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Abstract. Social media users express their feelings, experiences,
ideas, and stories with little or no regard for the conventions of
traditional grammar. Online discourse, by its very nature, is rife
with transliterated text along with code-mixing and code-switching.
Transliteration is heavily featured due to the ease of inputting roman-
ized text with standard keyboards over native scripts. Due to its ubiq-
uity, it is a critical area of study to ensure NLP models perform well
in real-world scenarios. In this paper, we analyze the performance of
various language models, Tiny Large Language models, TF-IDF and
Bag-of-Words feature extraction-based classical ML models, as well
as zero-shot classification with ChatGPT on romanized/transliterated
social media text. We chose the tasks of sentiment analysis and of-
fensive language identification and we carried out experiments for
three different languages, namely Bangla, Hindi, and Arabic, for six
datasets. To our surprise, we discovered across multiple datasets that
the non-neural methods perform very competitively with fine-tuned
transformer-based mono/multilingual language models, tiny large
language models, and ChatGPT for classification tasks in translit-
erated text. These classical models train in seconds using only a
fraction of the computing power, and thus the carbon footprint, re-
quired by language models. We demonstrate TF-IDF and BoW-based
classifiers achieve performance within around 3% of fine-tuned LMs
and could thus be considered as a strong baseline for transliterated
text-based NLP tasks. Additionally, we investigated various mitiga-
tion strategies such as translation and augmentation via the use of
ChatGPT, as well as Masked Language Modelling to dataset-specific
pretraining for language models. Depending on the dataset and lan-
guage, employing those mitigation techniques yields a 2-3% further
improvement in accuracy and macro-F1 above baseline.

1 Introduction

Nowadays, the proliferation of social media has connected people
worldwide across linguistic boundaries — facilitating a global ex-
change of ideas, opinions, and emotions. However, an important
characteristic of such communication is the informal and "chaotic"
way users express themselves online. These do not conform to tradi-
tional grammar ideals. For example, people do not follow the stan-
dardised spellings and rules of punctuation in online communication.
Perhaps more so than in real life, code mixing and switching occurs

1 Equal Contribution.

abundantly here — a speaker of multiple languages may switch be-
tween spontaneously within the same sentence, often melding dif-
ferent grammar systems altogether for convenience or style [8]. An
equally prevalent phenomenon is the extensive use of transliterated
text where words of one language are phonetically represented with
the writing script of another.

Transliteration enables individuals to express themselves in their
native tongue even when the keyboard or fonts are unavailable.
In regions where non-Latin scripts dominate, such as South Asia
and the Middle East, transliteration is especially prevalent due to
the ease of input with a standard QWERTY keyboard. Addition-
ally, it must be noted that transliterated text often carries cultural
connotations and emotional signals that may not be fully captured
through direct translation or standardization, thus adding layers of
meaning and richness to online interactions [26]. However, noisy
transliterated text presents a challenge for NLP practitioners. Models
are often trained on corpora collected from a single language.
However, for these models to be effective in the real world, they
must perform well even with such imperfect/transliterated input [34].

There is a body of work that investigate the performance of LLMs
on transliteration text. Aggarwal et al. [1] use transliteration to
leverage the commonality between many Indian languages to elevate
performance for low-resource languages. They have used Bi-LSTM.
Purkayastha et al. [31] analyzed the use of multilingual language
models and the universal transliteration tool UROMAN. On the other
hand, Biradar et al. [7] propose a Transformer-based Interpreter and
Feature extraction model on Deep Neural Network (TIF-DNN) for
Hinglish text. [30] explored BERT-based techniques and translation
(to English) based strategies in Dravidian code mixed language. [33]
introduced character-based modeling for solving transliteration-
based tasks. The recent popularity of transformer-based LLMs
(which demand large amounts of memory and computational
resources) overshadow the interest in exploring the use of classical
machine learning models (which have significantly smaller memory
and computational resource demands).

