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Abstract. Count-based exploration methods are widely employed
to improve the exploratory behavior of learning agents over sequen-
tial decision problems. Meanwhile, Novelty search has achieved suc-
cess in Classical Planning through recording of the first, but not suc-
cessive, occurrences of tuples. In order to structure the exploration,
however, the number of tuples considered needs to grow exponen-
tially as the search progresses. We propose a new novelty technique,
classical count-based novelty, which aims to explore the state space
with a constant number of tuples, by leveraging the frequency of each
tuple’s appearance in a search tree. We then justify the mechanisms
through which lower tuple counts lead the search towards novel tu-
ples. We also introduce algorithmic contributions in the form of a
trimmed open list that maintains a constant size by pruning nodes
with bad novelty values. These techniques are shown to comple-
ment existing novelty heuristics when integrated in a classical solver,
achieving competitive results in challenging benchmarks from recent
International Planning Competitions. Moreover, adapting our solver
as the frontend planner in dual configurations that utilize both mem-
ory and time thresholds demonstrates a significant increase in in-
stance coverage, surpassing current state-of-the-art solvers.

1 Introduction

Research on width-based search methods [16] has had a significant
impact in planning, over the past decade, through the introduction
of search algorithms which rely on novelty heuristics to induce an
efficient exploration of the state-space. Novelty metrics achieve this
by comparing a state’s information content with that of states vis-
ited in the past. Width-based algorithms adopting Novelty alongside
traditional heuristics have been central to improving state-of-the-art
results in Classical Planning in recent years [14], with search perfor-
mance often being attributed to a balance between exploration and
exploitation, where Novelty drives the exploration while traditional
heuristics direct exploitation. This does not come without limitations,
as Lipovetzky and Geffner [16, 17] show that the complexity of com-
puting novelty metrics needed to solve planning problems is expo-
nential in their cardinality. In practice, this causes novelty metrics
of cardinality greater than 2 to be computationally unfeasible, limit-
ing the technique’s effectiveness in domains that would benefit from
a higher cardinality. The cardinality is connected with a hardness
measure for Classical Planning known as classical planning atomic
width. Multiple contributions have sought to address this limitation.
Lipovetzky and Geffner [18] introduce partition functions, which
subdivide planning problems into smaller sub-problems through the
use of partitioning heuristics to control the direction of search and
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increase the number of novel nodes. Katz et al. [13] provide a defini-
tion of novelty of a state with respect to its heuristic estimate, provid-
ing multiple novelty measures which quantify the novelty degree of a
state in terms of the number of novel and non-novel state facts. More
recently, Singh et al. [27] introduce approximate novelty, which uses
an approximate measurement of state novelty which is more time
and memory efficient, proving capable of estimating novelty values
of cardinality greater than 2 in practical scenarios. Relating Novelty
with other concepts, such as dominance pruning, also constitutes an
active area of research [5, 8].

All mentioned techniques limit themselves to the original idea of
measuring state information content through the occurrence of tu-
ples in the search history. Instead, we propose a count-based mea-
sure of state novelty, classical count-based novelty, which seeks to
induce efficient exploration of the state space by making use of the
additional information contained in the count of occurrences of tu-
ples in the search history. This addresses shortcomings of the current
Novelty framework (see [14]), which we refer to as width-novelty
to distinguish from our contributions in this paper. Our proposed
count-based metric is not limited by width-novelty’s binary classi-
fication of novel information, providing a more fine-tuned separation
of the degree of novelty of a state and maintaining its informedness
without the risk of exhausting novel nodes. A key motivation behind
our study is thus to obtain a more general novelty framework that
can maintain its efficacy across diverse sets of problems in Classical
Planning, such as domains that require higher atomic widths.

In this regard, we note that count-based exploration techniques are
well studied in relation to the exploration-exploitation problem in
Multi-Arm Bandits and Reinforcement Learning (RL) settings. Such
algorithms record state visitation to obtain an exploration bonus used
to guide the agent towards a more efficient exploration of the state-
space, where algorithms such as MBIE-EB [28] achieve theoretical
bounds on sample complexity in tabular settings. The focus of our re-
search diverges from these methods, as we aim to discover a heuristic
to control the order of state exploration in a Classical Planning con-
text. Instead of state counts, we base our approach on the frequency
of tuple events, inspired by work on width-novelty in the field of
Classical Planning [16, 17, 19]. Still, our contributions provide a use-
ful basis to connect count-based exploration across the two fields.

We also introduce algorithmic contributions in the form of a sim-
ple memory-efficient open list designed with count-based novelty
in mind. Polynomial width-based planning algorithms prune nodes
whose novelty cardinality is worse than a given bound to achieve a
more efficient search [19]. Inspired on this idea, our contribution al-
lows us to prune nodes with bad novelty values with a gradual and
self-balancing cutoff without maintaining an explicit threshold value.

Finally, we demonstrate the effectiveness of our proposed planning
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algorithms as fast but memory-intensive frontend solvers through an
effective use of a memory threshold, which allows us to relate the
progress of search to the amount of information we store from the
history of a search. Many successful solvers such as FF, Probe or
Dual-BFWS rely on such dual strategy [12, 15, 18], with the fron-
tend of such solvers playing a key role in their performance. The
performance of our proposed frontend planner could improve such
solvers even further.

Our contributions consist of a new novelty technique, with theo-
retical analysis tying it to existing width-novelty measures, trimmed
open list, a planner, BFNoS, which integrates these techniques, and
a procedure to adapt BFNoS as an effective frontend planner in a
dual strategy. We structure our paper as follows. In section 3 we
introduce classical count-based novelty metrics for Classical Plan-
ning and provide related theoretical findings. We then propose a
novel open list implementation to exploit classical count-based nov-
elty more efficiently. Section 5 is divided into two components: we
first compare the performance of solvers incorporating our proposed
techniques, and then show the impact of our frontend solver when
used in conjunction with different time-and-memory thresholds and
backend solvers, providing state-of-the-art performance.

2 Background

Classical Planning The classical planning model is defined as
S = 〈S, s0, SG, A, f〉, where S is a discrete finite state space, s0
is the initial state, SG is the set of goal states, and A(s) denotes the
set of actions a ∈ A that deterministically map one state s into an-
other s′ = f(a, s), where A(s) is the set of actions applicable in
s. We adopt a notation whereby, in a classical planning problem,
a state is visited (generated) sequentially at each time-step t. Let
st ∈ S denote the tth visited (generated) state in a search prob-
lem. We use s0:t to denote the sequence of t + 1 states generated at
time-steps 0, 1, ..., t. A solution to a classical planning model is given
by a plan, a sequence of actions a0, ..., axm that induces a state se-
quence s0:xm+1 such that axi ∈ A(sxi), sxi+1 = f(axi , sxi), and
sxm+1 ∈ SG.

