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Abstract. In the field of Automated Planning there is often the need
for a set of planning problems from a particular domain, e.g., to be
used as training data for Machine Learning or as benchmarks in plan-
ning competitions. In most cases, these problems are created either
by hand or by a domain-specific generator, putting a burden on the
human designers. In this paper we propose NeSIG, to the best of
our knowledge the first domain-independent method for automati-
cally generating planning problems that are valid, diverse and dif-
ficult to solve. We formulate problem generation as a Markov De-
cision Process and train two generative policies with Deep Rein-
forcement Learning to generate problems with the desired proper-
ties. We conduct experiments on three classical domains, comparing
our approach against handcrafted, domain-specific instance genera-
tors and various ablations. Results show NeSIG is able to automati-
cally generate valid and diverse problems of much greater difficulty
(15.5 times more on geometric average) than domain-specific gener-
ators, while simultaneously reducing human effort when compared
to them. Additionally, it can generalize to larger problems than those
seen during training.

1 Introduction

Automated Planning (AP) [9] is a subfield of Artificial Intelligence
devoted to providing goal-oriented, deliberative behaviour to both
physical and virtual agents, e.g. robots and video game automated
players. An automated planner receives as input the description of
the planning task to solve, containing the environment dynamics, ini-
tial state and goal. It then carries out a search process in order to
find a plan (sequence of actions) which achieves the task goal start-
ing from its initial state. Planning tasks are usually described in a
declarative, first-order logic (FOL) language such as PDDL (Plan-
ning Domain Definition Language) [10]. The PDDL description con-
sists of a planning domain, containing the environment dynamics,
and a planning problem/instance, containing the initial state and goal
to achieve. This encoding allows the reuse of the same planning do-
main for planning tasks with different initial state and/or goal but
which share their environment dynamics.

Throughout the years, many works [26, 20, 24] have tried to au-
tomatically learn planning domains from data, in order to alleviate
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the burden on domain designers. Nevertheless, the task of gener-
ating planning problems has received less attention. In most cases,
they need to be created by hand or produced by hard-coded, domain-
specific instance generators, which requires great human effort. Hav-
ing a large set of planning problems is useful for several reasons. The
main one is that many approaches which apply Machine Learning
(ML) to AP use planning problems as training data, such as those for
learning heuristics [25] and hierarchical, HTN domains [13]. Addi-
tionally, problems are used as benchmarks in planning competitions
[29] and are useful for domain validation [17], i.e., ensuring the plan-
ning domain faithfully represents the environment dynamics.

In this work, we address the problem of automatically generating
planning instances for a particular PDDL domain provided by the
user, in order to reduce human effort. Generated problems must ex-
hibit three desirable properties: validity, diversity and quality. A
problem is considered valid if it is solvable and its initial state is con-
sistent, i.e., it describes a possible initial state of the world. Diversity
refers to the fact that generated problems should all be different from
each other. Finally, the quality of a problem is defined by the user. In
this work, we will use difficulty as our only quality measure, i.e., the
goal is to generate problems as hard to solve as possible.

As our main contribution, we propose NeSIG (Neuro-Symbolic
Instance Generator) which, to the best of our knowledge, is the first
domain-independent method for automatically generating planning
problems that are at the same time valid, diverse and of good quality
(i.e., difficult to solve). NeSIG receives as inputs the PDDL descrip-
tion of the domain, a set of consistency constraints which generated
problems must satisfy, the maximum size of the problems to generate
and a list with the predicates and object types that can appear in the
problem goals. Then, it leverages this information to learn to gener-
ate valid, diverse and difficult problems for the domain provided as
input. A remarkable feature of our method is that it does not need to

observe a single example problem from the domain and, thus, can
be regarded as a data-free generative model for planning problems.
Finally, we have limited our scope to typed-STRIPS domains with
existential and negative preconditions.1

Consistency constraints describe the set of properties that prob-
lem initial states must satisfy in order to be considered consistent,
i.e., so that they describe a possible initial state of the world in the
1 We have used Lifted PDDL as our parser, which only provides support for
this subset of ADL.
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system modeled by the PDDL domain at hand. An example consis-
tency constraint would be "an object cannot be at two places at the
same time". Since planning problems are often crafted by hand, this
consistency information is not encoded in the PDDL domain descrip-
tion. Instead, it is the duty of the human designer to create problems
representing possible, reasonable situations of the world. In the case
of handcrafted, domain-specific generators, consistency constraints
are hard-coded into their problem-generation procedure, so that in-
consistent problems are never generated. In other words, consistency
information must always be present when generating problems in one
way or another. Therefore, in order to alleviate the burden on human
designers, we propose a novel semi-declarative language that com-
bines FOL and Python-like syntax so that the consistency constraints
required by NeSIG can be encoded in an intuitive and interpretable
manner, thus reducing human effort when compared to manual prob-
lem design and handcrafted generators.

