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Abstract. Parallelization and External Memory (PEM) techniques
have significantly enhanced the capabilities of search algorithms
when solving large-scale problems. Previous research on PEM has
primarily centered on unidirectional algorithms, with only one pub-
lication on bidirectional PEM that focuses on the meet-in-the-middle
(MM) algorithm. Building upon this foundation, this paper presents
a framework that integrates both uni- and bi-directional best-first
search algorithms into this framework. We then develop a PEM vari-
ant of the state-of-the-art bidirectional heuristic search (BiHS) algo-
rithm BAE* (PEM-BAE*). As previous work on BiHS did not focus
on scaling problem sizes, this work enables us to evaluate bidirec-
tional algorithms on hard problems. Empirical evaluation shows that
PEM-BAE* outperforms the PEM variants of A* and the MM algo-
rithm, as well as a parallel variant of IDA*. These findings mark a
significant milestone, revealing that bidirectional search algorithms
clearly outperform unidirectional search algorithms across several
domains, even when equipped with state-of-the-art heuristics.

1 Introduction

A∗ [11] and its many variants are commonly used to optimally solve
combinatorial and pathfinding problems. However, as these problems
often involve state spaces of exponential size, practical limitations in
terms of time and memory resources hinder the ability of these al-
gorithms to tackle large instances, particularly when the scale of the
problem increases (e.g., more variables, larger graphs, etc.). Thus,
an important line of research in heuristic search is harnessing hard-
ware capabilities to overcome these limitations. Parallelizing various
components of the search process across multiple threads can lead
to a significant reduction in running time. Similarly, exploiting ex-
ternal memory, such as large disks, allows algorithms to scale the
size of OPEN and CLOSED lists, substantially increasing the size of
problems that can be solved [6, 8, 9, 14, 23].

Orthogonally, recent research has focused on bidirectional heuris-
tic search (BiHS) algorithms, which have been shown to outperform
unidirectional search (UniHS) methods [1, 5, 31, 33], on some prob-
lems, but the majority of these results are on relatively small prob-
lems or with weakened heuristics. It has been conjectured [3] that
bidirectional search does not perform well with strong heuristics, and
it is unclear whether these results will scale to the largest problems.
Thus, our aim is to scale bidirectional search algorithms to signifi-
cantly larger problems and stronger heuristics.

The intersection of parallel and external memory (PEM) and BiHS
has only been explored in the context of the meet-in-the-middle
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(MM) algorithm [13], yielding a variant called PEMM [35]. How-
ever, utilizing recent advancements in BiHS algorithms necessitates
a framework for seamlessly converting both recent and future BiHS
algorithms into corresponding PEM variants.

This paper builds upon previous research in parallel and external-
memory search [35] to unify and explore how parallel computing and
external memory utilization impact BiHS. In the interest of broad ac-
cessibility, we introduce a flexible framework capable of integrating
any UniHS or BiHS algorithm into the PEM paradigm. Additionally,
using this framework, we successfully integrate the state-of-the-art
BiHS algorithm BAE∗ [27], which relies on a consistent heuristic,
resulting in a variant called PEM-BAE∗.

We empirically compare PEM-BAE∗ against PEM variants of A∗

(PEM-A∗), reverse A* (PEM-rA∗), and MM (PEMM) on 15-and 24-
tile puzzles and random 20-disk 4-Peg Towers of Hanoi problems.
In addition, we compare PEM-BAE∗ to a parallel variant of IDA∗,
called AIDA∗ [26], as well as its reversed version. Our results con-
firm that PEM-BAE∗ significantly outperforms the other algorithms
as problem complexity increases. This superiority of PEM-BAE∗ is
evident not only with weak heuristics, as previously demonstrated
for BAE∗, but also persists when utilizing strong heuristics on large
problems. This highlights that a BiHS algorithm stands as the state-
of-the-art approach for addressing multiple challenging problems.

2 Background and Definitions

Research on bidirectional heuristic search (BiHS) has spanned sev-
eral decades, dating back to the work of Pohl [25]. Recently, a new
theoretical understanding emerged regarding the necessary nodes for
expansion during the search [7, 29], sparking a series of algorithms
that find optimal [1, 4, 5, 31], near-optimal [2], and memory-efficient
solutions [32]. Other research has delved into algorithm compar-
isons [1, 30, 33] and explored the potential advantages of BiHS over
Unidirectional search (UniHS) [37].

The focus of this paper is on two algorithms: MM, the first al-
gorithm to be integrated with parallel external-memory search, and
BAE∗, chosen due to its superior performance. BAE∗ and other BiHS
algorithms have demonstrated strong performance, surpassing their
UniHS counterparts, on small problems with relatively weak heuris-
tics. Some have suggested that, as the scale of problems increase,
BiHS algorithms can maintain their dominance over UniHS algo-
rithms, even when stronger heuristics are employed [1, 34, 37]. Oth-
ers have conjectured that bidirectional search will not perform well
on problems with strong heuristics [3]. This paper evaluates these
conjectures by constructing a PEM variant of BAE∗ capable of solv-
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ing large problems with state-of-the-art heuristics.