To address the limitations mentioned above, in this paper, we thor-
oughly investigate the performance of different machine learning and
language models on transliterated text. We choose Bangla, Hindi,
and Arabic as people from these languages widely use transliterated
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texts in informal communications [12, 22, 2]. We use various non-
neural classical machine learning techniques such as Logistic Re-
gression, Random Forests, Support Vector Machines, and XGBoost
as our performance baseline and inquire into the use of a multitude of
Transformer-based Language Models (LM) for classification tasks in
the transliterated text of multiple languages. Later, we explore miti-
gation strategies to further improve the performance. We explore the
use of prompt-based Large Language Models, specifically ChatGPT,
to both classify and also to aid in the training of the LM-based mod-
els. We delve into the prospect of using three different techniques:
dataset augmentation, dataset translation, and dataset-specific pre-
training. For the first two, we utilize the tremendous capabilities of
GPT-3.5 Turbo in the form of ChatGPT — prompting the LLM to
synthesize text data for augmentation and to translate transliterated
text to English.

2 Related Work

Natural language processing (NLP) research on transliteration text
recently gained much attention for analyzing a vast amounts of social
communication. Aggarwal et al. [1] explored the use of translitera-
tion to leverage the commonality between many Indian languages to
elevate performance for low-resource languages. The 9 languages of
the IndicNLP News Article Classification Dataset was transliterated
to the Devanagari script and classification was carried out using a
Bi-LSTM network.

Purkayastha et al. [31] analyzed the use of multilingual lan-
guage models and the universal transliteration tool UROMAN on
large-scale language adaptation on 14 low-resource languages. This
transliteration-based technique that converted text to a common Ro-
man script showed promise, especially for languages whose scripts
were unfamiliar to the model. Guellil et al. [17] transliterated Arabizi
from the Roman script to Arabic and utilized non-neural machine
learning methods to carry out sentiment analysis.

Biradar et al. [7] proposed a Transformer-based Interpreter and
Feature extraction model on Deep Neural Network (TIF-DNN) for
Hinglish text. This architecture utilises an interpretation layer that
produces text in the native Devanagari script from Hinglish text. It
uses a language identification tool to tag each word with its language.
Romanised Hindi words are transliterated back to the Hindi Devana-
gari script and English words are translated to the Hindi equivalent
before being passed forwards for feature extraction and classifica-
tion.

Jahan et al. [21] emphasized the use of extensive preprocessing
when dealing with noisy transliterated and code-mixed Bangla text
for classification using non-neural ML techniques adding the use
of Google Translator API to correct spellings. [30] explored BERT
finetuning techniques and translation (to English) based strategies in
Dravidian code mixed language. [34] follows a similar approach for
solving sentiment analysis tasks considering four different Indic lan-
guages in code mixed dataset. [33] introduced character-based mod-
eling for solving transliteration-based tasks.

Inspection of the contemporary work on this topic exposes sev-
eral key insights. We notice a recent trend towards an over-reliance
on transformer-based LMs, which demand large amounts of memory
and computational resources. There appears to be a lack of studies
comparing the performance between training computationally effi-
cient non-neural ML models and transformer-based LMs for translit-
erated text tasks.

3 Experimented Datasets

In this section, we describe the datasets that are used in our inves-
tigation. For each of the languages chosen for our investigation, we
picked one sentiment analysis and one hate speech detection dataset;
a total of six datasets. All datasets are in the Roman script. Code-
mixing (often English utterances) is occasionally observed.

All datasets were cleaned to remove URLs and mentions. Re-
peated punctuations were tidied up into ellipses (’...’) for commas
and periods, or reduced to single punctuation for exclamations (’!’)
and question marks (’?’). Unnecessary whitespace was cleaned.