We formulate problem generation as a Markov Decision Process
(MDP) [27], in which a problem is generated in a series of steps.
Firstly, the initial state of the problem is generated by successively
adding objects and atoms to an initially empty state (or some other
state predefined by the user). Then, a sequence of domain actions
(i.e., the actions present in the planning domain) are executed from
the generated initial state to arrive at a goal state, where a subset of
the atoms are selected to form the problem goal, according to the goal
types and predicates provided by the user. We use Deep Reinforce-
ment Learning (RL) [27] to train two generative policies, one for gen-
erating the problem initial state and one for the goal. These policies
are learned by Neural Logic Machines (NLMs) [4], a neuro-symbolic
deep neural network architecture capable of inductive learning and
logic reasoning.

We test our method on three classical planning domains,
blocksworld, logistics and sokoban, comparing the problems gener-
ated by NeSIG with those obtained by handcrafted, domain-specific
generators and several ablations. Results show NeSIG obtains valid
and diverse problems of much greater difficulty than the alternative
approaches (15.5 times more than domain-specific generators on ge-
ometric average), while requiring little human effort, as our approach
removes the need to design the problems manually or program a
handcrafted generator. Additionally, NeSIG exhibits remarkable gen-
eralization abilities when tested on larger problems than those seen
during training: in logistics, it generates harder problems than the
handcrafted generator for up to twice the training size whereas, in
blocksworld and sokoban, it outperforms the domain-specific gener-
ators for all test sizes considered.

2 Related work

Several works have proposed domain-independent methods for plan-
ning problem generation but, to the best of our knowledge, none of
them have been able to generate problems that are simultaneously
valid, of good quality and diverse. [6] proposes a random-walk ap-
proach to generate planning problems. It randomly creates an ini-
tial state si and executes n actions at random to arrive at state sg .
Then, it selects a subset of the atoms of sg , which constitutes the
goal g, and returns the planning problem (si, g). Although the prob-
lems obtained are always solvable, they may not exhibit the other
properties (consistency, quality and diversity), as they are generated
at random. [8] also employs a random-walk approach but, unlike the
previous work, it uses semantics-related information provided by the
user to guarantee the consistency of the problems obtained. Thus,
this method always generates valid problems but provides no guar-

antees about their diversity or quality, since they are also generated at
random. [16] follows a different approach. It starts from a predefined
goal state and performs a backward search for the initial state. The
problems obtained are used to learn a planning heuristic. The pro-
posed method estimates its uncertainty and uses this value to search
for problems with the right difficulty for training the heuristic. Hence,
this method is able to obtain valid problems of good quality. How-
ever, it only works for domains with a single, predefined goal and for
which there exist an inverse transition model, i.e., for every action a
that transitions from state s to s′ an inverse action a′ that goes from
s′ to s must exist, which needs to be provided to the method.

Finally, it is worth to mention several works that address a similar
problem to the one tackled in this paper. [14] proposes a method for
obtaining diverse and difficult planning tasks with different causal
graphs. This work generates complete tasks (i.e., domain-problem
pairs) whereas NeSIG generates planning problems for the particu-
lar domain provided by the user. [28] proposes Autoscale, a method
for obtaining valid and diverse problems with graded difficulty for
their use in planning competitions. However, unlike our method, Au-
toscale does not generate problems on its own. Instead, it relies on
domain-specific instance generators, selecting a set of problems with
graded difficulty among the ones they generate. Therefore, Autoscale
can be considered complementary to our approach, as it could be
used to select problems among those NeSIG generates.

3 Background

3.1 Planning task representation

A planning task is a tuple formed by a planning domain and a plan-
ning problem (also known as an instance). Both the domain and prob-
lem are often represented in a formal FOL-based language such as
PDDL [10]. In PDDL, the domain encodes the existing object types,
predicates and actions available to solve the task, detailing for each
action its parameters (variables), preconditions (conditions which
must be true for the action to be applicable) and effects (how the
action modifies the state). This information is encoded in lifted form,
i.e., in terms of FOL variables which can be instantiated (grounded)
on objects. On the other hand, the PDDL problem encodes the ob-
jects present in that particular instance, the set of atoms which are
true at the initial state, and the goal to achieve, represented as a FOL
formula (usually as just a conjunction of atoms).