2.1 BiHS: Definitions and Algorithms

In BiHS, the aim is to find a least-cost path, of cost C∗, between start
and goal in a given graph G. dist(x, y) denotes the shortest distance
between x and y, so dist(start, goal) = C∗. BiHS executes a for-
ward search (F) from start and a backward search (B) from goal
until the two searches meet. BiHS algorithms typically maintain two
open lists OPENF and OPENB for the forward and backward searches,
respectively. Each node is associated with a g-value, an h-value, and
an f -value (gF , hF , fF and gB , hB , fB for the forward and back-
ward searches). Given a direction D (either F or B), we use fD , gD
and hD to indicate f -, g-, and h-values in direction D.

The g-value of a state s is cost of the best path discovered to s,
and f -value of a state is the sum of its g- and h- values. Most BiHS
algorithms consider the two front-to-end heuristic functions [15]
hF (s) and hB(s) which respectively estimate dist(s, goal) and
dist(start, s) for all s ∈ G. hF is forward admissible iff hF (s) ≤
dist(s, goal) for all s in G and is forward consistent iff hF (s) ≤
dist(s, s′) + hF (s

′) for all s and s′ in G. Backward admissibility
and consistency are defined analogously.

BiHS algorithms mainly differ in their node- and direction-
selection strategies and other termination criteria. We next describe
MM and BAE∗, both implemented in this paper.

Meet in the middle (MM). MM [13] is a BiHS algorithm ensur-
ing that the search frontiers meet in the middle. In MM, nodes n in
OPEND are prioritized by:

prD(n) = max(fD(n), 2gD(n)) (1)

MM expands the node with minimal priority, PrMin on both
OPENF and OPENB. MM halts the search once the following two
conditions are met: (1) the same node n is found on both OPEN lists;
(2) the cost of the path from start to goal through n is ≤ LBMM

where LBMM is a lower bound on C∗ that is computed as follows:

LBMM = max(PrMin, fMinF , fMinB , gMinF + gMinB)
(2)

where fMinF (fMinB) and gMinF (gMinB), are the minimal f -
and g-values in OPENF (OPENB), respectively. Sturtevant and Chen
[35] provided a PEM variant of MM (PEMM). Our framework below
is an extension of PEMM.

BAE*. Most algorithms (e.g., MM) only assume that the heuris-
tics used are admissible. BAE∗ [27, 1] (and the identical algorithm
DIBBS [28]) are BiHS algorithms that specifically assume that both
hF and hB are consistent and thus exploit this fact. Let dF (n) =
gF (n) − hB(n), the difference between the actual forward cost n
(from start) and its heuristic estimation to start. This indicates the
heuristic error for node n (as hF (n) is a possibly inaccurate estima-
tion of gB(n)). Likewise, dB(m) = gB(m)−hF (m). BAE∗ orders
nodes in OPENF according to

bF (n) = fF (n) + dF (n) (3)

bF (n) adds the heuristic error dF (n) to fF (n) to indicate that
the opposite search using hB(n) will underestimate by dF (n). Like-
wise, bB(m) = fB(m) + dB(m) is used to order nodes in OPENB.
At every expansion cycle, BAE∗ chooses a search direction D and
expands a node with minimal bD-value. Additionally, BAE∗ termi-
nates once the same state n is found on both OPEN lists and the cost

of the path from start to goal through n is ≤ LBB where LBB , is
a the following lower bound on C∗ (known as the b-bound):

LBB = (bMinF + bMinB)/2 (4)

where bMinD is the minimal b-value in OPEND.
Given a consistent heuristic, BAE∗ was proven to return an op-

timal solution. b(n) is more informed than other priority functions
(as it also considers d(n)), and was shown to outperform common
unidirectional and bidirectional algorithms [1, 33] on relatively sim-
ple domains. These included the 15-puzzle with the Manhattan Dis-
tance heuristic, the 12-disk 4-peg Towers of Hanoi Problem, grid
benchmark problems, and the pancake puzzle with a weakened GAP
heuristic. While BAE∗ stands as a state-of-the-art BiHS algorithm, it
has not been tested on large sliding-tile or Towers of Hanoi problems,
or with large pattern database heuristics. In this paper, we develop
PEM-BAE∗, a PEM version of BAE∗, which is able to scale to far
larger problems and heuristics.

2.2 Parallel External-Memory Search

External Memory Search structures a search such that the maximum
size of a problem solved scales according to the size of the disk,
instead of available RAM [24]. These algorithms are often paired
with parallel search methods, as techniques to minimize random I/O
often group states together, allowing parallel processing.

Two classes of external memory search appear in the literature.
One class aims to perform a complete breadth-first search of a state
space, employed for verifying state space properties [18] or building
large heuristics [14]. These approaches maintain information about
every state on disk, loading portions of the data into memory for ex-
pansion and duplicate detection. Another class of algorithms, includ-
ing External A* [9] and search with structured duplicate detection
[40, 41], is used to solve large problem instances. In these algorithms,
OPEN is stored explicitly on disk, and CLOSED may or may not be
stored, depending on the properties of the state space [22].

Both classes aim to reduce I/O operations to disk, e.g., by delaying
operations like duplicate detection until many states can be processed
in parallel [17], and dividing the state space up into smaller buckets
of states [9, 12, 19, 36, 38] which are stored together on disk, and
then loaded and expanded together. When duplicate states all hash
into the same bucket, it reduces the complexity of checking for du-
plicates. Hash-based duplicate detection [18] and sorting-based du-
plicate detection [20] take buckets of states where duplicate detection
has been delayed, load them into memory, and remove duplicates us-
ing hash tables or sorting, respectively. Structured duplicate detec-
tion [40] structures the state space so that all successor buckets can
be loaded into memory for immediate duplicate detection.