We use STRIPS planning language [9] to define a classical plan-
ning problem P = 〈F,O, I,G〉, where F denotes the set of boolean
variables, O denotes the set of operators, I ⊆ F is the set of atoms
that fully describe the initial state, and G ⊆ F is the set of atoms
present in the goal state. An optimal plan consists of the shortest
possible solution to a given problem P . In this research, we look
at satisficing planners, that is, planners which are not constrained
to searching for optimal plans, but rather aim for computing good-
quality plans fast.

Width-Based Search Best-First Width Search (BFWS) [19] refers
to a family of planners which adopt a greedy best-first search algo-
rithm, using a novelty measure as first heuristic. A greedy best first
search planner is a planner which visits nodes in the order specified
solely by an evaluation function h, potentially breaking ties through
the use of secondary heuristics. The main peculiarity of using a pri-
mary novelty heuristic comes from the fact that it is goal-unaware,
thus prioritizing an efficient exploration of the state space over seek-
ing states which are expected to be closer to the goal. The search is
then directed to the goal through the use of secondary tie-breaking
heuristics as well as partition functions, that is, evaluation functions
h used to partition the set of states considered in the computation of
novelty measures into disjoint subsets, ignoring occurrences of vari-
ables in states belonging to separate subsets.

Count-based exploration Count-based exploration methods have
been studied to address the exploration-exploitation dilemma inher-
ent in learning algorithms by allowing agents to prioritize actions that
lead to states with uncertain or unexplored dynamics, thereby facil-
itating more effective learning of the environment’s structure. This
is often achieved by incorporating an exploration bonus added to the
agent’s reward upon visiting a state, encouraging the exploration of
states with low visitation counts. Among the best-known examples is
the UCB1 bandit algorithm [2], which performs a near-optimal bal-
ancing of exploration and exploitation in the stateless multi-armed
bandit problem. This is achieved by selecting actions, referred to as
the arms of a bandit, which maximize an upper confidence bound,
the sum of the empirical average rewards Qt(i) of selecting arm i,

and a confidence interval term
√

2 logN
N(i)

, where N(i) is the count of
pulls of arm i, and N is count of total arm pulls.

3 Count Based Novelty

Classical count-based novelty operates over states that assign a value
to a finite number of variables v ∈ V over finite and discrete do-
mains. In problems defined via STRIPS, without loss of generality,
V = F are boolean variables. Let V be the set of all variables, and
U (k) = {X ⊆ V | |X| = k} the set of all k-element variable
conjunctions. A tuple u ∈ U (k), specifically u = {v1, v2, . . . , vk},
represents a conjunction of k variables. Given a state s that assigns a
boolean value to each variable in V , the value of the tuple u in state
s, denoted s(u), is defined as the conjunction of the values of the k
variables in u, s(u) = s(v1) ∧ s(v2) ∧ · · · ∧ s(vk), where s(vi) is
the value of variable vi in state s. We say s(u) is true if all v ∈ s(u)
are true, and tuple u is true in s if s(u) is true. Let s0:t(u) denote the
sequence of values of tuple u ∈ U (k) in state sequence s0:t, and let
U+(k)(s) ⊆ U (k) denote the set of tuples u in state s where s(u) is
true.

Definition 1 (Classical count-based novelty). The count-based nov-
elty cU (s) of a newly generated state s at time-step t + 1 given
a history of generated states s0:t and set of variable conjunctions
U = U (k) for some tuple size k is:

cU (st+1) := min
u∈U+(st+1)

(Nu
t (st+1))

Where Nu
t (st+1) counts the number of states si ∈ s0:t where

si(u) = st+1(u).

That is, for each tuple u that is true in st+1, we count the number
of states si ∈ s0:t where si(u) is true, and we select the minimum
out of those counts.

Following prior work on Novelty [18], we also define a version
of count-based novelty which uses partition functions to separate the
search space into distinct sub-spaces.

Definition 2 (Partitioned classical count-based novelty). The par-
titioned count-based novelty cU (s) of a newly generated state s at
time-step t+ 1 given partition functions h1, ..., hm is:

cUh1,...,hm
(st+1) := min

u∈U+(st+1)
(Nu

t;h1,...,hm
(st+1))

Where Nu
t;h1,...,hm

(st+1) counts the number of states si ∈ {s0:t |
h1(si) = h1(st+1) ∧ ... ∧ hm(si) = hm(st+1)} where si(u) =
st+1(u).

G. Rosa and N. Lipovetzky / Count-Based Novelty Exploration in Classical Planning4182



In other terms, we are obtaining tuple counts relative to the parti-
tion of previously generated states where hj(si) = hj(st+1) for all
1 ≤ j ≤ m, as opposed to the full state history s0:t. It trivially fol-
lows that Nu

t;h1,...,hm
(st+1) ≤ Nu

t (st+1) and cUh1,...,hm
(st+1) ≤

cU (st+1).

3.1 Theoretical results

In this section, we justify the notion that classical count-based nov-
elty achieves an efficient exploration of the state space that benefits
planner performance, and present the mechanisms through which this
is achieved. Firstly, we focus on the exploratory aspect of our heuris-
tic, by detailing how size-1-tuple counts can be leveraged to direct
the search towards lesser explored areas of the state space. We do so
by exploiting a Hamming distance measure of a state to all previously
visited states, as it provides an intuitively appealing means of quan-
tifying how different a newly visited state is to the solver’s visitation
history. By demonstrating that information on size-1-tuple counts
leads to improved bounds with respect to the Hamming distance of
newly visited states in Theorems 3 to 6, we highlight the extent to
which classical count-based novelty identifies under-explored areas
of the state space. This exploratory aspect alone, however, does not
validate the heuristic’s effectiveness, as it fails to reveal whether the
novel information is beneficial to the search. We address this aspect
in Theorems 7 and 8 by using information on size-1-tuple counts and
average Hamming distance of states to estimate the expected number
of novel tuples. Groß et al. [8] show that novel tuples benefit search
performance by indicating potential new paths towards the goal. Our
results identify the two mechanisms through which classical count-
based novelty increases the expectation of such novel tuples.

We define node ni = ni(si) as referring to a state si, where the
sequence n0:t corresponds to sequence s0:t. The distinction between
a node ni and its corresponding state si lies in the equality operator:
ni = nj iff i = j, implying that si = sj , whereas si = sj denotes
the equality of all underlying variable values v in si and sj . Cru-
cially, throughout the entire section we assume that U = U (1) = V ,
that is, we are only looking at counts over single-variable tuples. We
thus simplify the tuple notation by denoting si = s(vi). Let L =
|s| = |V |, and Hamming distance H(n, nj) = H(n(s), nj(sj)) =∑L−1

i=0 1si �=sij
. We then define normalized Hamming distance as

δ(n, nj) =
1
L
(H(n, nj)) =

1
L

∑L−1
i=0 1si �=sij

, and the average nor-
malized Hamming distance of a node n with respect to all nodes in
n0:t as α0:t(n) =

1
W

∑t
i=0;ni �=n δ(n, ni) where W = t if n ∈ n0:t

or W = t+1 otherwise, noting that in the first case we are skipping
a node’s comparison with itself.

