+1
r,j ) (5)

n−1∧

i=0

n−1∧

r=0

¬ trgti =⇒ (mt
r,i = mt+1

r,i ) (6)

For a given circuit C, we encode the goal state with the correspond-
ing final matrix MC . For every 1 in the matrix, we add positive unit
clauses in the goal state matrix and negative ones for every 0 (see
Equation 7). In synthesis variant S, all different qubit pairs are con-
nected.

n−1∧

i=0

n−1∧

j=0

( ∧

MC [i,j]=1

mk
i,j ∧

∧

MC [i,j]=0

¬mk
i,j

)
(7)
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W synthesis One can encode column permutation of goal matrix
for weak equivalence. However, such a permutation would result in
many clauses. Instead, we observe that every circuit with permuted
output qubits has an equivalent circuit with permuted input qubits.
An input-permuted circuit has swaps at the start instead of the end of
the circuit. Removing initial swaps simply relabels CNOT gates and
results in the permutation of output qubits. Note that such relabelling
does not change the number of CNOTs in the circuit. For example,
Table 8 shows an example circuit with initial swaps instead of the end
as in Table 5. Identity matrix permutation can be encoded elegantly

Table 8. Optimized circuit with initial swaps via W, with 2 CNOTs

q0
q1 ×
q2
q3 × • •

using exactly-one constraints on the time step 0 state variables. This
can be achieved by dropping unit clauses in Equation 1 and adding
exactly-one constraints on column variables. Essentially, we replace
Equation 1 with Equation 8.

n−1∧

r=0

EO(m0
r,0, · · · ,m0

r,n−1) ∧
n−1∧

c=0

EO(m0
0,c, · · · ,m0

n−1,c) (8)

W+R synthesis In the presence of CNOT restrictions, removing
initial swaps can result in CNOT gates applied on restricted qubit
pairs. To circumvent this problem, we encode symbolic qubit pair
restrictions based on the initial permutation. Exactly-one constraints
in the Initial matrix encodes the permutation. If m0

i,p is true then it
implies that qubit i is mapped to qubit p. We use such information
to specify the restricted qubit pairs after the permutation. Essentially,
if a restricted qubit pair (i, j) is mapped to (p, q) then (p, q) is re-
stricted. We replace Equation 3 with Equation 9.

n−1∧

i=0

n−1∧

j=0

n−1∧

p=0

n−1∧

q=0

({m0
i,p ∧m0

j,q

=⇒ ¬ ctrltp ∨¬ trgtq | (i, j) /∈ CP}) (9)

5.2 Depth optimal encoding with parallel plans

CNOT depth is another important metric in the optimization of quan-
tum circuits. CNOTs acting on different qubits can be applied at the
same depth. Depth-based synthesis can be encoded in SAT by al-
lowing parallel CNOTs at each time step. The makespan of such
an encoding corresponds to the depth of the synthesized circuit. We
only discuss the S+R synthesis variant; the other 3 variants directly
follow from the above gate-optimal encoding. Similar to the gate-
optimal encoding, we define the same matrix variables to represent
the state. Both the initial and goal constraints are exactly the same,
i.e., Equations 1 and 7 stay the same. To allow parallel CNOT gates,
we define one variable cnotti,j for each qubit pair (i, j) at time step
t. To respect CNOT restrictions, we disable the CNOT variables on
restricted pairs (see Equation 10). We also use target variables trgtq
as before for propagation of untouched column variables. So propa-
gation constraints as in Equation 6 stay the same for depth optimal
encoding, now Equation 16. Note that multiple target columns can
be changed due to parallel CNOTs. We handle parallel CNOT oper-
ations by specifying (see Equations 11-15):

• Atmost-One (AMO) CNOT gate is applied on a qubit.
• Atleast-One (ALO) CNOT gate is applied at each time step. Only

for efficiency, dropping them would not affect correctness.
• Target column trgj is set to true iff some CNOT on (i, j) is true.
• For every CNOT variable and every row, we update target column

variables based on control column variables:

– if the control variable is true, then the target variable is flipped

– if the control variable is false, the target variable is propagated

For time steps t ∈ {0, · · · , k − 1}, we specify:

n−1∧

i=0

n−1∧

j=0

({¬ cnoti,j |(i, j) /∈ CP}) (10)

n−1∧

q=0

AMO({cnotti,j | (i = q or j = q and (i, j) ∈ CP)}) (11)

ALO({cnotti,j | (i, j) ∈ CP}) (12)
n−1∧

i

(
(

n−1∨

j=0

cnotti,j) = trgtj
)

(13)

∧

(i,j)∈CP

n−1∧

r=0

(cnotti,j ∧mt
r,i) =⇒ (mt

r,j �= mt+1
r,j ) (14)

∧

(i,j)∈CP

n−1∧

r=0

(cnotti,j ∧¬mt
r,i) =⇒ (mt

r,j = mt+1
r,j ) (15)

n−1∧

i=0

n−1∧

r=0

¬ trgti =⇒ (mt
r,i = mt+1

r,i ) (16)

6 CNOT synthesis as QBF

Even for the simplest synthesis variant S, the SAT encoding uses
O(n2) variables and O(n3) clauses. For moderately large n the en-
coding sizes can get massive. In CNOT synthesis, the column up-
dates are the same for every row. One can use universal quantification
in QBF to capture this structure and generate a compact encoding.
While QBF solvers are not as mature as SAT solvers, in some cases
well-structured QBF encodings can help. In this section, we focus on
the S+R synthesis variant for CNOT count optimization. The other
variants (S for CNOT count and S, S+R for CNOT depth) follow di-
rectly. We drop W and W+R variants for QBF, as encoding column
permutation symbolically is difficult.

The action variables, i.e., control and target variables are the same
as in the SAT encoding. Instead of defining column matrix vari-
ables for each row, we define a symbolic row with universal vari-
ables. We use binary encoding for the universal variables, we define
R as {R0, · · · ,R�log(n)�−1}. For better propagation, we add one-
hot encoding for symbolic row variables with existential variables
r0, · · · , rn−1. The idea is to set the existential variables based on bi-
nary row variables. We can directly use existential row variables for
state update constraints similar to our SAT encoding. We only need
one set of column matrix variables to represent the complete matrix:
ci represents the ith column variable (for the symbolic row R).
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We define the prefix of our QBF encoding as follows:

∃ ctrl00, · · · , ctrl0n−1 ∃ trg00 · · · , trg0n−1 (17)

· · · (18)

∃ ctrlk−1
0 , · · · , ctrlk−1

n−1 ∃ trgk−1
0 , · · · , trgk−1

n−1 (19)

∀R ∃ r0, · · · , rn−1 (20)

∃ c00, . . . , c0n−1 · · · ∃ ck0 , . . . , ckn−1 (21)

First, we imply existential row variables from binary-encoded sym-
bolic row variables. Exactly one existential row variable is true.

n−1∧

i=0

(bin(R, i) =⇒ ri) ∧ EO(r0, · · · , rn−1) (22)

For the initial state, we encode the identity matrix where only diago-
nal matrix variables are true.

n−1∧

i=0

ri = c0i (23)

For the goal state, we encode the final matrix MC again using exis-
tential row variables.

n−1∧

i=0

n−1∧

j=0

∧

MC [i,j]=1

ri =⇒ ckj ∧
∧

MC [i,j]=0

ri =⇒ ¬ ckj (24)

Transition constraints are similar to those in our SAT encoding (see
Equations 2 to 6), but here we simply drop the row indices from the
SAT encoding. For time steps t ∈ {0, · · · , k − 1}, we specify:

EO(ctrlt0, · · · , ctrltn−1) ∧ EO(trgt0, · · · , trgtn−1) (25)
n−1∧

i=0

n−1∧

j=0

({¬ ctrlti ∧¬ trgtj | (i, j) /∈ CP}) (26)

∧

(i,j)∈CP

(ctrlti ∧ trgtj ∧ cti) =⇒ (ctj �= ct+1
j ) (27)

∧

(i,j)∈CP

(ctrlti ∧ trgtj ∧¬ cti) =⇒ (ctj = ct+1
j ) (28)

n−1∧

i=0

¬ trgti =⇒ (cti = ct+1
i ) (29)

7 Implementation and evaluation

We are mainly interested in evaluating the following aspects:

• The quality improvement due to qubit permutation (W vs S).
• The overhead of imposing connectivity restrictions (S+R, W+R).
• The performance of the Planning, SAT, and QBF techniques.