External memory search has often relied on exponential-growing
state-spaces with unit costs to ensure sufficient states are available to
efficiently process in parallel. Notably, algorithms like PEDAL [12]
have extended these approaches to non-unit-cost problems.

3 The PEM-BiHS Framework

We next introduce a high-level framework called Parallel External
Memory Bidirectional Heuristic Search (PEM-BiHS), into which
both BiHS and UniHS can be seamlessly integrated. PEM-BiHS is
designed to efficiently solve very large problem instances. Lever-
aging parallelization capabilities along with using external mem-
ory, PEM-BiHS utilizes the foundations laid by algorithms such as
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Algorithm 1 PEM-BiHS General Framework
1: procedure PEM-BIHS (start, goal)
2: U ←∞, LB ← ComputeLowerBound()
3: OPENF, OPENB, CLOSEDF,CLOSEDB ← ∅
4: Push(start, OPENF) � create bucket and record
5: Push(goal, OPENB)
6: while OPENF �= ∅ ∧ OPENB �= ∅ ∧ U > LB do

7: D← ChooseDirection()
8: b← ChooseNextBucket(OPEND)
9: ParallelReadBucket(b, D) � including In-Bucket DD

10: RemoveDuplicates(b, CLOSEDD)
11: CheckForSolution(U , b, CLOSEDD)
12: ParallelExpandBucket(b, OPEND)
13: WriteToClosed(b, CLOSEDD)
14: LB ← ComputeLowerBound()
15: return U

PEMM, PEDAL, External A*, and structured duplicate detection and
exploits further parallelization opportunities.

We begin with a high-level description of PEM-BiHS together
with the pseudo-code presented in Algorithm 1, which builds on
[35], followed by a detailed description of algorithmic components.
PEM-BiHS initializes an OPEN and CLOSED list for each direction
(line 3). These lists do not explicitly store search nodes; instead, they
maintain references to files (buckets) that contain the corresponding
nodes. PEM-BiHS employs the following stages:
Halting condition (line 6): During each expansion cycle,
PEM-BiHS evaluates the cost U of the current incumbent solution
in comparison to the calculated lower bound LB, derived from the
nodes within the open lists. If U ≤ LB or one of the open lists
is empty, PEM-BiHS halts and returns the current solution cost (or
infinity if no solution was found). Otherwise, the search continues.

Choosing direction and bucket for expansion (line 7–8): next,
PEM-BiHS chooses the search direction D (UniHS always chooses
the forward side) as well as a bucket from OPEND to be expanded.

Retrieving the bucket (line 9): Next PEM-BiHS performs parallel
reading of the file containing the bucket from external memory into
the internal memory (RAM). This stage involves eliminating dupli-
cate states within the bucket.

Duplicate Detection (DD) (line 10): PEM-BiHS then eliminates du-
plicates nodes with other buckets in CLOSEDD.

Solution Detection (line 11): PEM-BiHS checks whether a new so-
lution was found.

Expansion (line 12 detailed in Algorithm 2): Nodes from memory
are concurrently expanded, generating children. These children are
then written to their respective buckets (creating new ones if needed,
and their references are inserted into OPEND).

Writing to disk (line 13): Finally, the expanded nodes are written to
disk, creating a new duplicate-free bucket. A reference to this bucket
is inserted into CLOSED.

We next turn to provide an in-depth description of different algo-
rithmic components of PEM-BiHS.

3.1 State-space Representation

Typically, states are represented using high-level structures for con-
venient programming. In the context of combinatorial puzzles (e.g.,
the 15- and 24-puzzles), states are commonly stored as an array, with
each cell’s value corresponding to the label of the object it holds. To

pack these states into files, an additional encoding/decoding mech-
anism is required for converting states into bits and decoding them.
These decodings aim to minimize memory consumption and reduce
I/O time. For example, in the 24-puzzle practical implementations of-
ten use 8 bits (byte) to represent the identity of each tile demanding
200 bits (8 × 25). Leveraging bit manipulation allows compression
to 125 bits (5 bits are enough to store the identity of a tile). Further-
more, recognizing that a state is a permutation of 0-24 enables to use
only 	log2(25!)
 = 84 bits, e.g., using the Lehmer encoding, which
maps each permutation to a unique integer in the range {1 . . . 25!}.

3.2 Bucket Structure

Nodes are grouped into buckets based on pre-determined attributes
or identifiers. E.g., in the context of External A*, a bucket groups
nodes with identical g- and h-values (e.g., all nodes n with g(n) = 3
and h(n) = 4 belong to the 3-4-bucket). In PEMM, a bucket groups
nodes with identical priority (pr(n), as defined for MM) as well as
identical g-value. Alternatively, a hash value of a state, obtained by
applying a hashing function to divide the set of states into a fixed
number of values, can also serve as a property for defining a bucket.

Importantly, PEM-BiHS assumes that an entire bucket can fit into
memory (in addition to a fixed-sized cache used to store successors
before flushing them to disk, as detailed in Section 3.7). Therefore,
bucket identifiers may not allow too many nodes to be mapped into a
single bucket, although adaptive methods have been used to dynam-
ically adapt bucket sizes [39]. Buckets are then written to files and
loaded into memory as needed.