Let the empirical count distribution be μi
t(s) =

N
vi
t (s)

t+1
, and

μmin
t (s) = mini∈V (μi

t(s)), noting that the minimum is over the
entire set of variables V = U (1) rather than the set of true variables
U+(1) in a state s used in Definition 1 and 2, and 0 ≤ μi

t(s) ≤ 1. We
provide a justification of this change through Propositions 1 and 2,
demonstrating a correspondence between empirical counts and Ham-
ming distances over U (1) in binary vectors, and the same metrics
over the set U+(1) in binary vectors that include negated variables.
This allows us to align our results with a STRIPS representation that
includes negated variables. For the set of L variables V , we de-
fine sneg for states s over Vneg = V ∪ {¬v | v ∈ V } such that
sneg(v) = s(v), sneg(¬v) = ¬s(v) for all vi ∈ V . Since H(s, s′) =
|{i | s(vi) 	= s′(vi)}|, we define Htrue(s, s

′) = |{i | s(vi) 	=
s′(vi), s(vi) = 1}| and Hfalse(s, s

′) = |{i | s(vi) 	= s′(vi), s(vi) =
0}|, noting that H(s, s′) = Htrue(s, s

′) +Hfalse(s, s
′).

Proposition 1. The Hamming distance H(s, s′) between states s
and s′ equals the true Hamming distance Htrue(sneg, s

′
neg), consider-

ing only variables in sneg that are true.

Proof. Since for each variable s(vi) = 1 ∈ s there are two variables
sneg(vi) = 1 ∈ sneg and sneg(¬vi) = 0, and for each variable
s(vi) = 0 ∈ s there are two variables sneg(¬vi) = 1 ∈ sneg

and sneg(vi) = 0, follows that Htrue(sneg, s
′
neg) = Htrue(s, s

′) +
Hfalse(s, s

′) = H(s, s′)

Proposition 2. The empirical count Nvi
t (s) for any value s(vi)

corresponds to the empirical count Nvx
t (sneg), where x = i if

s(vi) = 1 and x = j if s(vi) = 0 where sneg(vj) ≡ sneg(¬vi).

Proof. From the definition of sneg , for every variable sj(vi) = 0 ∈
s0:t(vi) we have that sneg;j(vi) = 0 and sneg;j(¬vi) = 1. The
proof for sj(vi) = 1 case is symmetrical. Proposition 2 follows.

It then follows from Proposition 2 that selecting the minimum
count cVneg (sneg;t+1) = minv∈V (Nv

t (st+1)).

Theorem 3. The average normalized Hamming distance α0:t(s) of
a state s to the t+ 1 states in history s0:t is upper bounded by:

α0:t(s) ≤ 1− μmin
t (s)

Proof. The average Hamming distance of s(vi) with respect to the
value of variable i in all states sj ∈ s0:t is equivalent to

1

t+ 1

t∑
j=0

1sij �=si = 1− 1

t+ 1

t∑
j=0

1sij=si = 1− 1

t+ 1
Nvi

t (s)

= 1− μi
t(s)

Thus we have

α0:t(s) =
1

t+ 1

t∑
j=0

1

L

L−1∑
i=0

1sij �=si =
1

L

L−1∑
i=0

1

t+ 1

t∑
j=0

1sij �=si

=
1

L

L−1∑
i=0

(1− μi
t(s)) ≤ 1

L

L−1∑
i=0

(1− μmin
t (s))

= 1− μmin
t (s)

(1)

Parent-child average distance comparison We provide a set of
results on the average normalized Hamming distances of a child node
with respect to its parent node, and the impact that the count-based
novelty of a node has on this value. Incorporating constraints on the
changes between parent and child nodes enables us to obtain much
tighter bounds compared to Theorem 3, reflecting the parent-child
dynamic that exists between expanded and generated nodes. Let nc

and np be the child and parent node respectively, where an action
a ∈ A is performed on np to flip the value of e variables, which we
refer to as the effects. Let nc be a newly generated node nt.

Theorem 4. Lower and upper bounds for α0:t(n
c) are given by:

α0:t(n
p)− t− 1

t

e

L
≤ α0:t(n

c) ≤ α0:t(n
p) +

t− 1

t

e

L
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Proof. In the lower bound, all e effect variables change their corre-
sponding valuation to match with all states in history except for the
parent node, reducing Hamming distance to each state by 1 for each
effect e. Parent and child states share all variable valuations except
for the e effects, which change valuation from parent to child node.
This yields, for all cases where n′ ∈ n0:t, n′ 	= nc and n′ 	= np

δ(nc, n′) ≥ 1

L
(H(np, n′)− e) = δ(np, n′)− e

L
(2)

δ(nc, np) =
1

L
(H(np, np) + e) =

e

L
(3)

We can redefine the average α0:t(n
c) as

α0:t(n
c) =

1

t

[ t∑
i=0;ni /∈{np,nc}

(
δ(nc, ni)

)
+ δ(nc, np)

]
(4)

Since we define that nc = nt:

α0:t(n
p) =

1

t

[ t−1∑
i=0;ni /∈np

(
δ(np, ni)

)
+ δ(nc, np)

]
(5)

Substituting (2) and (3) into (4), noting that
∑t

i=0;ni /∈{np,nc}(
e
L
) =

(t− 1) e
L

, and then substituting (5) yields Theorem 4.
For the upper bound, we note that it is symmetrical in that in the

upper bound all effects e are novel, that is, their variable valuation
in nc has never been observed in n0:t−1. Thus we get δ(nc, n′) ≤
δ(np, n′)+ e

L
. Following the same procedure yields the upper bound.

Theorem 5. Given a minimum empirical count distribution μ =
μmin
t−1 (n

c), the upper bound α0:t(n
c) with respect to μ is given by:

α0:t(n
c) ≤ α0:t(n

p) +
t− 1

t

e− 2eμ

L

Proof. Since μ is the minimum feature occurrence, acting as a con-
straint, upper bound occurs when all effects e have occurrence equal
to μ, that is, the minimum possible occurrence they are allowed to
have. Thus, for t − 1 nodes n′ ∈ n0:t−1, n′ 	= np, we have that
δ(nc, n′) = 1

L
(H(np, n′) + e) a total of (1 − μ) · (t − 1) times,

and δ(nc, n′) = 1
L
(H(np, n′)− e) a total of μ · (t− 1) times. Proof

follows from derivation in Theorem 4.