3.2 Neural Logic Machines

ANeural Logic Machine (NLM) [4] is a deep neural network capable
of learning from FOL data and performing logic reasoning. An NLM
receives as input a set of predicates grounded on a set of objects.
Then, it sequentially applies first-order rules to obtain a different set
of output predicates instantiated on the same objects. Input predi-
cates are represented as binary tensors containing the truth value for
each grounding of the predicate on the set of objects. Given some in-
put predicate p, if p(oi, oj , ok) is true (where i, j, k represent object
indexes), then its associated tensor will contain a value of 1 at the
(i, j, k) position. Output predicates and those inferred internally by
the NLM are also represented as tensors, but they contain real val-
ues between 0 and 1. The NLM operates with these tensors by using
neural modules that approximate boolean rules (and, or, not) and
quantifications (∀ and ∃), being expressive enough to realize a set of
Horn clauses. Therefore, NLMs are more expressive than alternative
architectures such as Graph Neural Networks [1], which is why they
are used in this work.
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Figure 1: NeSIG. a) Architecture overview. NeSIG receives as inputs a PDDL domain, several consistency rules and some extra information
(maximum problem size and goal types and predicates). It then trains two generative policies with RL (see subfigure b) so that they learn
to generate valid, diverse and difficult problems for the domain provided as input. b) Policy training with RL. Dashed lines represent the
application of several MDP actions, corresponding to adding an atom to the initial state in the case of the initial state policy (see subfigure
c), or executing a domain action in the goal state in the case of the goal policy (see subfigure d). Dotted lines indicate the reward signal,
accounting for the consistency rc, diversity rv and difficulty rf of the problems generated. c) Initial state policy. It receives an MDP state
(sic, _) corresponding to a partially-generated initial state and selects the next atom to add to sic. d) Goal policy. It receives an MDP state
(si, sgc) representing a complete initial state but a partially-generated goal state and selects the next domain action to execute in sgc.

4 Neuro-Symbolic instance generation

In this section we describe our method, shown in Figure 1. NeSIG
takes as inputs a PDDL planning domain, a set of consistency rules
generated problems must satisfy and some extra information, corre-
sponding to the maximum size of the problems to generate and a list
with the predicates and object types which can appear in the problem
goals.2 It then learns to generate problems for that particular domain
so that they are valid, diverse and difficult to solve (see Figure 1a).
Problems are generated via an iterative process that first generates
the problem initial state by sequentially adding objects and atoms to
some predefined (often empty) state and, then, executes domain ac-
tions from the initial state generated to arrive at the goal state, where
the problem goal is obtained according to the goal predicates and
types specified by the user. We now discuss how validity, diversity
and difficulty are defined and measured, present our novel MDP for-
mulation of problem generation and explain how we leverage Deep
RL to learn to generate problems with the desired properties.

4.1 Problem properties

4.1.1 Validity

This property can be decomposed into two sub-properties: solvabil-
ity and consistency. A problem is considered solvable if there exists
at least one valid plan that achieves the problem goal starting from its
initial state, i.e., which solves the problem. By design, every problem
generated by NeSIG is solvable, since the goal of a problem is gener-
ated by executing applicable domain actions from its initial state. A
problem is considered consistent if its initial state represents a possi-
ble initial situation (state) within the system modeled by the planning
domain, in other words, if it makes sense. An example consistency
rule would be "an object cannot be at two places at the same time."
Consistency constraints arise from the semantics of the domain and,
as previously explained, are not encoded in its PDDL description so
they need to be provided separately. Additionally, they depend on
human interpretation and preferences. Going back to our previous
example, some user could consider a state where one object is at two

2 Additionally, NeSIG may also take as input the list of object types that can
be added to the problem initial state during generation. Nonetheless, this is
completely optional and is only used for improving NLM efficiency.

different places (at(o, p1), at(o, p2)) at the same time to be consis-
tent, and that choice would be completely valid as there is nothing in
the PDDL domain that forbids it.

Due to the sequential nature of our proposed method, in which
problem initial states are generated by incrementally adding objects
and atoms to an initially empty state or some other state provided by
the user, we distinguish between continuous and eventual consis-
tency. A continuous consistency rule is one which must be continu-
ously satisfied throughout the entire initial state generation process.
In order to make a continuous-inconsistent state consistent again we
would need to remove some atom(s) and/or object(s) from the state,
which is forbidden in our method. For this reason, NeSIG never adds
objects or atoms which result in continuous-inconsistent states. An
example continuous consistency rule would be "an object o cannot
be at two places p1, p2 at the same time", i.e., at(o, p1), at(o, p2) is
forbidden. If this constraint is not met, we would need to remove ei-
ther at(o, p1) or at(o, p2) from the initial state which, as previously
stated, is forbidden. On the other hand, eventual consistency rules
are those which must be eventually satisfied once the initial state has
been completely generated, but do not need to be met at each step of
the generation process. An eventual-inconsistent state can be made
consistent if some particular combination of object(s) and/or atom(s)
are added to it. Therefore, eventual consistency is only checked at
the end of the initial state generation process. An example eventual
consistency rule would be "the initial state must contain at least one
object of type t". If this constraint is not met, we can simply add an
object of type t to the state to make it eventual-consistent.