In PEM-BiHS, OPEN and CLOSED are maintained inside main
memory. They store bucket records, which include the bucket iden-
tifiers and a link to the file containing the bucket. During an expan-
sion cycle, a bucket record from OPEN is chosen for expansion. That
bucket’s file is then loaded into memory. Different algorithms within
PEM-BiHS will choose different buckets as described next.

3.3 Direction, Prioritization, and Lower-bound

Selecting direction (line 7 in Algorithm 1). Numerous strategies can
be employed for direction selection in BiHS. Three prevalent strate-
gies appear in the BiHS literature: i) choosing the direction with min-
imal priority (as employed by MM), ii) alternating between search
directions, and iii) Pohl’s cardinality criterion, which chooses the di-
rection with the smaller open-list. Naturally, UniHS algorithms con-
sistently choose the same direction.

Prioritizing buckets (line 8). Selecting the next node to expand
is the essence of any search algorithm. PEM-BiHS allows the use of
any priority function, under the restriction that the priority function
must induce a total order among buckets based on the bucket identi-
fiers. Thus, a bucket is chosen by comparing bucket identifiers within
OPEN. For example, in the implementation of a PEM variant of A∗

using this framework (denoted as PEM-A∗), the bucket identifier in-
cludes the g- and h-values of nodes.

It is well known that the priority function influences the num-
ber of nodes expanded. For example, A∗ prioritizes nodes based on
lower f -values, and often adds a second prioritization criterion (“tie-
breaking” between nodes that share the same f -value), which prefers
nodes with higher g-value (and thus lower h-value). This “higher-g-
first” tie-breaking typically reduces the number of expanded nodes
compared to “lower-g-first", particularly in domains with unit edge
costs. Nevertheless, in standard A∗, different tie-breaking policies
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usually expand states at the same rate (nodes per second). By con-
trast, in the context of PEM-BiHS, tie-breaking policies can also sig-
nificantly affect the node expansion rate. If PEM-A* breaks ties ac-
cording to lower-g-first, once a g-h-bucket is expanded, new nodes
will never be added to it, due to the monotonically increasing nature
of g-values. By contrast, when using a higher-g-first policy, nodes
can be added to the bucket after its expansion. Consequently, the
same bucket can be selected for expansion multiple times, up to a
number that scales quadratically with the total number of buckets,
instead of only once. Thus, while using the lower-g-first tie-breaking
may result in more expansions when compared to higher-g-first, the
gains from minimizing the costly I/O operations by the lower-g-first
tie-breaking make it a more resource-effective strategy. We have val-
idated this in an empirical study on the 15-puzzle problem with a
PDB heuristic (see details in Section 5). PEM-A∗ with the lower-
g-first policy expanded 4.4 times more nodes than the higher-g-first
policy (616,758 vs. 2,724,974), but still was able to run four times
faster (7.8 vs 32 seconds).

Computing Lower-bound (line 14). Different lower-bounds may
be employed by PEM-BiHS algorithms [33]. For instance, A∗ uses
the minimal f -value in the open list as a lower bound on the solution
cost, MM uses LBMM (Eq. 2) and BAE∗ uses LBB (Eq. 4). These
and other bounds can be plugged into our framework.

3.4 Reading Buckets

In prior PEM search studies, the process of reading a bucket (file) was
carried out sequentially, influenced by the constraints of Hard Disk
Drives (HDDs). Concurrent threads accessing the same file on HDDs
could lead to performance degradation. However, the recent, popular
Solid-State Drives (SSDs) not only provide faster memory access but
also benefit from parallelized reading. Therefore, PEM-BiHS further
optimizes performance by parallelizing the reading process. To paral-
lelize the reading of a bucket, PEM-BiHS distributes the file contain-
ing the bucket equally among multiple threads. In our experiments,
this resulted in a twofold speed-up compared to sequential reading.
Subsequently, each thread reads states from the disk and decodes
them into their in-memory state representation (See Section 3.1).

3.5 In-bucket Duplicate Detection

To minimize I/O operations, the elimination of duplicates is delayed
until a bucket is chosen for expansion. Duplicate nodes may arise
within the same bucket when a state is discovered via different paths.
Additionally, duplicates can occur within closed buckets if the state
has already been expanded with a lower g-value, or within other open
buckets if states have been discovered with the same g-value. No-
tably, if the bucket identifiers include the g-value, other open buckets
cannot contain duplicates of the same state with the same g-value,
and can be disregarded for duplicate detection. During the reading
phase, we manage in-bucket duplicate detection. However, to mini-
mize I/O, we postpone duplicate detection within the closed list (as
discussed in Section 3.6) until after all nodes have been read.

Similar to hash-based delayed duplicate detection (DDD) [17, 18],
when loading a bucket into memory, its nodes are placed into a hash
table based on their states using a perfect hash function, and dupli-
cates are ignored if their cell is already filled. Unlike the work of
Korf [18], PEM-BiHS allows multiple threads to read from the same
bucket concurrently. To support this, each unique hash value is paired
with a mutex. Once the reading and in-bucket duplicate detection is
done, all threads are synchronized.