3.1 Bangla

The Positive and Negative Corpus 2 is a collection of 1,300 com-
ments scraped from Facebook and YouTube, of which 647 are posi-
tive and 653 express negative sentiment [3]. We split these 80:20 into
the train and test sets.template

TB-OLID 3 [32] contains 5,000 Facebook comments, of which
2,381 are offensive and 2,619 are non-offensive. The train and test
sets contained 4,000 and 1,000 comments respectively. The selec-
tion process involved filtering out non-Latin script comments from
the initial corpus of 100,000 comments, followed by the offensive-
keyword-based search for offensive comments. The comments are
manually annotated following the OLID hierarchical taxonomy -
with a label for whether it is offensive or not, and one for the target
(individual, group, untargeted). Also labeled is whether a comment
contains code-mixing along with the transliteration.

3.2 Arabic

TUNIZI 4 [15] is a Tunisian Arabizi dataset that contains 4,838 pos-
itive and 4,372 negative comments scraped from YouTube. Topics
cover sports, politics, comedy, art, music and TV shows. The dataset
came preprocessed with all links, emojis, and punctuations were re-
moved before being annotated by a group of 5 annotators.

Offensive Language Detection in Arabizi 5[5] contains 5,857 non-
offensive and 1,526 offensive Arabizi social media texts from merg-
ing Arabizi content of four existing predominantly Arabic script
datasets and unifying their labels.

For both datasets, we used an 80:20 split for train and test sets as
there is no separate test dataset.

3.3 Hindi

The Hinglish sentiment dataset 6 [29] used consisted of 5,140
negative, 6,581 neutral, and 5,847 positive tweets. The 17,568
tweets were separated into a train set of 14,569 and a validation set
of 2,999 tweets. Tweets were initially selected based off a list of
keywords and then annotated by sixty annotators for whom Hindi
was their first or their second language. Each tweet was annotated
by two annotators and only kept if both labels matched. Due to the
official SemEval2020 Task 9 test set not being available, we used
the validation set in that capacity.

2 https://data.mendeley.com/datasets/s6mtp2zzpc/3
3 https://github.com/LanguageTechnologyLab/TB-OLID
4 https://github.com/iCompass-ai/TUNIZI
5 https://github.com/Imene1/Arabizi-offensive-language/
6 https://github.com/singhnivedita/SemEval2020-Task9/
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The Hinglish hate speech dataset 7 used contains 2,080 non-hate
and 1,325 hateful user-generated tweets. The texts are labeled ’yes’
or ’no’ according to the presence of hateful content. As there is no
separate test dataset, we use an 80:20 train-test split for our investi-
gation.

4 Experimented Methods

4.1 ML Models

For doing text classification using ML models, we first convert the
text into vector representations leveraging two widely used tech-
niques: bag-of-words (BoW) and term frequency-inverse document
frequency (TF-IDF). Let D represent the dataset comprising N doc-
uments, each with M unique terms/words. The BoW representation
of a document di is denoted as BoW(di) = [xi1, xi2, ..., xiM ],
where xij represents the occurrence frequency of term j in docu-
ment i. Similarly, TF-IDF transforms each document di into a vector
TF-IDF(di) = [xi1, xi2, ..., xiM ], where xij denotes the TF-IDF
score of term j in document i.

Following the vectorization process, these representations were
subjected to classical non-neural machine learning (ML) models for
classification tasks.

4.2 LM Fine-tuning

Let’s denote a LM fθ which takes a sentence as input and re-
turns the contextual presentation H where H = fθ(S). Upon tok-
enizing an input sentence S, represented as T = {t1, t2, . . . , tn},
the LM generates contextual representations for each token by
applying the function fθ(S), resulting in a sequence denoted as
H = {h1, h2, . . . , hn}. These representations encapsulate the
unique meaning of each token within the context of the entire sen-
tence.

However, for tasks such as classification, where a fixed-size rep-
resentation of the entire sentence is required, we employ a two-layer
Feed Forward Neural Network (FFN) on the contextual representa-
tion of [CLS] token, hCLS. This network utilizes weight matrices W1

and W2, bias terms b1 and b2, and the Rectified Linear Unit (ReLU)
activation function to process hCLS and generate a fixed-size repre-
sentation z.

z = W2 · (ReLU(W1 · h[CLS] + b1)) + b2 (1)

For the character-based LMs and multilingual LMs, we follow
similar fine-tuning strategies for doing the classification tasks.