Peephole optimization To allow CNOT optimization in arbitrary
circuits, we employ Peephole optimization using a standard slice-
and-replace approach. Given a quantum circuit in QASM format,
we extract the CNOT slices from the circuit’s dependency DAG as
follows: We start from the top, such that each slice has one maximal
CNOT sub-circuit followed by an arbitrary number of non-CNOT
gates. For each CNOT sub-circuit, we optimize its gate count or
depth. Finally, we replace each CNOT sub-circuit with its optimal
counterpart.

Once the slicing is fixed, the order in which slices are treated does
not matter for S, S+R, and W variants. Furthermore, the optimal

number of CNOTs is fixed for a given slicing. The W+R encoding
cannot be used directly in our peephole optimization. Since a permu-
tation in one slice can break CNOT connections in subsequent slices,
the order of slice optimization matters. While solving slice-by-slice
from top to bottom gives correct results, the final CNOT count might
be sub-optimal, even for the given slicing. Hence, we do not apply
peephole optimization with the W+R variant in this paper.

7.1 Experimental setup

Our tool Q-Synth v14 and v25 solve layout synthesis using classi-
cal planning and SAT solving, respectively. We extended Q-Synth
to solve CNOT synthesis with Planning, SAT, and QBF. We provide
an open-source tool Q-Synth v36 that implements all encoding vari-
ants discussed, including peephole optimization. For experimental
evaluation, we consider standard T-gate optimized benchmarks [8]
generated by T-par. We consider all benchmarks with up to 14 qubit
circuits and at most 200 CNOT gates resulting in 11 instances. We
propose two experiments to address our research questions.

Experiment 1 We optimize CNOT count and depth on the bench-
marks with S variant encodings of classical planning (CP), SAT, and
QBF. To investigate the impact of qubit permutation, we compare S
encodings with W encodings in SAT. Further, we compare our results
with the state-of-the-art heuristic CNOT optimization tool DaCSynth
(DS) in both gate [8] and depth [9] optimization. DaCSynth applies
the same slice-and-replace approach with greedy heuristic algorithms
for CNOT optimization. We use the results from Table 2 in [8] and
Table 3 in [9] on our benchmarks for a fair comparison. Since DaC-
Synth is not an open-source tool, we can only compare the reported
CNOT count and depth but not time and memory costs.

Experiment 2 To investigate the overhead of connectivity restric-
tions, we take the W-optimized circuits from Experiment 1. We opti-
mally map the circuits with Q-Synth v2 [32] onto the 14-qubit plat-
form IBM Melbourne. Q-Synth v2 maps the circuits by inserting the
optimal number of swaps. We then apply S+R optimization to the
result. Since the input circuits are already optimized with W, any re-
duction in CNOT count or CNOT depth with S+R is significant.

Tools and resources For CP, we use the state-of-the-art optimal
planner FastDownward [16] with merge-and-shrink (fd-ms) heuris-
tic. Among the optimal planners that handle conditional effects, fd-
ms performed the best in our preliminary experiments. In the case
of SAT-based solving we use Cadical-1.53 [6] as SAT solver, and
CAQE [28] with Bloqqer preprocessor [17] as QBF solver. In both
the above experiments, for each slice in the peephole optimization,
we give 600 seconds time and 8 GB memory limits. If a timeout oc-
curs we leave the unoptimized slice untouched. All computations for
the experiments are run on a cluster.7

Metrics for comparison We report and compare techniques on
three metrics, CNOT count, depth, and CNOT depth. Two-qubit gates
are more error-prone than 1-qubit gates, so tools like TKET [33] and
T-par [8] mainly focus on CNOT depth. For Experiment 1, we com-
pare with circuit depth as only circuit depths are reported in DaC-
Synth paper [9]. For Experiment 2, we report and compare the CNOT
depth for our different techniques.