Algorithm 2 Parallel Bucket expansion pseudo-code
1: procedure PARALLELEXPANDBUCKET(b, D)
2: cache← ∅
3: for every state s in b do

4: if current thread should expand s then

5: for each successor si of s do

6: sb← GetBucketOfNode(si)
7: if sb not in OPEND then

8: AddBucket(OPEND, sb)
9: AddState(cachesb, si)

10: if cachesb is full then

11: FlushToDisk(cachesb) � Also locks sb
12: if cache is not empty then

13: FlushToDisk(cache)

3.6 Duplicate Detection against CLOSED

To identify and eliminate duplicates of in-memory nodes with re-
spect to nodes stored in closed buckets (line 10), a scanning process
is initiated which reads relevant buckets (in small increments) and
compares them against the in-memory nodes. With Delayed Dupli-
cate Detection [17], each bucket is associated with a hash value and
exclusively contains states assigned that particular value by a hash
function. As a result, the scanning process is confined to closed buck-
ets sharing the same hash value as the state of the node under con-
sideration. For instance, if a node’s state has a hash value of 5, only
buckets associated with the hash value 5 are relevant and considered
for duplicate detection.

In PEM-BiHS, the determination of the relevant buckets for scan-
ning relies on the identifiers that define them. If the bucket records
include hash values of states, a similar approach to Korf [17] can be
employed. Alternatively, if the bucket record contains the hD-value
of states, for direction D, as an identifier, only buckets with the same
hD-value need to be scanned. Therefore, if a bucket record contains
both the hF -value and the hB-value, the scanning process is limited
to buckets that possess identical values for both hF and hB .

In addition, with unit edge-cost undirected graphs, (where edges
can be followed in both ways) there are three cases for finding du-
plicates of a node generated at level x. (1) A parent p at level x − 2
generates a child node n at level x−1. The child node n generates its
parent again at level x. (2) Consider a cycle of even length k which
was first explored by the search at the ancestor node a at level 0. The
farthest node of this cycle will be seen twice at level x = k/2 from
two parents which are at level x − 1. (3) Consider a cycle with odd
length k. Here, the two nodes farthest from a will be generated at
level y = �k/2� and each will generate the other at level x = y+ 1.
Note that duplicates only occur as a result of a cycle, and a cycle can
be either even or odd. Thus, when generating node n with g(n) = x
we only need to check buckets with g-values of x− 2, x, and x− 1,
for these three cases, respectively. Consequently, using the g-value
as an identifier could significantly reduce the number of buckets that
need to be scanned. This approach optimizes the duplicate detection
process based on the available information in the bucket records.

3.7 Parallel Node Expansion

The process of parallel bucket expansion (line 12) is outlined in Al-
gorithm 2. To enable parallel expansion, each thread is allocated
an equal portion of the nodes. Newly generated nodes are inserted
into a dedicated successor cache for each thread. Each cache is di-
vided into smaller arrays, where each array corresponds to a spe-
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cific bucket record. This avoids the necessity of immediately writing
each new successor to the file, thereby minimizing I/O operations.1

The framework supports reopenings by adding a new bucket with
the same identifier to OPEN and merging it with the correspond-
ing CLOSED bucket after its expansion. In our evaluation, we used
consistent heuristics, so we did not encounter any reopenings. Once
an array reaches its capacity, all its nodes are flushed into the disk,
generating new buckets on disks as well as new bucket records in
OPEN if necessary. To prevent simultaneous writes to the same file
and maintain data integrity, each bucket record is linked to a mutex,
which is locked when a thread writes to a bucket. This design main-
tains data integrity and allows concurrent writing.

Note that bucket expansion and delayed solution detection in this
framework (see Section 3.8) can occur concurrently with separate
threads, as delayed solution detection is only concerned with the
nodes that are about to be expanded, which are already loaded into
memory and will not change due to the expansion.

3.8 Solution Detection

There are two approaches for solution detection (Algorithm 1,
line 11): immediate solution detection (ISD) and delayed solution
detection (DSD). In ISD, solutions are identified upon generation of
a node n. This involves a query to the open list of the opposite fron-
tier to check for the existence of a node with the same state as the
newly generated node n. This is trivially implemented in UniHS, as
it only entails checking if the state of n is the goal. Similarly, in
standard BiHS, when the open lists are stored in memory, ISD can
be efficiently performed using a hash table or a direct-access table
where each item can be accessed in constant time.

However, when buckets are stored on disk, ISD can lead to fre-
quent I/O calls every time a node is generated or when the cache
of generated nodes is filled. Therefore, PEM-BiHS employs DSD as
suggested by Sturtevant and Chen [35]. In DSD, solutions are identi-
fied during the expansion phase once all states of the bucket that was
chosen to be expanded are already loaded into memory and stored in
a hash table. Following that, closed buckets from the opposite direc-
tion are loaded in segments and compared against the hash table of
expanded nodes in an effort to identify a solution. It’s important to
highlight that only relevant buckets need to be loaded; for instance,
if the identifiers of the bucket of expanded nodes include hF and hB

values, only closed buckets corresponding to the same h-values need
to be considered. We note again that when the expansion and solution
detection are done, all threads are synchronized.

It is important to acknowledge that the benefits of DSD come with
certain trade-offs. First, since solutions are detected at a later stage,
some nodes might be expanded which could have been avoided with
ISD. Furthermore, search bounds leveraging information across the
minimal edge cost (often denoted as ε) cannot be employed with
DSD. This limitation arises because these bounds rely on ISD to im-
prove the lower bound (LB) on the solution cost (we refer the reader
to Sturtevant and Chen [35] for more details).