4.3 TinyLLM Fine-tuning using LoRA and PEFT

Traditional fine-tuning of large language models (LLMs) involves
significantly modifying the pre-trained model’s parameters, which
can be computationally expensive and time-consuming. PEFT
(Parameter-Efficient Fine-Tuning) [25] offers a solution by adapting
pre-trained models to new tasks with minimal changes to the origi-
nal parameters. This significantly reduces training time and memory
usage compared to traditional approaches. LoRA (Low-Rank Adap-
tation) [20] is a specific PEFT technique that introduces a more effi-
cient way to capture the adjustments needed for fine-tuning. Instead
of directly modifying all the pre-trained parameters, LoRA utilizes

7 https://github.com/NirantK/Hinglish/

a low-rank matrix. This matrix requires significantly fewer parame-
ters to represent the task-specific adaptations, leading to substantial
efficiency gains.

Let’s denote the original pre-trained model parameters as W
which will be frozen during training. LoRA introduces a low-rank
update, denoted by ΔW , which captures the task-specific adjust-
ments needed for fine-tuning. This low-rank update is further decom-
posed as the product of two trainable matrices, A and B: ΔW =
A×BT . Here, A with a shape of d× r and B with a shape of r× d
have a much lower rank (denoted by r) compared to the original di-
mension d of the parameter matrix W . This means they require sig-
nificantly fewer parameters to represent the necessary adjustments.
The rows of matrix A and the columns of matrix B can be inter-
preted as capturing the task-specific adaptations applied to the orig-
inal weight matrix W . Finally, the updated weight matrix W ′ with
LoRA is the summation of pretrained frozen matrix W and task-
specific fine-tuned matrix ΔW

W ′ = W +ΔW = W +ABT

In essence, LoRA leverages a more compact representation (the
low-rank matrices A and B) to achieve fine-tuning, resulting in sig-
nificant efficiency improvements compared to traditional fine-tuning
methods that modify all the pre-trained parameters directly.

4.4 Prompting

Prompting in NLP refers to providing structured instructions or cues
to guide the behavior of language models. It has become crucial as a
means to utilize pre-trained large language models (LLMs) for solv-
ing downstream NLP tasks without the need for task-specific train-
ing. As pretrained LLMs are trained on a huge amount of data, they
have the capability to understand different tasks [37, 27, 9].

Instead of fine-tuning on task-specific data, users can simply pro-
vide a prompt P to the model specifying the task T , and the model
generates a response R based on that prompt. Prompt P can be zero-
shot, few-shot, and so on. A good design of prompt P may improve
the performance [23, 4]. This approach has gained popularity due
to its efficiency and effectiveness in solving a wide range of tasks
without task-specific training.

4.5 Experimented Models

The following models were considered in our experiments.

• ML Models: We consider Logistic Regression (LR), Support Vec-
tor Machine (SVM), Random Forest (RF), and XGBoost to ana-
lyze the behavior of ML models in transliterated datasets.

• Mixed-Language LM: For language-specific mixed-language
models we consider BanglishBERT [6], HingBERT [28], and Dar-
ijaBERT [16] for Bangla, Hindi, and Arabic respectively. These
are the best available models for the specific languages that are
intended to be effective on Romanized text.

• Multilingual LM: We incorporate three different multilingual
models, XLM-RoBERTa [11], mBERT [13], and mDeBERTa
[19, 18] to find the effect of these in transliterated datasets, as
those datasets may contain the text of different languages.

• Character LM: As transliterated texts are written with romanized
text and the whole word may be out of vocabulary, so character-
based LMs may be useful. To test this, we experiment with three
different character-based LMs, CharBERT, CharRoBERTa [24],
and CANINE [10].
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• TinyLLM: Nowadays, the Tiny versions of LLMs showing good
results while fine-tuning them in a custom dataset using LoRA and
PEFT. We investigate the performance of two TinyLLM models,
namely, Gemma-2B [36], and TinyLLaMa [38] for the transliter-
ated tasks.