4 https://github.com/irfansha/Q-Synth/releases/tag/Q-Synth-v1.0-ICCAD23
5 https://github.com/irfansha/Q-Synth/releases/tag/Q-Synth-v2.0-SAT2024
6 https://github.com/irfansha/Q-Synth/releases/tag/Q-Synth-v3.0-ECAI24
7 http://www.cscaa.dk/grendel, Huawei FusionServer Pro V1288H V5, with

384 GB main memory, using one 3.0 GHz Intel Xeon Gold 6248R core.
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Table 9. Experiment 1: S vs W variants peephole synthesis on T-gate optimal circuits.

CNOT Optimization Depth Optimization

CNOT count Depth Depth

Circuit (#CNOTs/Depth) #n CP(S) SAT(S) QBF(S) SAT(W) DS [8] SAT(W) SAT(S) QBF(S) SAT(W) DS [9]

barencotof3 (52/60) 5 41 41 41 26 26 35 46 45 35 35
barencotof4 (96/96) 7 87 87 87 48 50 60 85 84 73 61
barencotof5 (134/123) 9 118 118 118 71 73 87 118 114 108 87
mod54 (48/57) 5 42 42 42 32 32 41 48 49 41 40

modmult55 (106/75) 9 82 82 82 71 73 50 54 56 53 50
qft4 (96/185) 5 84 84 84 57 56 147 172 172 164 149
rcadder6 (165/157) 14 141 141 141 94 100 95 129 129 95 95
tof3 (35/46) 5 30 30 30 19 21 29 41 41 32 31
tof4 (63/71) 7 55 55 55 37 37 45 59 57 56 43

tof5 (97/104) 9 81 81 81 50 50 62 78 80 86 63
vbeadder3 (120/88) 10 86 86 86 53 61 48 66 68 49 45

Mean Reduction(%) 16.3 16.3 16.3 44.9 43.8 34.2 15.6 15.7 22.1 34.2

Max Reduction(%) 28.3 28.3 28.3 55.8 50.0 45.5 28.0 25.3 44.3 48.9

7.2 Results and discussion

Experiment 1 Table 9 shows the data on Experiment 1. Under
“CNOT optimization”, we report the CNOT count for Planning, SAT,
and QBF. Here all three techniques with S synthesis performed sim-
ilarly. While the CNOT reduction is the same, classical planning had
4 timeout slices whereas SAT and QBF based optimization had 3
timeout slices. Comparing S and W, we observe that SAT with W
synthesis results in significantly more reduction (up to 55.8%). Since
the T-par tool adds additional CNOT gates to route T gates for op-
timization [2], permuting qubits can avoid such extra CNOTs. SAT
encoding with W optimally solved all slices, thus the reported results
are optimal for the given circuit slicing.

In comparison with DaCSynth (column DS), SAT with W syn-
thesis performs well and guarantees the optimal CNOT count. We
indeed report better CNOT count compared to DaCSynth. Surpris-
ingly, we observed one instance (qft4) where DaCSynth reports a
lower CNOT count. Either the slicing in DaCSynth is different or
their reported count is a mistake.

Under “Depth Optimization”, all CNOT slices are replaced by
depth-optimal slices in all our variants. But note that, even though
CNOT slices have optimal depth locally, the global circuit depth
need not be optimal for a given slicing. Surprisingly, we observed
that CNOT count optimization results in overall better depth (right-
most column under “CNOT Optimization”). The SAT(W) variant
with CNOT optimization results in a mean depth reduction of 34.2%
(only 21.1% with Depth optimization). We observed that local depth
optimization adds extra parallel CNOTs, thus resulting in a higher
global depth. The mean depth reduction achieved by Q-Synth and
DaCSynth is the same (34.2%).

Experiment 2 Table 10 reports the results of Experiment 2. With
S+R synthesis, we observe CNOT count reduction (up to 17.1%) in 9
out of 11 already optimally mapped circuits. Only classical planning
reported 1 timeout slice. For SAT and QBF, the CNOT reduction we
report is optimal for the given slicing.