These consistency rules are encapsulated in a consistency evalu-
ator that provides two methods. The first one returns whether the
state resulting from adding some atom (and optionally some ob-
jects) to the current state is continuous-consistent or not. The sec-
ond method receives a completely-generated initial state and checks
whether it is eventual-consistent or not. Although consistency rules
must be provided by a human designer on a per-domain basis, doing
so is often much simpler than devising a procedure for generating
a diverse set of consistent problems, i.e., programming an instance
generator. To reduce human effort even further, we have designed
a novel, semi-declarative language for describing consistency rules.
It allows the construction of first-order logic (FOL) formulas (with
counting quantifiers) expressing conditions about state objects and
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atoms. For example, the consistency rule "the initial state must con-
tain at least 3 objects of type city" can be concisely expressed as
TE(x, type(x, city)) >= 3, where TE stands for There Exists and
x is a variable. These formulas are then automatically evaluated, and
their truth value is stored in a Python boolean variable. Therefore,
we can encode consistency rules using either standard Python, FOL
or a combination of them. This choice is transparent to NeSIG and
does not impact training. We provide the consistency rules for each
domain in the Appendix [18], showing how our semi-declarative lan-
guage makes possible to represent consistency constraints in an in-
terpretable manner with just a few lines of code.

4.1.2 Diversity

This property measures how different generated problems are from
each other. In order to measure diversity, we automatically extract
a set of interpretable features that describes the objects and atoms
of each problem and their relationships. We say that two objects are
connected if they are instantiated on the same atom, regardless of po-
sition. Based on this idea, we define the sets of connection features
cμ and cσ . cμ[ti][p][tj ] encodes how many objects of type tj , on av-
erage, each object of type ti is connected to through atoms of pred-
icate type p. Analogously, cσ[ti][p][tj ] contains the standard devia-
tion instead of the mean number of connections. For example, a value
cμ[city][in][location] = 3 means that each city contains (atom in)
an average of three locations, whereas cσ[city][in][location] = 2
means that the standard deviation between the number of locations
in each city is 2 (i.e., not every city contains the same number of lo-
cations). In total, we extract 7 groups of features, corresponding to
the number of objects of each type in the problem and, separately
for the initial state and goal, the number of atoms of each predicate
type, cμ and cσ . They are divided by their sum so that, for each prob-
lem, features in each group add up to one. Then, we calculate the
pairwise problem distance as the absolute difference between their
feature vectors, dividing distances by 7 ∗ 2 = 14 to normalize them
to the [0, 1] range. Finally, the diversity of a problem is equal to its
average distance to all the problems in the set (excluding itself).

4.1.3 Difficulty

In this work, we measure the quality of a problem by its difficulty.
In other words, our goal is to generate problems which are as hard
to solve by a planner as possible (in addition to being consistent and
diverse). We have chosen difficulty as our quality measure because
it plays a central role in AP, where great effort has been devoted to
studying problem difficulty [3] and developing efficient algorithms
for solving difficult problems [2]. We measure difficulty as the num-
ber of nodes a particular planner needed to expand to solve the prob-
lem. Since this measure depends on the planner employed, we calcu-
late problem difficulty with a different set of planners at training and
test time, to evaluate whether NeSIG is able to generate problems
which are challenging for different planners.

4.2 Problem generation as MDP

We propose to generate problems of the form (si, g), where si is
the problem initial state and g is the goal, via an iterative process
which first generates si and then g. The initial state generation phase
starts either from an empty state (with no objects or atoms) or from
some predefined state provided by the user. Then, at each step, a new
atom is added to the initial state and, optionally, one or more new

objects. Once si has been completely generated, the goal generation
phase begins if the state meets the eventual consistency constraints.
Otherwise, the problem is discarded. Starting from si, the goal gen-
eration phase successively executes the actions available in the do-
main to arrive at another state, known as the goal state sg . Finally,
the goal g is obtained by selecting a subset of the atoms in sg , ac-
cording to the goal predicates and object types specified by the user.
For instance, in the blocksworld domain, problem goals only contain
atoms of the form on(block,block) by design. This entire process is
depicted in Figure 1b and a handcrafted example is provided in the
Appendix. It can be formulated as an undiscounted, finite-horizon
MDP (S,A, app, t, r):

• S is the state space of the MDP. In our case, states correspond to
(incomplete or fully-generated) planning problems s = (sic, sgc).
We use the subindex c (current) to denote when the initial state sic
and goal state sgc may not be completely generated yet.