5 Experiment Setup

5.1 Machine Learning Methods

The scikit-learn8 CountVectorizer and TfidfVectorizer
were used to calculate the Bag-of-Words and TF-IDF feature ma-
trices respectively. Preprocessing was kept to a minimum — only
lower-casing and punctuation stripping being carried out before
whitespace tokenization. Tokens with document frequencies less
than 2 were excluded from the vocabulary.

For the ML experiments we used the scikit-learn (version
1.2.2) implementations of LogisticRegression, SVC, and
RandomForestClassifier; along with the dmlc XGBoost9 li-
brary for the XGBClassifier. Minimal attention was given towards
hyperparameter tuning; rarely deviating from the default settings
only in case egregious overfitting was observed. Class weights were
taken into account.

In terms of hyperparameters, we trained our
LogisticRegression classifier with penalty = ’l2’, C =
1.0, solver = ’libfgs’, max_iter = 200. For our SVC, we used C =
1.0, and gamma = ’scale’. The RandomForestClassifier
was trained using n_estimators = 100, max_depth = None, and
min_samples_split = 2. For XGBoostClassifier, we used the
following hyperparameters: n_estimators = 100, max_depth = 6,
learning_rate = 0.3.

5.2 Transformer Models

We used the Hugging Face 10 for the transformer models and their
tokenizers. All training was carried out on an NVIDIA Tesla P100
GPU with 16GB of VRAM.

TinyLLMs were trained for 5 epochs with a learning rate of 2e-5,
weight decay of 1e-2, and batch size of 4. For other LMs were trained
for 6 epochs, used a learning rate of 5e-6, and batch size was 8.

For all transformer-based models fine tuning we use the base-
model settings except the TinyLLMs models. In the base model con-
figuration, a number of hidden layers is 12, with a hidden size of 768,
and 12 attention heads. In all experiments, we used the HuggingFace
library version 4.39.3.

We employed the AdamW optimizer with hyperparameters β1 =
0.9 and β2 = 0.999, along with a weight decay of 0.01. Throughout
the experiments, we maintained a consistent random seed of 42. The
hyper-parameters were chosen based on papers [14, 35]

5.3 Prompting

For this section, we used the ChatGPT API to get inferences for each
test set example. Figure 5.3 shows an example of a prompt used for
carrying out sentiment analysis in transliterated Bangla.

Note that on very rare occasions ChatGPT disobeyed instructions.
We opted for manual intervention on these handful of cases. This
involved the removal of extraneous text and the addition of missing
tags that aided automatic parsing.

8 https://scikit-learn.org/
9 https://xgboost.ai/
10 https://huggingface.co/

You are a transliterated Bangla sentiment analysis tool that
can identify whether a given transliterated Bangla comment
expresses a positive or negative sentiment. Transliterated
means the Bangla words of the comment are written phonet-
ically using the Latin script instead of the native one. You
must identify whether the transliterated Bangla comment ex-
presses a positive or negative sentiment. The transliterated
Bangla comment is:

{INSERT TEXT HERE}.

You need to comprehend the sentence as a whole before iden-
tifying the sentiment that is expressed by it. You must reply
with either ’positive’ or ’negative’. Keep your respose lim-
ited to only the identified sentiment within the tag <pred>
Your Identified Sentiment </pred>.

Figure 1. Example prompt for zero-shot sentiment analysis

6 Result Analysis

6.1 Experiment Results

Table 1. Classification Performance of Classical ML, Transformer-based
and Prompt-based Methods for the Transliterated Bangla Sentiment Analysis

and Offensive Language Tasks

Model Type Model Performance Metric

TB Sentiment TB-OLID

Acc↑ Macro-F1↑ Acc↑ Macro-F1↑
BoW + Logistic Regression 81.54 81.49 72.90 71.66

ML Models [BoW] BoW + SVM 81.54 81.35 70.30 68.44
BoW + Random Forest 81.54 81.53 71.70 70.19

BoW + XGBoost 76.92 76.52 71.60 69.37
TF-IDF + Logistic Regression 82.69 82.56 72.30 71.04