Theorem 6. Lower bound for α0:t(n
c) when μmin

t−1 (n
c) = 0 is given

by:

α0:t(n
c) ≥ α0:t(n

p)− t− 1

t

e− 2

L

Proof. In the lower bound, one effect is novel, and e−1 effects match
all previous history except np. Thus δ(nc, n′) = 1

L
(H(np, n′)−(e−

1) + 1). Proof follows from derivation in Theorem 4.

A comparison of the bounds in Theorem 4 with those in Theo-
rems 5 and 6 demonstrates the relation between novelty count and
Hamming distance through improved bounds, in terms of changes in
the average distances from parent to child node, for nodes with a low
empirical count N , which acts through the empirical count distribu-
tion μ. The upper bound in Theorem 5 details the main improvement,
signalling greater potential of the child node being located in newer
areas of the state space. Theorem 6 is a notable special case for novel
variable valuations never encountered before, which guarantees an
improvement of the lower bound through the novel information that
could not have already been observed in the parent node. Through

the recursive nature of Theorems 4 to 6, we also conclude that paths
consisting of low count-based novelty nodes are more likely to ex-
hibit rapidly increasing average Hamming distances, thus facilitating
a quicker exploration of novel state spaces. We cannot establish a
tighter lower bound in Theorem 5 because the least common feature
might not be an effect, however modifying count-based novelty met-
rics to consider effect occurrences could overcome this limitation.
Still, greater Hamming distances alone fail to explain how count-
based novelty benefits search efficiency. We provide Theorems 7 and
8 to tie our results to prior theoretical contributions on novelty-based
search (see [5, 8, 17]) through an analysis of the expected count of
novel tuples of size k (k-tuples).

Estimating novel k-tuples Let history s0:t represent t + 1 inde-
pendent and uniformly distributed binary vectors of size L. A tuple
is novel if its valuation in s = st+1 was not observed in any state in
history s0:t.

Theorem 7. The expected number of novel tuples of size k found in
s = st+1 given search history s0:t is given by:(

L

k

)[
1− (1− α0:t(s))

k
]t+1

(6)

Proof. From equation (1) we can obtain α0:t(s) =
1

(t+1)·L
∑t

j=0

∑L−1
i=0 1sij �=si = Esj∈s0:t,vi∈V [1{sj(vi)�=s(vi)}] =

P (sj(vi) 	= s(vi) for some j, i). Thus, the probability that it has
the same value becomes 1 − α0:t(s), and for a tuple of size k, the
probability that any of its constituent variable values is different
in sj than in s is 1 − (1 − α0:t(s))

k. Calculating the union for a
tuple over the full history and multiplying by the number of possible
tuples of size k yields the expectation in (6).

Theorem 8. The expected number of novel tuples of size k found in
state s = st+1 given information on occurrence count N = Nv

t (s)
for some variable v ∈ V and search history s0:t is given by:(
L− 1

k

)[
1−(1−β0:t(s))

k
]t+1

+

(
L− 1

k − 1

)[
1−(1−β0:t(s))

k−1
]N

where β0:t(s) represents the average normalized Hamming distance
after discounting the contribution of variable v:

β0:t(s) =
α0:t(s) · L− (1− N

t+1
)

L− 1

Proof. The left-hand side component of the addition is given by
equation (6) taken over tuples deriving from variables except for the
variable v whose empirical count N we observe. The right-hand side
component is given by the probability 1− (1− β0:t(s))

k−1 that, for
some variable x other than v in a k-tuple containing v and in a state
sj where sj(v) = s(v), sj(x) 	= s(x). Thus, the tuple’s valuation in
sj is different than in s. Taking a union over N states with matching
v valuation and multiplying by the total number of tuples in s con-
taining v yields the right-hand side component. Summing the two
expectations proves the theorem.

Theorem 7 reveals that, without count information, the expecta-
tion decreases exponentially with increasing t, rendering the mea-
sure effective only for small history sizes. Conversely, Theorem 8
introduces a component independent of t and exponential in count
number N , emphasizing the crucial role of the minimum count func-
tion in identifying states likely to contain novel tuples, necessary to
fulfill new action preconditions.

G. Rosa and N. Lipovetzky / Count-Based Novelty Exploration in Classical Planning4184



(a) E[# novel k-tuple] vs. N (b) E[# novel k-tuple] vs. α(s)

Figure 1: E[# novel k-tuple] according to Theorem 8. In (a) N is a
variable, and in (b) α(s) is a variable. Otherwise, parameters are set
as L = 100, t = 50000, N = 5, α(s) = 0.3. A realistic α(s) value
was determined through simulation1.

We thus highlight the double role played by count-based novelty
in inducing novel tuples, as shown in Figure 1: directly, through the
greater probability that a novel tuple may contain a variable with
low occurrence N , as well as indirectly, through the effect that a low
count N induces a greater average Hamming distance compared to
history s0:t (Theorems 3 to 6), which in turn increases the expected
number of novel tuples. We note that this analysis is naïve in that it
does not account for the structure present in domains, which alters
the probability of co-occurrence of variables. We seek to emphasize
that based on our proposed theoretical analysis, it is not the greater
Hamming distance alone that leads to meaningful beneficial perfor-
mance, as shown by Theorem 7, but rather its effect in conjunction
with low variable occurrence in the second term of Theorem 8.

4 Trimmed Open List

Balancing the amount of memory occupied by low-rank nodes is a
common strategy which allows for better ranked exploratory nodes to
appear further down the search. Polynomial width-novelty planners
prune nodes with novelty value greater than a threshold, as they are
deemed not useful for the search. Similarly, count exploration meth-
ods generate many nodes with high counts, which are unlikely to ever
be expanded. However, adopting a threshold as in the width-novelty
case is unfeasible due to the granularity of the metric.

To address the challenge of high memory usage by poorly ranked
nodes in the open list, we introduce the Trimmed Open List (Alg. 1).
Built on a binary heap, this open list limits its growth by pruning
less promising nodes when it exceeds a predefined size limit Z. This
pruning process involves randomly selecting a leaf node, comparing
its heuristic value with a new node n using the open list’s comparison
function, and then pruning or swapping nodes based on their heuristic
values. A unique heapify-up operation is applied to the inserted leaf,
which, unlike standard heaps, is not required to be the last element.

Furthermore, we developed a Double Trimmed Open List for
heuristic alternation [23], accommodating dual open lists for node in-
sertion under distinct heuristics and enabling alternate node retrieval.
This variant employs the same pruning strategy but distinguishes it-
self by tracking each node’s interaction with the open lists − either
being popped or trimmed. A node becomes eligible for deletion when
its interaction count equals the number of lists it is associated with,

1 We remove a randomly generated root binary vector of size L=100 from the
front of an open list, generate 4 children nodes uniformly at random flipping
3 binary variables each, and append each into the open list. We repeated
the process to create 10000 nodes, and measured the average Hamming
distance of the last 100 nodes, yielding an average value of ≈ 35.