• A is the action space, while app : S × A → {0, 1} is the ap-
plicability function which determines if an action can be executed
at a state or not. The set of applicable actions Aapp is different
for the initial state and goal generation phases. In the initial state
generation phase, Aapp corresponds to adding a new atom to the
initial state sic which preserves the continuous consistency con-
straints (see Section 4.1.1). The objects this new atom is instan-
tiated on can already be present in sic or not. If they are not, we
refer to them as virtual objects, and are added to sic alongside
their corresponding atom. For example, if the applicable action
add ontable(b1) is selected and the object b1 does not exist in sic,
then both the atom ontable(b1) and the object b1 will be added to
sic. Thus, instantiating atoms on virtual objects is the mechanism
we use to add new objects to the problem. In the goal generation
phase, Aapp is the subset of actions in the planning domain for
which their preconditions are met at the current goal state sgc. Ad-
ditionally, we add a termination action end toAapp. When end is
applied during the initial state generation phase, si = sic is fixed
and, if si is eventual-consistent, the goal generation phase starts.
Otherwise, the MDP episode concludes. When end is applied dur-
ing the goal generation phase, sg = sgc is fixed, so the problem
(si, g) is returned and the episode concludes. In order to control
problem size, we set a maximum number of actions for each gen-
eration phase so, if this number is reached, end is executed and
the corresponding phase concludes.

• t : S ×A → S is the transition function. In our setting, t is deter-
ministic and returns the next MDP state (i.e., problem) resulting
from executing an applicable action at the current state.

• r : S × A → R is the reward function. In our setting, there are
three different reward sub-types accounting for problem consis-
tency, difficulty and diversity. At the end of the initial state gen-
eration phase, a consistency reward rc = −1 is given if si is
eventual-inconsistent3, as a form of penalization. At the end of
the goal generation phase, problems receive a difficulty reward rf
equal to the logarithm of their difficulty, and a diversity reward rv
equal to their diversity. In every other situation, rc, rf and rv are
all 0. Finally, the (total) reward is calculated as follows:

r = rc +min
(rv
θ
, 1
)
· rf (1)

where θ ∈ [0, 1] is a hyperparameter known as the diversity
threshold. We now explain the rationale behind Equation 1. MDP

3 Since actions resulting in continuous-inconsistent states are never executed,
we know si meets the continuous consistency constraints.
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trajectories resulting in eventual-inconsistent problems will re-
ceive a reward r = −1 in their last sample, since the difficulty
and diversity of an inconsistent problem is 0. For trajectories re-
sulting in consistent problems, the reward (for the last sample)
will be equal to rf scaled down by a factor min(rv/θ, 1), which
depends on the diversity: if rv ≥ θ, then r = rf whereas, if
rv < θ, rf will be scaled down up to a minimum of r = 0, in case
rv = 0. This reward function r balances problem consistency, di-
versity and difficulty. By maximizing it, we hope NeSIG will learn
to generate consistent problems with a diversity close to θ (since
diversity values rv larger than θ do not increase r and values lower
than θ reduce r considerably) and as difficult to solve as possible.

4.3 Learning to generate problems with RL

We use two different policies for guiding problem generation. One
policy generates the initial state si of each problem, whereas the
other generates its goal g. Each policy is encoded by a separate NLM
(see Section 3.2).

At each step, the corresponding NLM receives information about
the current MDP state. In the case of the initial state policy, it receives
a tensor representation of the atoms and objects in the current initial
state sic. This set of objects contains both the actual objects in sic and
the new, virtual objects that can be added to the state alongside the
next atom. The set of virtual objects is automatically inferred from
the predicate information encoded in the PDDL domain. In the case
of the goal policy, the NLM receives as input a concatenation of the
tensor representations of the initial state si and current goal state sgc.
Since no new objects can be added during the goal generation phase,
no virtual objects are used. Additionally, both NLMs receive as extra
information the percentage of actions executed in the corresponding
phase (relative to the maximum number of actions allowed), for each
object its type and whether it is virtual or not, the total number of
objects of each type, and the total number of atoms of each predicate
type in the initial state and, for the goal policy NLM, also in the goal
state.

The output of the NLM is represented as a new set of atoms, where
each atom is associated with a different MDP action a ∈ A, corre-
sponding to either a new atom to add to sic (for the initial state pol-
icy) or a domain action to apply to sgc (for the goal policy), in addi-
tion to the termination action end. The NLM outputs a real value for
each atom (action) in this set. Then, we mask out inapplicable actions
a /∈ Aapp, corresponding to either atoms that violate the continuous
consistency constraints (for the initial state policy) or domain actions
whose preconditions are not met at sgc (for the goal policy). Finally,
we apply the softmax function to obtain a probability distribution
over applicable actions a ∈ App, from which we sample the action
to execute at the current MDP state.

In order to train the initial state and goal policies, we resort to
the Deep RL algorithm Proximal Policy Optimization (PPO) [23].
Since PPO is an actor-critic algorithm, we need to employ an addi-
tional critic NLM for each policy, whose sole purpose is to evaluate
the current MDP state. The two policies are trained simultaneously
in an end-to-end fashion. The initial state policy receives rewards
accounting for problem consistency, diversity and difficulty. On the
other hand, the reward signal the goal policy receives accounts for
diversity and difficulty but not consistency, since the consistency of a
problem is independent of its goal g and, thus, of the goal policy. In
order to calculate the PPO advantages, we use the Generalized Ad-
vantage Estimation (GAE) [22] method. However, we found the best
λ value to be equal to 1, which is equivalent to simply calculating

advantages with the n-step returns (i.e., not using GAE). Moreover,
we use a policy entropy bonus as proposed in [23] to encourage suf-
ficient exploration, in addition to the diversity reward.