4 Parallel External-Memory BAE*

We next describe the implementation details needed for obtaining a
PEM variant of the BAE∗ algorithm (PEM-BAE*).
Direction, Prioritization, and Lower-bound. The prioritization of
buckets relies on the BAE∗ priority function (Eq.3). The lower bound

1 One may perform a DD inside this cache array. This will have a marginal
effect on the overall performance.

is determined by the b-bound (Eq.4). Additionally, the direction se-
lection policy alternates between directions; a seemingly simplistic
approach that has proven to be as effective as more intricate poli-
cies [1]. In PEM, this means that the two search sides take turns in
loading buckets into memory and expanding them.
Bucket Structure. In PEM-BAE*, we classify nodes into buckets
based on their gD-, hF -, and hB-values. This bucket structure of-
fers several advantages. First, it encapsulates all the essential infor-
mation needed for computing the BAE∗ priority function. Conse-
quently, during each expansion cycle, only a single bucket needs to
be loaded into memory, enhancing efficiency. Second, the g-value,
serving as one of the bucket identifiers, can sometimes further reduce
the number of closed buckets scanned during duplicate detection (as
discussed in Section 3.6). Finally, as the classification is based on
three values, the resulting buckets tend to remain relatively small.
Notably, when buckets become too large for memory, a hash value
can be introduced as an additional identifier but such a scenario did
not arise in our experiments. A possible limitation of this approach is
the potential for significant imbalances in the distribution of nodes
across buckets. This bucket size imbalance could impede runtime
performance, as we explore in our experiments below.
Solution Detection. PEM-BAE* uses DSD.

5 Experimental Results

We performed experiments with PEM-BiHS on the 15- and 24-
sliding-tile puzzles (STP) and 4-peg Towers of Hanoi (ToH4). All
experiments were executed on 2 Intel Xeon Gold 6248R Processor
24-Core 3.0GHz, 192 GB of 3200MHz DDR4 RAM, and 100TB
SSD for the external memory. By default, all parallel algorithms
were assessed utilizing all 96 available virtual threads (with 48 phys-
ical cores). Nevertheless, we have also conducted an ablation study
to investigate algorithm performance while varying the number of
threads.

We tested the following algorithms besides PEM-BAE*. First, we
instantiated both A∗ and MM within the PEM-BiHS framework,
resulting in PEM-A∗ and PEMM, respectively. Similarly to A∗,
PEM-A∗ consistently expands nodes in the forward direction, em-
ploys the minimal f -value in OPEN as a lower bound for the solution
cost (LB), and expands a g-h bucket with the minimal f -value during
each expansion cycle. PEM-A∗ uses the low-g-first tie-breaking as
detailed in Section 3.3. PEM-A∗ incorporates ISD, checking for so-
lution upon node generation, where the PEM-BAE∗ and PEMM em-
ploy DSD, checking for solutions before node expansions. As BiHS
search algorithms explore from both the goal and the start states, it
is crucial to ensure that any potential advantage is not merely a con-
sequence of asymmetries, which causes the search tree from one side
to be much smaller. Such asymmetries could also be leveraged in a
unidirectional search from goal to start. To address this concern, we
executed a reverse variant of PEM-A∗, denoted as PEM-rA∗, where
the search is conducted from goal to start.

PEMM uses the direction-selection, lower-bound, and prioritiza-
tions of MM while using the lower-g-first tie-breaking. PEMM uses
the g-value and priority value (Eq. 1) as bucket identifiers. As a
BiHS, PEMM adopts DSD as part of its operational strategy.

For comparison, we have also implemented Asynchronous Paral-
lel IDA∗ (AIDA∗), [26]). AIDA∗ is a parallelized adaptation of IDA*
which conducts a breadth-first search to a predetermined depth. The
resulting frontier is subsequently distributed among all threads. Ad-
ditionally, we’ve evaluated the reverse version of AIDA∗, referred
to as rAIDA∗. Lastly, we evaluated the standard versions of A∗ and
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Figure 1. 24-puzzle results: (left) runtime, (right) node expansions

MD PDB

Time Expansions Time Expansions
All instances

AIDA∗ 3.45 451,421,959 0.43 7,762,927
rAIDA∗ 2.44 335,167,556 0.37 6,118,084
PEM-A∗ 102.33 56,542,721 2.01 2,724,974
PEM-rA∗ 84.38 43,451,519 1.85 2,302,668
PEM-MM 16.49 26,771,047 5.2 2,572,780
PEM-BAE∗ 6.11 3,113,271 3.06 626,440

A* 56.88 15,549,689 2.22 615,155
BAE* 10.13 2,707,414 1.76 453,988

IDA* 51.82 242,460,834 2.67 3,456,177
The 10 hard instances: 3, 15, 17, 32, 49, 56, 60, 66, 82, 88
AIDA∗ 22.18 2,943,505,999 2.13 46,314,389
rAIDA∗ 16.67 2,695,821,070 1.93 41,047,358
PEM-A∗ 901.19 350,840,875 7.8 17,124,704
PEM-rA∗ 786.58 308,829,220 6.67 14,371,919
PEM-MM 74.14 165,459,580 13.07 14,989,610
PEM-BAE∗ 13.31 15,749,202 6.05 3,199,891

A* 378.41 98,596,826 13.63 3,636,711
BAE* 56.69 13,865,491 10.33 2,451,979

IDA* 368.81 1,731,811,022 16.79 22,069,583

Table 1. 15-puzzle Results. Avg. time in seconds.