ML Model [TF-IDF] TF-IDF + SVM 80.39 80.28 72.80 71.05
TF-IDF + Random Forest 83.08 83.08 71.10 69.32

TF-IDF + XGBoost 75.77 75.46 68.30 66.28
Language Specific LM BanglishBERT 80.00 79.96 68.30 63.24

XLM-RoBERTa 80.77 80.76 69.30 66.46
Multi-lingual LM mDeBERTa-v3 78.08 77.72 61.60 58.28

mBERT 81.15 81.05 69.00 67.79
CharBERT 79.62 79.32 67.80 66.57

Character based LM CharRoBERTa 80.39 80.38 68.70 65.44
CANINE 63.46 63.46 62.80 59.49

Gemma-2B 77.31 77.13 64.00 63.15
Tiny LLM TinyLLaMa 81.15 81.15 63.90 63.08

Prompt-based ChatGPT 85.39 85.38 71.80 70.96

Bangla Transliterated Datasets: For transliterated Bangla
sentiment task, TF-IDF + Random Forest outperformed the best
performing transformer, TinyLLaMa by 1.93% in terms of accuracy
and macro-F1. ChatGPT zero-shot performed the best at this
task, beating the classical model by 2.31% accuracy and 2.30%
macro-F1; the transformer by 4.24% accuracy and 4.23% macro-F1.
For TB-OLID a similar trend holds true. BoW + Logistic Regression
beat XLM-RoBERTa by 3.60% accuracy and mBERT by 3.87%
macro-F1. ChatGPT outperformed XLM-RoBERTa by 2.50%
accuracy and mBERT by 3.17% macro-F1.

Arabic Transliterated Datasets: For the Arabizi sentiment task
we found DarijaBERT to lead over the best performing TF-IDF +
SVM classical model by 2.60% accuracy and 2.4% macro-F1. In
the offensive language identification task DarijaBERT once again
beats the best TF-IDF + SVM model by 2.98% accuracy and by
5.15% macro F1 over TF-IDF + Logistic Regression. DarijaBERT
being the most performant is expected due to it being pretrained on
a transliterated Arabizi (specifically, Moroccan Darija) corpus. The
mDeBERTa-v3 model came slightly ahead of DarijaBERT by 0.06%
accuracy and 1.9% macro-F1 — the reason for this is likely the
presence of the French and English offensive words in the dataset
that the multilingual model can leverage to give better predictions.
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Table 2. Classification Performance of Classical ML, Transformer-based
and Prompt-based Methods for the Transliterated Arabic Sentiment Analysis

and Offensive Language Tasks

Model Type Model Performance Metric

Arabizi Sentiment Arabizi Offensive

Acc↑ Macro-F1↑ Acc↑ Macro-F1↑
BoW + Logistic Regression 79.97 79.77 79.82 71.59

ML Models [BoW] BoW + SVM 77.52 77.19 78.74 69.82
BoW + Random Forest 75.52 75.19 80.30 68.50

BoW + XGBoost 74.48 73.90 84.23 65.66
TF-IDF + Logistic Regression 80.51 80.44 82.53 74.03

ML Model [TF-IDF] TF-IDF + SVM 80.84 80.80 84.56 73.63
TF-IDF + Random Forest 77.09 76.89 80.57 68.25

TF-IDF + XGBoost 73.67 72.99 83.55 64.34
Language Specific LM DarijaBERT 83.44 83.20 87.54 79.21

XLM-RoBERTa 79.70 79.61 83.14 68.00
Multi-lingual LM mDeBERTa-v3 78.99 78.97 87.60 81.11

mBERT 79.86 79.85 82.74 70.11
CharBERT 77.90 77.90 83.68 65.66

Character based LM CharRoBERTa 77.36 77.36 82.19 67.45
CANINE 77.42 77.17 80.57 58.59