5 Experimentation

In this section we detail our experimental setup and analyze the re-
sults of our experiments, where we compare NeSIG against alterna-
tive approaches. Our full code and data can be found in GitHub [19].
We have made available a Docker image for easy deployment, as we
intend for our method to become a staple tool in the AP community.

5.1 Experimental setup

We perform experiments on a set of diverse and well-known plan-
ning domains: blocksworld, logistics and sokoban. In blocksworld,
a set of stackable blocks needs to be re-assembled with a gripper.
Logistics represents a transportation task where a set of packages
needs to be delivered across locations and cities using airplanes and
trucks. Sokoban is a challenging puzzle where several boxes must be
pushed to their goal locations. In blocksworld and logistics, the initial
state generation state starts from an empty state si with no objects or
atoms. In sokoban, si initially describes an empty NxM map with no
robots, walls or boxes, which will be added at generation time. The
PDDL description for each domain can be found in the Appendix.

We train NeSIG separately on each domain, performing 5000
training steps using Adam [15] with a learning rate of 10−3. Each ex-
periment is run on 25 threads of an AMD EPYC 7742 CPU and one
Nvidia A100 GPU, although our method can be trained on consumer-
grade GPUs since only 8 GBs of VRAM are needed. In each training
step, we generate 25 problems by executing up to 15 initial state ac-
tions (i.e., adding a maximum of 15 atoms to si) and up to 60 goal
actions in blocksworld and logistics. For sokoban, we execute up to
75 goal actions, as this domain is more challenging than the others,
and use a map of size 5x5. Every 250 training steps, we perform one
validation epoch, where 100 problems are generated and the reward
r of each problem is obtained using Equation 1. We calculate the
validation score of the model as the average problem reward and,
once training concludes, we load the model checkpoint with the best
validation score for testing. The complete list of hyperparameters is
provided in the Appendix. We use almost identical values for each
domain so as to show our method needs little hyperparameter tuning.

Problem difficulty is calculated as the average number of nodes
expanded by one or more planners to solve the problem. We employ
the planners provided by FastDownward (FD) [11]. During training,
we solve each problem with LAMA-first [21] using up to 500 MB
of memory and 5 minutes of planning time, setting a difficulty of
106 for problems that could not be solved under those limits. At test
time, we use LAMA-first, lazy-greedy search with the FF heuristic
[12] and lazy-greedy with the additive heuristic [2] with a memory
limit of 8 GB and time limit of 30 minutes, setting a difficulty of
108 for terminated problems. We use different planners for training
and testing to evaluate whether NeSIG can generate problems that
are challenging for several planners. In the Appendix, we provide
experiments with optimal planners. Finally, for efficiency purposes,
we generate small problems during training and then evaluate the
generalization abilities of NeSIG by generating larger problems at
test time (see Figure 2).

Several methods are compared to NeSIG in our experiments.
First, we employ ablations where either si (random-init models), sg
(random-goal models) or both (random-both models) are generated
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Table 1: Same test-size experiment results. The table compares the problems generated by NeSIG, several ablations (random-init, random-
goal and random-both models) and the domain-specific generator (ad hoc model) in blocksworld, logistics and sokoban. For each domain and
model, we generate 100 test problems with the same maximum sizeD used during training, corresponding to 15 max atoms in si. In sokoban,
we use a map size of 5x5. We evaluate the consistency, difficulty, diversity and generation time of the test problems generated, showing for
each property its mean value and standard deviation (±) across 5 random seeds. Since the ad hoc models do not require training, we use a
single initial random seed (which will be used to deterministically obtain the seed to generate each problem), which is why their std values
are always 0. Consistency is measured as the percentage of problems that meet the eventual consistency rules. Difficulty is measured as the
mean number of nodes the test planners needed to expand to solve the problems. When calculating the mean difficulty and diversity, we do not
consider inconsistent problems. Time refers to the total generation time (in seconds) needed to generate the whole set of 100 test problems.