Algorithm 1 Trimmed Open List

procedure TRIMMED OPEN LIST(new node N , heap H , heap
size limit Z)

S ← size of H
if S < Z then � If heap hasn’t reached size limit Z

insert N into H
heapify-up(H) � Reorder last element

else

i ← uniformly random leaf index of H
O ← H[i] � Node at random leaf index
if N has a better heuristic value than O then

H[i] ← N � Replace O with N
heapify-up(H, i) � Reorder element at index i
discard O

else

discard N

provided it is not in the closed list. This ensures a node is removed
only when it is confirmed to be redundant, safeguarding against pre-
mature deletion crucial for the lazy expansion of successors.

5 Experiments

Our experiments were conducted using Downward Lab’s experiment
module [25], adhering to the IPC satisficing track constraints of 1800
seconds and 8 GB memory. Each test was ran on a single core of a
cloud instance AMD EPYC 7702 2GHz processor. We implemented
all proposed planners in C++, using LAPKT’s [21] planning mod-
ules. For hybrid experiments, LAMA-First [22] and Scorpion-Maidu
[3, 26] served as backend components, employing Fast-Downward
(FD) [10] and the IPC2023 code repository [4], respectively. Except
for Approximate-BFWS, BFWS variants utilized the FD grounder
for grounding [11], however in problems where the FD grounder
produces axioms (unsupported by LAPKT), LAPKT automatically
switched to the Tarski grounder [7]. Approximate-BFWS exclusively
used the Tarski grounder, following its initial setup and IPC-2023
configuration. We utilized IPC satisficing track benchmarks as in
[27], selecting the latest problem sets for recurring domains. We con-
ducted two sets of experiments. The first benchmarked our planners
against the base BFWS(f5) solver, evaluating the degree to which
our proposed classical count-based novelty and trimmed open list
techniques improve the coverage of BFWS(f5) and its exploration
efficiency, measured as the number of expansions required to find a
solution. The second set of experiments compared our hybrid con-
figurations to Dual-BFWS, Approximate-BFWS, LAMA-First, and
a "first" version of the IPC-2023 satisficing track winner Scorpion-
Maidu that runs its first iteration, in order to assess the coverage gains
obtainable by adopting our proposed frontend solver alongside exist-
ing solvers in a dual configuration, relying on memory thresholds
alongside more traditional time thresholds to trigger the frontend to
fallback.

5.1 Count-based solvers

We define three new planning solvers to evaluate the performance
of our proposed trimmed open list and classical partitioned count-
based novelty techniques. All our solvers are based on the BFWS(f5)
search algorithm [18]. f5 is the evaluation function 〈w,#g〉 where
w is the novelty measure and the goal counter #g counts the num-
ber of atomic goals not true in s. The novelty measure w is com-
puted given partition functions #g and #r(s), that is w〈#g,#r〉 (see
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[18]). We use w to refer to both width-novelty as well our proposed
count-based novelty metric, adopting notation f5(X), where X is the
chosen novelty measure w. Let Wx be the partitioned width-novelty
metric with max-width = x [18]. Let C1 = cV be a partitioned
classical count-based novelty metric over size-1 features v ∈ V . We
define the following search algorithms:

• BFWSt(f5(W2)): Standard BFWS(f5) with max-width=2. Sub-
script t denotes use of a Single Trimmed Open List.

• BFCSt(f5(C1)): A BFWS(f5) solver where w = C1. Subscript
t denotes use of a Single Trimmed Open List.

• BFNoSt(f5(C1), f5(W2)): Best-first search solver using a Dou-
ble Trimmed Open List, employing the evaluation function
f5(C1) − with w = C1 − for first open list and evaluation func-
tion f5(W2) − with w = W2 − for the second open list, alter-
nating expansions between lists. We refer to this solver as BFNoS
(Best First Novelty Search), as it uses multiple novelty heuristics.

The trimmed open list is capped at a constant depth D = 18 (maxi-
mum size Z = 524, 287) determined by empirical testing. We note
that empirically, small changes in depth (D = 17 or D = 19) did not
alter coverage results beyond the deviation recorded in experiments.

Coverage

Model % Score Total (1831) IPC 2023 (140) IPC 2018 (200)

BFWS(f5(W2)) 76.76% 1510 67 120
BFCS(f5(C1)) 77.57% 1510 75 129
BFWSt(f5(W2)) 79.78%±0.13 1555±1.64 66±0.45 134±1.82
BFCSt(f5(C1)) 81.53%±0.33 1568±4.76 78±0.89 146±2.79

BFNoS 83.32%±0.18 1600±3.90 87±1.10 149±1.34

Table 1: % score and coverage comparison of proposed variants. %
score is the average of the % of instances solved in each individual
domain, calculated over all benchmark domains. Values represent the
mean and include the standard deviation across 5 measurements.

Analysis of proposed techniques We refer to the results of our ex-
periment in Table 1 showing significant improvement in BFWS(f5)’s
coverage. The trimmed open list’s smaller memory footprint substan-
tially boosts the instance coverage of BFCS and BFWS solvers alike,
demonstrating the versatility of its node filtering mechanism even
when dealing with the W2 heuristic’s narrower range.

BFCSt(f5) outperforms BFWSt(f5) in both coverage and nor-
malized score. This advantage is especially evident in problems with
high atomic widths, such as Ricochet-Robots [6] from IPC2023 [29],
where BFCSt(f5) consistently solves 19 out of 20 instances com-
pared to the BFWSt(f5)’s single solve. This underscores count-
based novelty’s scalability in complex problems, contrasting with
Wx metrics which have to revert to secondary heuristics after ex-
hausting novel nodes, and demonstrates the O(n) count-based nov-
elty variant’s capacity to seek novel tuples of size > 1 as predicted by
our analysis in Section 3.1. However, while C1 can prioritize states
with a higher expected number of 2-tuples, it cannot explicitly detect
the presence of 2-tuples like W2, and BFCSt(f5) does show reduced
coverage compared to BFWSt(f5) in various domains, suggesting
that W2 and C1 heuristics offer complementary strengths.

This synergy is exemplified by BFNoSt(f5(C1), f5(W2)), which
surpasses both in coverage due to its dual-heuristic approach. No-
tably, it also secures a significant 3.5% gain in normalized scores
compared to BFWSt(f5), indicative of the planner’s enhanced cross-
domain generalization. To our knowledge, this is the first instance
demonstrating performance gains from combining distinct goal-
unaware exploration heuristics in planning, as opposed to combining
goal-aware exploitation heuristics as in [23]. On problems solved by

both BFNoS and BFWSt(f5), integrating the C1 heuristic also re-
duces the number of node expansions required on average to solve
instances as their size increases. This is illustrated in the upper-right
quadrant of Figure 2, which highlights a general improvement in
tackling large domains.