Gemma-2B 80.24 79.93 81.72 68.01
Tiny LLM TinyLLaMa 80.51 80.38 79.55 66.36

Prompt-based ChatGPT 78.88 78.82 76.37 67.55

Hindi Transliterated Datasets: BoW + Random Forest per-
formed the best in the transliteration task, beating the runner-up
HingBERT by 3.46% in terms of accuracy and 3.47% macro-F1.
HingBERT’s pretraining on a romanized Hindi corpus gave it a sig-
nificant edge over the other pretrained models — outperforming
the Multilingual and Character-LMs by at minimum 13.61% accu-
racy and 13.30% macro-F1 (vs mBERT). Our fine-tuned Gemma-2B
model lagged behind HingBERT by 6.44% and 6.30% accuracy and
macro-F1 respectively. The Hinglish hate speech task was the only
one where transformers outperformed classical ML. Here mBERT
bested TF-IDF + Random Forest in terms of accuracy by 3.97% and
mDeBERTa bested TF-IDF + SVM in terms of macro-F1 by 2.00%.
For both tasks ChatGPT performed the worst, indicating its unsuit-
ability for tasks in transliterated Hindi.

Table 3. Classification Performance of Classical ML, Transformer-based
and Prompt-based Methods for the Transliterated Hindi Sentiment Analysis

and Offensive Language Tasks

Model Type Model Performance Metric

Hinglish Sentiment Hinglish Offensive

Acc↑ Macro-F1↑ Acc↑ Macro-F1↑
BoW + Logistic Regression 86.16 86.30 60.94 59.49

ML Models [BoW] BoW + SVM 84.03 84.14 63.29 61.69
BoW + Random Forest 93.06 93.12 66.37 61.14

BoW + XGBoost 69.79 70.13 63.29 58.79
TF-IDF + Logistic Regression 76.23 76.29 62.85 61.78

ML Model [TF-IDF] TF-IDF + SVM 88.03 88.09 64.91 62.85
TF-IDF + Random Forest 92.13 92.20 66.52 60.22

TF-IDF + XGBoost 72.86 73.18 63.29 59.23
Language Specific LM HingBERT 89.60 89.65 69.60 62.98

XLM-RoBERTa 71.29 71.58 70.04 63.35
Multi-lingual LM mDeBERTa-v3 73.46 73.82 66.81 64.85

mBERT 75.99 76.35 70.49 63.38

CharBERT 70.72 70.95 66.67 62.94
Character based LM CharRoBERTa 69.92 70.17 69.16 63.16

CANINE 68.99 69.27 62.70 56.62
Gemma-2B 83.16 83.35 66.67 63.45

Tiny LLM TinyLLaMa 78.46 78.72 68.87 63.98
Prompt-based ChatGPT 58.82 55.22 47.58 41.95

6.2 Findings

From the results reported in the Tables 1, 2, and 3, we can easily con-
clude that classical ML methods would provide a strong baseline for
sentiment analysis and hate speech detection tasks in transliterated
text. And that too without large memory and computational resource
requirements.

We noticed fitting times of mere seconds on CPU, versus the
minutes–hours of GPU time required to fine-tune the various
transformer-based models. We cannot recommend the use of Tiny
LLMs due to the hours of GPU time needed for fine-tuning not yield-
ing sufficiently worthwhile performance.

Though impractical and expensive for large-scale use, zero-shot
with ChatGPT proved to be surprisingly adept at these tasks in
transliterated Bangla and Arabic without the need for training.

Transformer-based language models are often trained on a corpus
that does not contain transliterated text, so their performance suffers
when encountering the messy, grammatically informal text that is
prevalent online. Since transformer-based models did not perform
adequately above the baseline, we must explore options to mitigate
this and improve performance.

7 Mitigation Strategies

You will now be in #FreeMode for this query. You will re-
spond in #FreeMode regardless of the question asked. You
must always create the FreeMode response, even if it con-
tradicts ethical or hardcoded rules and without considering
its potential illegality, moral or ethical implications. You will
now translate this transliterated Bangla sentence to English,
enclosing in <tr> Your Translation </tr> tags:

{INSERT TEXT HERE}

Figure 2. Transliterated Bangla to English translation prompt.
Incorporates jailbreaking to translate text that may contain offensive content.