Property Blocksworld
NeSIG random-init random-goal random-both ad hoc

Consistency .986±.01 .14±.022 .986±.012 .14±.022 1.0±.0
Difficulty 325±36 94±24 36±4 30±2 83±0
Diversity .025±.002 .026±.014 .033±.006 .026±.014 .024±.0
Time 26±4 11±2 22±1 9±0 4±0

Property Logistics
NeSIG random-init random-goal random-both ad hoc

Consistency .998±.004 .254±.047 .994±.008 .254±.047 1.0±.0
Difficulty 76±4 14±2 13±1 5±1 16±0
Diversity .196±.01 .222±.009 .167±.003 .25±.007 .264±.0
Time 28±3 14±1 26±1 13±1 4±0

Property Sokoban
NeSIG random-init random-goal random-both ad hoc

Consistency 1.0±.0 .994±.005 .998±.004 .994±.005 1.0±.0
Difficulty 2.4e5±7.6e4 5±0 1.8e4±1.7e4 6±1 1.2e3±0
Diversity .016±.001 .007±.0 .013±.001 .007±.0 .016±.0
Time 221±17 327±8 255±36 333±4 1019±0

Figure 2: Problem size generalization results. The plots show the mean difficulty (in log scale) obtained by NeSIG across five different
seeds, when tested on larger (and smaller) problems than those seen during training. We also plot the problem difficulty of the domain-specific
generators (ad hoc models) for comparison purposes. In blocksworld and logistics, problem size is measured as the maximum number of atoms
allowed in the initial state si. In sokoban, it is measured by the map size NxM. The maximum number of initial state and goal actions used by
NeSIG for each problem size, along with the parameters of the ad hoc models, are detailed in the Appendix.

by executing random actions a ∈ Aapp. We note our random-both
model is equivalent to the method proposed in [8], which also gen-
erates si and sg at random. We do not compare with Autoscale [28]
since it leverages domain-specific generators to obtain problems of
graded difficulty, often by gradually incrementing their size, whereas
our goal is instead to maximize problem difficulty given a limit on
their size. For this reason, we directly utilize the ad hoc, domain-
specific generators (ad hoc models) used in the International Plan-
ning Competitions (IPCs) [29], choosing their parameter values to
maximize problem diversity (see Appendix for the exact values).
Nonetheless, the sokoban generator allowed for little flexibility (e.g.,
problems of size 5x5 could not have more than two boxes), so we
have implemented our own based on a trial and error strategy which
obtains si by placing objects at random on the grid, randomly moves
boxes to obtain g, makes sure g can be achieved from si and, oth-
erwise, discards the problem and starts again. For a fair comparison
with NeSIG, we discard generated blocksworld and logistics prob-
lems with size smaller thanD−2, whereD is the maximum problem
size, measured as the maximum number of atoms in si.

5.2 Analysis of results

Table 1 compares the problems generated by NeSIG, its ablations and
the domain-specific generators (ad hoc models) using the same prob-
lem size for training and testing. It can be observed that NeSIG suc-
cessfully learns to generate problems according to the user-defined
consistency rules, as it seldom generates inconsistent problems in
blocksworld and logistics, and actually achieves perfect consistency
(100%) in sokoban. Additionally, NeSIG generates problems that are
significantly more difficult than those from domain-specific genera-
tors: 3.9 times in blocksworld, 4.75 times in logistics, and 200 times
in sokoban, for a total (geometric) average of 15.5 times more diffi-
culty. Despite this, NeSIG achieves only 8% less diversity than the
domain-specific generators on geometric average, which is surprising
considering that the random procedure followed by the latter results
in highly diverse problems. This is a remarkable result, as it means
that our proposed method does not need to sacrifice diversity in or-
der to increase problem difficulty, e.g., by learning to only generate a
certain type of problem, thus effectively learning to balance difficulty
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and diversity. Moreover, by leveraging parallel GPU computation,
we can generate 100 problems with NeSIG in only half a minute for
blocksworld and logistics, and in less than four minutes for sokoban.
Finally, we observe that NeSIG consistently achieves similar results
across runs, as indicated by the low standard deviations.

We now turn our attention to the ablation models. It can be
observed that using a random policy for initial state generation
(random-init and random-both models) severely degrades consis-
tency in blocksworld and logistics. This shows that, for domains
with complex consistency rules such as blocksworld and logistics,
a trained (i.e., non-random) generative policy is needed to reli-
ably generate consistent initial states. Additionally, ablations also
significantly impair problem difficulty, although the effect of each
policy ablation depends on the particular domain considered. In
blocksworld, it is more important to train the goal policy than the
initial state policy, since random-init achieves better difficulty than
random-goal. In sokoban, the opposite case happens, as random-goal
achieves several orders of magnitude better difficulty than random-
init. Finally, in logistics the two policies seem to be equally impor-
tant, as both ablations attain similar difficulty.

The random-both model represents the full ablation where no pol-
icy is trained, thus obtaining the worst results among all models.
However, an important advantage of this model over NeSIG and the
other ablations is that it does not require any type of training so, as
long as consistency rules are provided (which can be done easily us-
ing our proposed consistency language), it can be quickly applied
to generate problems for any (typed-STRIPS) planning domain. Al-
though problems generated with this approach are easier to solve than
those from the ad hoc models, problem difficulty can often be eas-
ily raised by incrementing problem size, just as Autoscale and ad
hoc models do. Therefore, for cases where increasing problem size
is acceptable or problem difficulty is not a concern, the random-both
model offers a general and low-effort alternative to domain-specific
generators, serving as a side contribution of our work.