BAE∗, without parallelization or external memory.

5.1 15-Puzzle

We first experimented on Korf’s 100 random instances of the 15-
puzzle [16]. This domain is relatively compact (1310 states) and
could be solved without external memory. However, its size en-
ables a comprehensive comparison of all algorithms across differ-
ent heuristics before moving to larger domains. For heuristics, we
used Manhattan Distance (labeled MD) and a 3-4-4-4 additive pat-
tern database [10]) (labeled PDB). To construct the PDB, we divided
the puzzle into four squares, one for each corner, with each pattern
also including the blank. The average runtime (in seconds) and the
number of node expansions are presented in Table 1 (top).

Naturally, using the PDB heuristic substantially reduced both the
time and node expansions for all algorithms when compared to using
the MD heuristic. The AIDA∗ variants expanded the largest number
of nodes but exhibited the fastest overall runtime. Due to their DFS
nature, the AIDA∗ variants do not store nodes in memory, let alone
external memory, nor do they involve sorting nodes, as typically done
by best-first search algorithms. Thus, they have the smallest time
overhead per node in comparison with all other algorithms. Among
the PEM algorithms, both BiHS algorithms outperformed the UniHS
algorithms in terms of node expansions and runtime, when using the
MD heuristic. Notably, PEM-BAE∗ significantly outperformed all
PEM or iterative deepening algorithms in terms of node expansions
by an order of magnitude. This finding is consistent with prior stud-
ies that compared BAE∗ to A∗ [1, 33], underscoring the advantages
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Figure 2. ToH4 16+4 results: (left) runtime, (right) node expansions.

of harnessing the consistency of heuristics, as demonstrated by the
performance of both A∗ and BAE∗ as presented in the table. Even
when employing the PDB heuristic, PEM-BAE∗ maintained a sig-
nificant edge over all other PEM or iterative deepening algorithms in
terms of node expansions. However, it exhibited slower runtime than
PEM-A∗ and PEM-rA∗, a phenomenon we address in Section 5.5.
Furthermore, despite its parallelism, PEM-BAE∗ was slower than
both A∗ and BAE∗ when using the PDB heuristic. As anticipated,
in scenarios where the problems are relatively simple to solve, the
overhead incurred by utilizing external memory and parallelization
serves to decelerate the search process rather than expedite it.

Table 1 (bottom) provides results on the ten most difficult in-
stances (with largest solution cost). In these instances, the superiority
of PEM-BAE∗ is more pronounced in terms of node expansions, and
it also outperforms PEM-A∗ and PEM-rA∗ in terms of runtime. Ad-
ditionally, PEM-BAE∗ outperformed both AIDA∗ and rAIDA∗ with
MD. Although PEM-BAE∗ was still slower than AIDA∗ and rAIDA∗

with PDB heuristic, the performance gap is comparatively narrower.
As the problems become more challenging or, conversely, when

the heuristic weakens, the performance of PEM-BAE∗ improves rel-
ative to other algorithms. This is demonstrated next on the 24-Puzzle,
marking the first evaluation of BiHS algorithms for this large domain.

5.2 24-Puzzle

We experimented with the 50 24-puzzle problems of Korf and Felner
[21], using a 6+6+6+6 additive PDB heuristic coupled with its reflec-
tion about the main diagonal [10]. Given the immense size of these
24-puzzle problems and the extensive computation time they de-
mand, assessing all algorithms becomes impractical. Moreover, the
memory demands for tackling these problems are substantial, mak-
ing it impractical to execute standard (in-memory) A∗ and BAE∗ al-
gorithms. Thus, we compared PEM-BiHS with the AIDA* variants.
Figure 1 illustrates the runtime (left) and the number of expanded
nodes (right) for each instance. Instances are sorted solution length
in ascending order, which roughly indicates the problem’s difficulty.
For instances with the same solution length, we averaged the results.
The plot legends also display the average runtime and expansions for
each algorithm across all instances, shown in parentheses.

In general, PEM-BAE∗ performs the best in both node expan-
sions and runtime. On average, PEM-BAE∗ expands only 4.4% of
the nodes expanded by AIDA∗ and runs 4.5 times faster. These find-
ings align with the observed trend in the 15-puzzle, indicating that on
challenging problems, PEM-BAE∗ outperforms UniHS algorithms
even when equipped with state-of-the-art (or near state-of-the-art)
heuristics. The average disk space consumption of PEM-BAE∗ for
the 5x5 STP instances was 653GB, with a peak of 4TB. This under-
scores the impracticality of employing in-memory algorithms (such
as A∗ and BAE∗) for tackling these challenging problems.
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PEM-BAE∗ PEMM PEM-A∗ PEM-rA∗

15-STPMD 509,537 1,623,472 552,553 514,950
15-STPPDB 204,719 494,765 1,355,708 1,244,685
15-STPH

MD 1,183,261 2,231,718 389,308 392,623
15-STPH

PDB 528,908 1,146,871 2,195,475 2,154,710
TOH4 439,122 908,970 811,984 808,777
Average 573,109 1,281,159 1,061,006 1,023,149

Figure 5. Avg. nodes expanded per second; H indicates the
hard instance in STP.