In the case of depth optimization, we observe CNOT depth reduc-
tion (up to 11.9%) in 4 out of 11 instances. In Experiment 1, we ob-
served that CNOT optimization results in better global CNOT depth
reduction. Similarly, as reported in Table 10, all three techniques re-
port better CNOT depth reduction with local CNOT optimization.

SAT vs QBF efficiency Tables 11 and 12 show the time and mem-
ory taken by all our encodings. For CNOT optimization with S (Ta-
ble 11, Experiment 1), we observe that SAT and QBF techniques per-

form similarly in terms of time and memory. In most cases, Cadical
(SAT) is slightly faster and takes less memory than CAQE (QBF).
Interestingly, on a large slice from the 14-qubit circuit, CAQE is
slightly faster than Cadical. This can happen because the QBF en-
coding is only linear in variables and quadratic in constraints, while
our SAT encoding is quadratic in variables and cubic in constraints.
So the QBF encoding is promising for instances with many qubits.

In case of S+R synthesis (Table 11, Experiment 2), adding CNOT
restrictions seems to boost the performance of SAT encoding com-
pared to QBF. Note that the coupling graph is typically planar, with
a low out-degree, so the SAT encoding with restrictions becomes
quadratic instead of cubic. For depth optimization, both SAT and
QBF techniques take only a few seconds for each slice (see Table 12).
Since the optimal depths of slices are small, the memory footprint is
negligible (close to zero, not shown here). Only QBF takes around
125 MB memory for the 14-qubit instance rcadder6.

Both W and S+R variants are practical for optimization: most in-
stances are solved within a minute in our benchmark set. While we
cannot apply peephole optimization with W+R, we optimized the in-
dividual slices from experiment 2 with W+R. The W+R encoding
performs well. It optimally solves all slices and never takes more
than a minute for any slice.

CP vs SAT and QBF In general, fd-ms (CP) is slower than using
SAT and QBF solvers (Table 11). Overall it results in 5 timeout slices
compared to 3 for SAT and QBF. We also noticed that fd-ms uses
more memory (up to 6 GB) compared to the other two.

Note that CP-based solving techniques are orthogonal to SAT and
QBF. For instance, CP results in maximum CNOT depth reduction in
Experiment 2 with the instance qft4. Another advantage of the CP
approach is being able to use fast heuristic planners. Just using any
heuristic planner results in heuristic CNOT optimization. For large
circuits (with hundreds of qubits), such an approach is more feasible
than the SAT and QBF based approaches.

8 Related work

CNOT synthesis has been studied before, also in the context of qubit
permutation and CNOT restrictions. In this section, we discuss some
CNOT synthesis approaches that are close to our approach.

S and S+R synthesis Several techniques are applied for CNOT
synthesis such as Gaussian elimination [3], Steiner trees [20], rewrite
rules [18], and asymptotically optimal algorithms [24, 20]. Optimal
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Table 10. Experiment 2: S+R variant peephole synthesis for optimally mapped circuits on to 14-qubit Melbourne platform.

CNOT Optimization Depth Optimization

CNOT count CNOT depth CNOT depth

Circuit (#CNOTs/CNOT depth) CP SAT QBF CP SAT QBF SAT QBF

barencotof3 (44/41) 39 39 39 35 35 35 41 41
barencotof4 (78/70) 74 74 74 66 66 66 70 70
barencotof5 (110/95) 108 108 108 93 93 93 95 95
mod54 (56/49) 48 48 48 43 40 40 45 45
modmult55 (131/79) 117 115 115 69 71 71 76 78
qft4 (105/101) 87 87 87 82 83 83 89 89
rcadder6 (145/102) 137 137 137 99 98 97 102 102
tof3 (34/33) 34 34 34 33 33 33 33 33
tof4 (61/55) 61 61 61 55 55 55 55 55
tof5 (80/71) 77 77 77 67 66 67 71 71
vbeadder3 (86/75) 79 79 79 67 67 67 74 74

Mean reduction(%) 7.4 7.6 7.6 8.0 8.3 8.3 2.6 2.3
Max reduction(%) 17.1 17.1 17.1 18.8 18.4 18.4 11.9 11.9

Table 11. Time t (in seconds) and Memory m (in MB; – means negligible) taken with CNOT optimization.