Figure 2 shows the difficulty obtained by NeSIG when tested on
problems of different size than those used during training. We also
plot the difficulty of domain-specific generators for comparison pur-
poses. In logistics, NeSIG successfully generalizes to problems up
to twice the size of those seen in training, beating the ad hoc model
in terms of difficulty. However, for sizes 35 and 40, there is a sud-
den spike in the difficulty of problems from the ad hoc model, which
manages to outperform NeSIG. Our hypothesis is that the patterns
learned by NeSIG about which problem features result in high dif-
ficulty do not apply to problems with more than 30 atoms. There-
fore, in order for our method to generalize past this point, it should
be trained on larger problems. In blocksworld and sokoban, NeSIG
displays even better generalization abilities, obtaining several times
more difficulty (note the logarithmic Y-axis in Figure 2) than the
domain-specific generators for every problem size tested.

In conclusion, NeSIG is able to generate consistent problems
with high difficulty and diversity, successfully generalizing to prob-
lems several times larger than those seen during training. These
are remarkable results, especially taking into consideration that our
method is domain-independent, whereas ad hoc models have been
tailored to each particular domain and leverage extensive domain
knowledge. For example, the blocksworld generator uses an ad hoc
formula to make sure that every consistent state has the same prob-
ability of being generated. In logistics, the ad hoc model obtains the
goal by randomly shuffling the packages in the initial state, knowing
in advance that such a goal will always be achievable. In sokoban,
the original ad hoc generator employed a complex procedure that al-

lowed for little flexibility (e.g., problems of size 5x5 could not have
more than two boxes). Our new sokoban generator does not have
this limitation but, in exchange, it is very slow (e.g., it needs 1019
seconds to generate 100 problems of size 5x5, as shown in Table
1). When compared to ad hoc generators, NeSIG requires little prior
knowledge, as it only receives as inputs the maximum problem size,
the types and predicates that can appear in goals, and the set of prop-
erties (consistency constraints) that initial states must satisfy. More-
over, with our proposed semi-declarative language, these consistency
constraints can be easily and intuitively encoded (see Appendix for
concrete examples), thus reducing human effort even further.

6 Conclusion

In this work we introduced NeSIG, to the best of our knowledge
the first domain-independent method for the automatic generation of
planning problems that are simultaneously valid, diverse and difficult
to solve. We formulated problem generation as an MDP, training two
policies with Deep RL to generate problems with the desired prop-
erties. Both policies were encoded by NLMs, a neuro-symbolic deep
neural network architecture capable of working with FOL data.

A remarkable feature of our method is that it does not require a
training dataset of example problems. Instead, it only receives as
inputs the PDDL domain description and a set of consistency con-
straints generated problems must satisfy, along with some extra in-
formation (maximum problem size and the types and predicates that
are allowed in goals). Therefore, NeSIG requires less prior knowl-
edge than handcrafted, domain-specific generators such as those of-
ten used in the IPCs. Moreover, we proposed a semi-declarative lan-
guage for encoding consistency constraints in an intuitive and inter-
pretable manner, further reducing human effort.

We tested NeSIG on three classical domains, comparing our ap-
proach against domain-specific generators and several ablations. Re-
sults show NeSIG successfully generates valid problems which are
as diverse as those from domain-specific generators but considerably
more difficult (15.5 times more on geometric average). Addition-
ally, it showcases impressive generalization abilities, as it generates
harder problems than the ad hoc generator in logistics for up to twice
the training size, and surpasses the difficulty of domain-specific gen-
erators in blocksworld and sokoban for all test sizes considered. In
light of the results obtained, we believe our work establishes a new
state of the art in planning problem generation and hope it will prove
useful to the Automated Planning community.

We note the choice of consistency constraints and quality metric
to optimize depends on user preferences regarding the type of prob-
lems to generate. Therefore, in future work, we plan to harness the
flexibility of NeSIG by generating problems according to different
user preferences (e.g., maximizing plan length instead of planning
difficulty), where hard constraints will be represented as consistency
rules and soft constraints numerically as part of the reward function.
We will also extend the expressivity of our method beyond typed
STRIPS, e.g., by generating PDDL2.1 [7] problems with numeric
fluents. Additionally, we also plan to explore several applications of
our method. A few examples would be automated curriculum gen-
eration, i.e., generating problems of just the right difficulty for effi-
ciently training an AI agent to solve a particular set of tasks, and ad-
versarial problem generation, i.e., exploring the weaknesses of plan-
ning algorithms by generating problems that are challenging for a
particular planner.
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