BFNoS

B
FW

S t
(f

5
)

Figure 2: Number of nodes expanded across instances solved by
BFNoS and BFWSt(f5). Blue crosses represent instances not solved
by at least one planner.

5.2 Hybrid solvers with BFNoS frontend

We adopt BFNoSt(f5(C1), f5(W2)) as a frontend solver, capped by
a 6 GB memory threshold and a time threshold close to the overall
time limit, to enable backend fallback for all unresolved searches. We
pair it with three backend planners from literature: the Dual-BFWS
backend component (BFNoS-Dual), LAMA-First (BFNoS-LAMA),
and the "first" version of Scorpion-Maidu (BFNoS-Maidu-h2), in
its IPC2023 configuration with the h2-preprocessor [1]. These were
chosen for their complementary heuristics to our frontend’s f5 par-
titioning, promoting diverse solution strategies to enhance coverage
diversity. Frontend time thresholds are set to 1600 sec with BFNoS-
Dual and BFNoS-LAMA, and 1400 sec for BFNoS-Maidu-h2, to
account for up to 180 sec of preprocessing allowance.

Figure 3: Cumulative % of all failures attributed to search-time mem-
ory failures (y-axis) vs. time of failure (sec) (x-axis), for BFNoS
solvers with 6 GB and 8 GB memory and 1800 sec time limits.

Memory threshold Solvers tend to exhibit diminishing returns in
the number of instances solved with respect to both time and mem-
ory. Thus, as memory usage increases while solving an instance, it
is more likely that the instance will not be solvable within the de-
fined memory constraint, indicating that the adopted heuristics are
not effective for that particular problem. Novelty heuristics W2 and
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Domain BFNoS Dual- Apx-BFWS LAMA- Maidu Maidu BFNoS- BFNoS- BFNoS-
BFWS (Tarski) First with h2 Dual LAMA Maidu-h2

agricola-sat18-strips (20) 15±0.0 12 18±0.9 12 12 13 15±0.5 15±0.5 15±0.5
airport (50) 47±0.6 46 47±0.6 34 38 45 46±0.6 46±0.5 46±0.6
caldera-sat18-adl (20) 18±0.0 19 19±0.6 16 16 16 16±0.0 17±0.5 18±0.0
cavediving-14-adl (20) 8±0.5 8 8±0.5 7 7 7 8±0.0 8±0.0 8±0.5
childsnack-sat14-strips (20) 1±1.1 9 5±0.6 6 6 6 8±0.0 6±0.0 6±0.5
citycar-sat14-adl (20) 20±0.0 20 20±0.0 5 6 6 20±0.0 20±0.0 20±0.0
data-network-sat18-strips (20) 17±0.6 13 19±0.5 13 16 16 16±0.8 15±1.1 16±0.8
depot (22) 22±0.0 22 22±0.0 20 22 22 22±0.0 22±0.0 22±0.0
flashfill-sat18-adl (20) 14±1.3 17 15±1.6 14 15 14 17±0.5 16±0.6 16±0.9
floortile-sat14-strips (20) 2±0.5 2 2±0.0 2 2 20 2±0.0 2±0.0 20±0.0
folding (20) 9±0.0 5 5±0.5 11 11 11 9±0.0 9±0.0 9±0.0
freecell (80) 80±0.0 80 80±0.0 79 80 80 80±0.0 80±0.0 80±0.0
hiking-sat14-strips (20) 20±0.0 18 20±0.0 20 20 20 20±0.0 20±0.0 20±0.0
labyrinth (20) 15±0.5 5 18±0.5 1 0 2 15±0.5 15±0.5 15±0.5
maintenance-sat14-adl (20) 17±0.0 17 17±0.0 11 13 13 17±0.0 17±0.0 17±0.0
mystery (30) 18±0.6 19 19±0.0 19 19 19 19±0.0 19±0.0 19±0.0
nomystery-sat11-strips (20) 14±0.8 19 14±0.5 11 19 18 19±0.0 15±0.6 17±0.0
nurikabe-sat18-adl (20) 16±0.6 14 17±0.5 9 11 16 17±0.6 17±0.0 18±0.0
org-synth-split-sat18-strips (20) 8±0.5 12 8±0.0 14 14 14 11±0.5 14±0.0 14±0.9
parcprinter-sat11-strips (20) 9±0.6 16 11±1.3 20 20 20 20±0.0 20±0.0 20±0.0
pathways (30) 26±0.9 30 28±1.1 23 25 25 30±0.0 27±0.8 27±0.7
pipesworld-notankage (50) 50±0.0 50 50±0.0 43 45 45 50±0.0 50±0.0 50±0.0
pipesworld-tankage (50) 43±1.6 42 44±0.6 43 43 43 43±0.8 43±0.5 43±0.6
recharging-robots (20) 14±0.6 12 14±0.8 13 13 13 14±0.5 14±0.0 14±0.5
ricochet-robots (20) 20±0.5 20 18±0.6 14 18 18 20±0.0 20±0.0 20±0.0
rubiks-cube (20) 5±0.0 6 5±0.6 20 20 20 5±0.0 20±0.0 16±0.6
satellite (36) 34±0.8 33 34±0.5 36 36 36 34±0.6 35±0.0 35±0.0
schedule (150) 149±1.3 150 149±1.3 150 150 150 149±0.7 150±0.0 150±0.0
settlers-sat18-adl (20) 13±1.5 7 12±0.7 17 18 18 12±0.5 17±0.0 17±0.5
slitherlink (20) 5±0.6 5 5±0.7 0 0 0 5±0.5 3±0.6 4±0.7
snake-sat18-strips (20) 20±0.0 17 20±0.0 5 14 14 20±0.0 20±0.0 20±0.0
sokoban-sat11-strips (20) 15±1.1 17 14±0.9 19 19 20 15±0.5 19±0.0 20±0.0
spider-sat18-strips (20) 17±1.3 16 16±1.1 16 16 17 18±0.0 18±0.0 18±0.9
storage (30) 30±0.5 29 30±0.0 20 25 25 29±0.5 29±0.0 29±0.6
termes-sat18-strips (20) 10±0.8 10 5±1.5 16 14 14 10±0.5 14±0.0 14±0.0
tetris-sat14-strips (20) 20±0.0 17 20±0.0 16 17 20 20±0.0 20±0.0 20±0.0
thoughtful-sat14-strips (20) 20±0.0 20 20±0.2 15 19 19 20±0.0 20±0.0 20±0.0
tidybot-sat11-strips (20) 20±0.0 18 20±0.2 17 20 20 20±0.0 20±0.0 20±0.0
transport-sat14-strips (20) 20±0.0 20 20±0.2 17 18 16 20±0.5 20±0.0 20±0.0
trucks-strips (30) 8±0.8 19 13±1.5 18 20 22 17±0.5 16±0.0 20±0.0
woodworking-sat11-strips (20) 20±0.0 20 12±1.1 20 20 20 20±0.0 20±0.0 20±0.0

Coverage (1831) 1600±3.9 1603 1606±3.9 1535 1590 1626 1641±1.9 1662±2.3 1688±3.3

% Score (100%)
83.32%
±0.18 83.23% 83.51%

±0.27 79.06% 82.84% 85.31% 86.23%
±0.09

87.87%
±0.17

89.79%
±0.22

Frontend % coverage share - - - - - - 97% 96% 94%

Table 2: Comparative performance analysis across various domains. % score is the average of the % of instances solved in each domain.
Frontend % coverage share refers to the % of covered instances solved by the BFNoS frontend. Values for BFNoS variants and Approximate-
BFWS represent the mean and include the standard deviation across 5 measurements. Domains that are fully solved by all planners are omitted
but included in the appendix [24].