Experiment 1 (S vs W) Experiment 2 (S+R)

CP(S) SAT(S) QBF(S) SAT(W) CP SAT QBF

Circuit t m t m t m t m t m t m t m

barencotof3 7 – 5 – 7 – 5 – 343 247 9 – 14 –
barencotof4 608 6090 303 131 307 159 6 – 588 247 10 – 19 –
barencotof5 41 299 8 – 22 – 6 – 759 241 11 – 23 –
mod54 7 – 5 – 7 – 5 – 338 233 10 – 17 –
modmult55 11 – 23 – 51 91 11 – 956 2950 265 141 576 179
qft4 10 – 10 – 19 – 5 – 628 237 11 – 24 –
rcadder6 1588 2830 635 195 652 238 66 110 953 225 143 110 161 130
tof3 13 – 11 – 6 – 5 – 301 241 9 – 13 –
tof4 11 – 6 – 13 – 5 – 368 244 10 – 18 –
tof5 612 5840 609 187 611 204 6 – 524 227 10 – 21 –
vbeadder3 621 4390 607 186 619 217 7 – 434 247 10 – 23 –

Table 12. Time taken in seconds for Depth optimization.

Experiment 1 Experiment 2

Circuit SAT(S) QBF(S) SAT(W) SAT QBF

barencotof3 5 6 5 9 10
barencotof4 7 15 5 10 12
barencotof5 10 26 6 10 13
mod54 5 6 5 9 12
modmult55 6 15 9 11 18
qft4 5 10 5 10 16
rcadder6 33 98 14 11 15
tof3 5 6 5 9 10
tof4 6 13 5 10 12
tof5 9 24 6 10 13
vbeadder3 10 32 6 10 14

CNOT synthesis is mainly considered in a broader context i.e., in the
presence of either T gates or RZ gates. Here instead of synthesis on
n×n matrix, synthesis so-called phase polynomial is applied which
also keeps track of phase rotation by T gates. Synthesis is applied in
some polynomial representation using Steiner trees in [15], as SAT
in [21], and as Answer Set Programming (ASP) in [27, 26]. Giving
CNOT circuits without T or RZ gates as inputs for such encodings
results in S and S+R variant encodings.

W and W+R synthesis In [7], authors proposed heuristic W and
W+R variants based on the Syndrome Decoding Problem. The same
authors proposed greedy algorithms for W in DaCSynth, which we
compared with in this paper. Qubit permutations are applied in the

TKET compiler [34], but only without CNOT restrictions. In all vari-
ations, allowing qubit permutations results in further reduction in
both CNOT count and depth. To our knowledge, W and W+R vari-
ants have not been handled optimally before.

Beyond CNOT synthesis SAT-based Synthesis of Clifford circuits
with CNOT, H, and S gates has been proposed with both gate [29]
and depth optimization [25] in the QMAP tool. Using CNOT circuits
as input in the QMAP tool is similar to our S variant synthesis.

Instead of peephole optimization with circuit slicing, one can ap-
ply global CNOT synthesis using so-called holes as in [22]. CNOT
synthesis is sometimes integrated with Layout Synthesis to achieve
further reduction as in the heuristic approaches of [10, 11, 35].

9 Conclusion

In this paper, we considered optimal CNOT synthesis with two exten-
sions, qubit permutation and layout restrictions. To our knowledge,
we provide the first optimal CNOT synthesis variants with qubit per-
mutation. We have encoded variations of optimal CNOT synthesis
in Classical Planning, SAT, and QBF. We handled both CNOT count
and CNOT depth metrics for optimization. By applying peephole op-
timization, we validated our techniques on standard T-gate optimal
benchmarks. Our results show the effectiveness of qubit permutation
on CNOT count and depth reduction. Finally, we showed further re-
duction in already optimally mapped benchmarks.

We leave integrated Layout + CNOT Synthesis, including optimal
initial mapping, as a challenge for future work.
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