5.3 4-peg Towers of Hanoi

In TOH4, we examined 20 random start and goal pairs with 20 disks,
utilizing a 16+4 additive PDB heuristic [10]. In this domain, numer-
ous cycles exist, posing a challenge for algorithms that lack dupli-
cate detection, as already noted by Felner et al. [10]. This issue is
so severe that neither AIDA∗ nor rAIDA∗ could solve a single prob-
lem even after running for days. Consequently, we only compared
PEM-BAE∗, PEM-A∗, PEM-rA∗, and PEM-MM.

The results, presented in Figure 2, highlight a significant perfor-
mance gap between PEM-BAE∗ and the other algorithms. On aver-
age, PEM-BAE∗ runs 7 times faster than its UniHS counterparts and
expands a factor of 12.9 fewer nodes. Notably, PEMM was approx-
imately 1.17 times slower than both PEM-A∗ and PEM-rA∗, and it
expanded more nodes than both of them.

5.4 Analyzing Previous Conjectures

In a previous analysis of bidirectional search [3], it was suggested
that in a unidirectional search “if the majority [of nodes] are ex-
panded at shallower depth than the solution midpoint [C∗/2] then
[...] a bidirectional heuristic search would expand more nodes than
a unidirectional heuristic search.” . The analysis for this claim pre-
dates our current understanding of BiHS. But, since we have the data
it is worthwhile to evaluate the validity of this claim.

In this context, in our experiments we found that in 19 of 20 Tow-
ers of Hanoi instances and all 15-puzzle instances when using the
PDB, the unidirectional algorithm (PEM-A∗) expanded the majority
of states prior to the solution midpoint. Yet, in all of these problems
PEM-BAE∗ expanded fewer node than PEM-A∗. Thus, the previous
analysis does not hold for PEM-BAE∗ on these problems. This anal-
ysis for a representative ToH4 instance is presented in Figure 3. It is
a matter for future work to analyze these claims in more depth and to
consider whether or how to revise them to be more accurate.

5.5 Analyzing Expansion-per-second Ratios

The Table in Figure 5 presents the number of nodes expanded per
second (NPS) by different PEM algorithms on the domains in which
all PEM algorithms were evaluated, namely 15-STP and TOH4.
While these algorithms differ in how they choose their search di-
rection, decide on which bucket to expand, and terminate the search,
these differences are not expected to significantly impact NPS. Two
factors, however, have the potential to affect NPS. First, BiHS algo-
rithms perform DSD, while UniHS algorithms perform ISD. DSD
generally requires more computational effort, though a profiling

analysis revealed that this additional time was negligible. Second,
differences in bucket structure can affect the number of buckets and
their sizes, affecting the I/O time of the algorithms. The results show
significant variations in NPS among the algorithms. Despite its rel-
ative strength in nodes and in time, PEM-BAE∗ exhibited the worst
(smallest) NPS overall, suggesting that an alternative bucket struc-
ture might further improve its advantages over the other algorithms.

5.6 Ablation Study on the Number of Threads

To assess the thread utilization of PEM-BAE∗, we compare its per-
formance against AIDA∗ on the 24-STP while varying number of
threads. Specifically, we conducted experiments using 1, 16, 32, 48,
64, 80, and 96 (virtual) threads on a subset of problems (problems 4,
36, 45, 48) with an intermediate solution cost, C∗ = 100 .

Figure 4 shows average runtimes for various thread configurations,
with a logarithmic y-axis. As observed previously, PEM-BAE∗ sur-
passes AIDA∗ performance with 96 threads and consistently outper-
forms it across varying thread counts. As anticipated, adding more
threads yields diminishing returns. PEM-BAE∗ reduced its runtime
by a factor of 11 when transitioning from 1 thread to 16 threads,
whereas AIDA∗ improved by a factor of 7. Beyond 16 threads, run-
time reduction becomes smaller, decreasing only by a factor of 2 for
both algorithms when transitioning from 16 to 96 threads. This re-
duced gain can be attributed to memory access required for obtaining
heuristic values, imbalanced subtrees and last-layer expansions for
AIDA∗, constrained I/O parallelization (relative to the thread count),
imbalanced bucket sizes, and locking overhead for PEM-BiHS.

6 Conclusions and Future Work

We presented PEM-BiHS, a parallel external-memory (PEM) BiHS
framework for single-target search in undirected, uniformly weighted
search graphs, which was used to create a PEM variant of BAE∗

(PEM-BAE∗). Our empirical evaluations show that PEM-BAE∗ out-
performs UniHS algorithms both in runtime and node expansions,
even with well-informed heuristics. These findings challenge the
conjecture put forth by Barker and Korf [3], suggesting that BiHS
algorithms would not significantly surpass UniHS or bidirectional
brute-force search. Further theoretical study is necessary to analyze
our results in relation to this conjecture, as well as to other theoretical
comparisons between BiHS and UniHS algorithms [13, 37].

Future research could also address NPS differences among al-
gorithms by exploring dynamic bucket sizes and other approaches
that relax the best-first assumption, aiming to achieve more balanced
buckets [12].
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