C1 provide a quick evaluation of state novelty which, in combination
with efficient partition functions, allow solvers to expand consider-
ably more nodes per unit time than counterparts adopting more in-
formed but expensive heuristics such as hff [12], albeit at a greater
memory cost. In other words, they can reach the "flatter" region of
the coverage-memory relation more quickly. We leverage this trait to
introduce dual configuration planners in which the frontend seeks to
prioritize coverage, but also fail as quickly as possible when mem-
ory usage reaches those flatter areas, accounting for different do-
mains’ characteristics with respect to memory usage. Only search-
time memory usage is considered, as tested dual solvers do not fall-
back to the backend when grounder errors occur. At 8 GB and 1800
sec limits, BFNoS hits half of its total failures by reaching the mem-
ory limit when half of the available time has passed, with memory
failures constituting over 60% of the total (Fig. 3), making it a suit-
able frontend solver for our strategy.

Discussion Table 2 shows that BFNoSt(f5(C1), f5(W2)) alone
achieves comparable coverage to all baselines with the exception

of the IPC2023 configuration of Scorpion-Maidu, which is the only
baseline solver incorporating a preprocessor.

The hybrid solvers adopting a BFNoSt(f5(C1), f5(W2)) frontend
outperform all baselines, denoting a meaningful increase in cover-
age and normalized % score compared to their respective backends,
particularly for the hybrid configuration with LAMA-First back-
end, which covers 62 and 127 more instances compared to BFNoS
and LAMA-First respectively. BFNoS-Maidu-h2 gains an edge on
BFNoS-LAMA mainly thanks to the additional preprocessor in the
backend, which only gets used if the frontend solver fails. Still, we
note that our implementation of BFNoS-LAMA and BFNoS-Maidu-
h2 perform the grounding operation a second time for the backend,
resulting in redundant computations which may use up significant
time in hard-to-ground domains.

Our proposed frontend solver is the main component of all hybrid
planners, being responsible for over 94% of all solved instances in
all cases. We note that the combination with the Dual-BFWS back-
end performs more poorly than other hybrid configurations, yet this
does not come as a surprise. The Dual-BFWS backend is a Novelty
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planner which shares many more similarities with our own proposed
frontend, most crucially the W2 primary heuristic, thus causing more
overlap in coverage between the frontend and backend. Still, even
this version suffices to outperform tested benchmarks. We also note
a significant increase in coverage of proposed hybrid planners on
problem sets from IPC2023 and IPC2018, with BFNoS-LAMA cov-
ering 101 and 164 instances, and BFNoS-Maidu-h2 covering 98 and
166 instances on average respectively.

In all cases, the implementation of hybrid planner configurations
leveraging only two powerful solvers allows us to keep such dual
solvers as simple as possible, which we argue helps us reduce the
risk of overfitting to the set of available benchmarks.

Figure 4: Instance coverage (y-axis) vs. time (sec) (x-axis). Com-
parison of BFNoS with the three presented hybrid configurations.
The solvers are run in an identical configuration to previous sections,
with BFNoS using the full 8 GB memory allowance when run on its
own, and a 6 GB memory threshold when run as the frontend of hy-
brid configurations. The vertical lines signal the 1400 sec (green) and
1600 sec (red) time thresholds.

Coverage-over-time considerations We highlight the coverage-
over-time benefits of adopting our proposed memory threshold strat-
egy alongside BFNoS. The memory-threshold fallbacks of our pro-
posed frontend start rapidly increasing shortly before the 400 sec
mark (Fig. 3), and this fact is reflected in the increasing gap in in-
stance coverage between the base BFNoS solver and dual configu-
rations in Figure 4 beginning at that point in time. This trait is ben-
eficial both for the average planning time of covered instances, as
well as for satisficing planners, which gain more time to improve the
quality of discovered plans. In this respect, memory-threshold-only
variants of proposed dual solvers (Table 3) − that forego the use of
time thresholds altogether − still perform competitively compared to
benchmark solvers in Table 2. However, there still are limitations to
the technique, as exemplified by the Rubik’s Cube domain [20] from
IPC 2023. BFNoS fails to solve 15 out of the 20 instances available,

Hybrid Solver Coverage % Score

BFNoS-DualMO 1636±3.3 85.90%±0.14
BFNoS-LAMAMO 1638±4.9 86.13%±0.26
BFNoS-MaiduMO 1643±3.7 86.45%±0.17
BFNoS-Maidu-h2

MO 1662±4.7 88.02%±0.21

Table 3: Coverage and % score of hybrid planner variants adopting
only a 6 GB memory threshold across all domains. Subscript MO
refers to memory-threshold-only versions. The BFNoS-Maidu plan-
ner is a variant of BFNoS-Maidu-h2 that does not use the h2 prepro-
cessor with its Scorpion-Maidu backend. Values represent the mean
and standard deviation across 5 measurements.

but does not reach the 6 GB memory threshold before the time limit,
precluding fallback in memory-threshold-only dual configurations.
This domain is the main contributor to the leap in instance coverage
for BFNoS-LAMA and BFNoS-Maidu-h2 that follows their respec-
tive time thresholds in Figure 4.

6 Conclusion

In this paper we introduce the concept of count-based novelty as
an alternative novelty exploration framework in Classical Planning,
showing that the arity-1 variant of our proposed metric is capable of
effectively predicting states with novel k-tuples only using a constant
number of tuples. We introduce the use of counts and Hamming dis-
tances to relate the exploratory behavior of count-based novelty to
the existing body of knowledge on Novelty. We also propose sin-
gle and double Trimmed Open List variants which allow us to upper
bound the open list size by pruning nodes unlikely to be expanded.
Our techniques used in the BFNoS solver demonstrate the effective-
ness of combining distinct novelty metrics, achieving competitive
coverage compared to state-of-the-art planners. Finally, we detail a
dual-configuration strategy adopting a BFNoS frontend solver and
introducing memory thresholds alongside customary time thresholds,
justify the suitability of our proposed strategy, and demonstrate im-
proved coverage performance compared to state-of-the-art planners.

Our work provides foundational knowledge on count-based nov-
elty through basic solutions that mirror our theoretical analysis. Fu-
ture directions may include alternative count-based variants over tu-
ples or extracted features to guide exploration in general and domain-
specific planners, as well as adaptation to the existing body of work
blending Novelty and heuristic estimates. Our contributions also pro-
vide the basis to bridge Classical Planning with the broader paradigm
of count-based exploration, benefiting knowledge transfer with re-
lated areas such as Reinforcement Learning. Trimmed open lists and
memory thresholds also proved to be simple yet effective solutions,
pointing at the potential for a deeper analysis of similar ideas in Clas-
sical Planning.

Acknowledgements

This research was supported by use of the Nectar Research Cloud and
by the Melbourne Research Cloud. The Nectar Research Cloud is a
collaborative Australian research platform supported by the NCRIS-
funded Australian Research Data Commons (ARDC). We extend
our gratitude to Anubhav Singh for providing the PDDL file mod-
ifications for the Tidybot, Storage, and GED domains used with the
Tarski grounder, and to Augusto B. Corrêa for providing the informa-
tion needed to run the ‘First’ version of Scorpion-Maidu using Fast
Downward.

References

[1] V. Alcázar and A. Torralba. A reminder about the importance of com-
puting and exploiting invariants in planning. In Proceedings of the In-
ternational Conference on Automated Planning and Scheduling, vol-
ume 25, pages 2–6, 2015.

[2] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the
multiarmed bandit problem. Machine learning, 47:235–256, 2002.

[3] A. B. Corrêa, G. Francès, M. Hecher, D. M. Longo, and J. Seipp. Scor-
pion Maidu: Width search in the Scorpion planning system. In Tenth In-
ternational Planning Competition (IPC-10): Planner Abstracts, 2023.

[4] A. B. Corrêa, G. Francès, M. Hecher, D. M. Longo, and J. Seipp.
Scorpion maidu satisficing ipc2023-classical. https://github.com/
ipc2023-classical/planner8/tree/ipc2023-classical, 2023. Accessed:
2024-04-20.

G. Rosa and N. Lipovetzky / Count-Based Novelty Exploration in Classical Planning4188



[5] S. Dold and M. Helmert. Novelty vs. potential heuristics: A comparison
of hardness measures for satisficing planning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 38, pages 20692–
20699, 2024.

[6] D. Fiser and R. Eifler. Ricochet Robots PDDL domain. https://github.
com/ipc2023-classical/domain-ricochet-robots, 2023. Accessed: 2024-
04-20.

[7] G. Francés, M. Ramirez, and Collaborators. Tarski: An AI planning
modeling framework. https://github.com/aig-upf/tarski, 2018.

[8] J. Groß, A. Torralba, and M. Fickert. Novel is not always better: On
the relation between novelty and dominance pruning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 34, pages 9875–
9882, 2020.

[9] P. Haslum, N. Lipovetzky, D. Magazzeni, C. Muise, R. Brachman,
F. Rossi, and P. Stone. An introduction to the planning domain defi-
nition language, volume 13. Springer, 2019.

[10] M. Helmert. The Fast Downward planning system. Journal of Artificial
Intelligence Research, 26:191–246, 2006.

[11] M. Helmert. Concise finite-domain representations for PDDL planning
tasks. Artificial Intelligence, 173(5-6):503–535, 2009.

[12] J. Hoffmann and B. Nebel. The FF planning system: Fast plan gen-
eration through heuristic search. Journal of Artificial Intelligence Re-
search, 14:253–302, 2001.

[13] M. Katz, N. Lipovetzky, D. Moshkovich, and A. Tuisov. Adapting nov-
elty to classical planning as heuristic search. In Proceedings of the
International Conference on Automated Planning and Scheduling, vol-
ume 27, pages 172–180, 2017.

[14] N. Lipovetzky. Planning for novelty: Width-based algorithms for com-
mon problems in control, planning and reinforcement learning. arXiv
preprint arXiv:2106.04866, 2021.

[15] N. Lipovetzky and H. Geffner. Searching for plans with carefully de-
signed probes. In Proceedings of the International Conference on Au-
tomated Planning and Scheduling, volume 21, pages 154–161, 2011.

[16] N. Lipovetzky and H. Geffner. Width and serialization of classical plan-
ning problems. In ECAI 2012, pages 540–545. IOS Press, 2012.

[17] N. Lipovetzky and H. Geffner. Width-based algorithms for classical
planning: New results. In ECAI 2014, pages 1059–1060. IOS Press,
2014.

[18] N. Lipovetzky and H. Geffner. Best-first width search: Exploration and
exploitation in classical planning. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 31, 2017.

[19] N. Lipovetzky and H. Geffner. A polynomial planning algorithm that
beats LAMA and FF. In Proceedings of the International Conference
on Automated Planning and Scheduling, volume 27, pages 195–199,
2017.

[20] B. C. Muppasani, V. Pallagani, and B. Srivastava. Solving the Rubik’s
Cube with a PDDL planner. In ICAPS 2024 System’s Demonstration
track, 2024.

[21] M. Ramirez, N. Lipovetzky, and C. Muise. Lightweight Automated
Planning ToolKiT. http://lapkt.org/, 2015. Accessed: 2020.

[22] S. Richter and M. Westphal. The LAMA planner: Guiding cost-based
anytime planning with landmarks. Journal of Artificial Intelligence Re-
search, 39:127–177, 2010.

[23] G. Röger and M. Helmert. The more, the merrier: Combining heuristic
estimators for satisficing planning. In Proceedings of the International
Conference on Automated Planning and Scheduling, volume 20, pages
246–249, 2010.

[24] G. Rosa and N. Lipovetzky. Count-based novelty exploration in clas-
sical planning - extended version. arXiv preprint arXiv:2408.13719,
2024.

[25] J. Seipp, F. Pommerening, S. Sievers, and M. Helmert. Downward lab,
2017.

[26] J. Seipp, T. Keller, and M. Helmert. Saturated cost partitioning for op-
timal classical planning. Journal of Artificial Intelligence Research, 67:
129–167, 2020.

[27] A. Singh, N. Lipovetzky, M. Ramirez, and J. Segovia-Aguas. Approxi-
mate novelty search. In Proceedings of the International Conference on
Automated Planning and Scheduling, volume 31, pages 349–357, 2021.

[28] A. L. Strehl and M. L. Littman. An analysis of model-based interval
estimation for Markov decision processes. Journal of Computer and
System Sciences, 74(8):1309–1331, 2008.

[29] A. Taitler, R. Alford, J. Espasa, G. Behnke, D. Fišer, M. Gimelfarb,
F. Pommerening, S. Sanner, E. Scala, D. Schreiber, et al. The 2023
international planning competition, 2024.

G. Rosa and N. Lipovetzky / Count-Based Novelty Exploration in Classical Planning 4189