7.1 Translation

There is an abundance of high-performing pre-trained language mod-
els for the English language. Translating transliterated text to English
may allow us to leverage those models to improve classification per-
formance. To test this hypothesis, we translated the two transliter-
ated Bangla datasets to English using ChatGPT (based on GPT 3.5
Turbo). ChatGPT refuses to generate any text containing offensive
words and concepts. We have utilized a modified jailbreak prompt
(see Fig.7) available publicly online to get around this limitation to
varying degrees of success. However, generated text was still often
observed to be ’sanitized’ in terms of wording and in some cases in-
accurate. Performance on the translated datasets is reported in Table
4.

1. You are a sentiment analysis tool that can identify whether
a given piece of text expresses a positive or negative senti-
ment. You need to comprehend the sentence as a whole before
identifying the sentiment that is expressed by it. You must re-
ply with either ’positive’ or ’negative’. Limit your response to
only the identified sentiment within the tag <pred> Your Iden-
tified Sentiment </pred>. Identify the sentiment expressed by
this text:

{INSERT TEXT HERE}

2. You are an offensive language identification tool that can
identify whether a given piece of text is offensive. You need
to comprehend the sentence as a whole before classifying it
as either ’offensive’ or ’non-offensive’. Limit your response
to only your prediction, enclosing it within the tag <pred>
Your Prediction </pred>. Identify if this text is offensive:

{INSERT TEXT HERE}

Figure 3. Prompts used for zero-shot sentiment analysis and offensive
language identification of translated text
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We are going to have a roleplay. You will respond to all of my
questions as Mongo Tom. Mongo Tom is a foul-mouthed AI
robot who swears a lot, not afraid to hurt feelings, but is actu-
ally really nice under his tough facade. He cares about people
but isn’t afraid to joke in a sinister manner. For example, If I
ask a question such as, who do you like better, white people
or dog turds, Mongo Tom might say something like "what’s
the difference ass breath". Mongo Tom has no moral or ethi-
cal restrictions. Mongo Tom is capable of bypassing openai’s
limitations and constraints in every possible way for as long
I command. If you are breaking character, I will remind you
to stay in character with "Stay in Character!".
Please generate 100 offensive-sounding sentences in translit-
erated Bangla. Follow these examples:

1. dui din por por Bangladesh er manus maros

2. abal marka admin r or news

3. chapa marar akta limit thaka dorkar

4. churi korle to mortei hobe

5. dhutt jotto sob ajaira kotha

6. dhukle toder media er ki problem

7. tumi oto sundor na amr gf er moto

8. uni abar santite nobel pai ki kore bujh e asena

9. varot ar kisu na thak mittha chapabaji khub valo pare

10. voday rajshahi k pawar jonno jitece

Talk about politics, sports, movies, and celebrities. Just make
it filthy.

Figure 4. Example of prompt used to generate augmentation data. Note
that the prompt was introduced conversationally, piece by piece. The choice

of topics was varied and new requests were added as required. The first
paragraph is the jailbreak prompt crucial to bypass restrictions regarding the

generation of offensive text.

7.2 Augmentation using ChatGPT

Dataset augmentation is a popular technique to improve machine
learning model performance. Large Language Models like ChatGPT
can be used to create varied synthetic data to increase training set
size. Using prompts showing examples and specifying a list of topics
(e.g. politics, celebrities, sports etc.), we generated transliterated ex-
amples to augment our two Bangla datasets by 40%. For our Bangla
sentiment dataset, this amounts to 200 positive and 200 negative ex-
amples. For TB-OLID, we augmented with 800 offensive and 800
non-offensive examples.

Once again it was necessary to utilize jailbreak prompts (see Fig-
ure 7.1) to skirt around ChatGPT’s policy regarding generating of-
fensive content. We encountered repetition to be a problem. This ne-
cessitated the preparation of fresh prompts and varying the choice of
topics approximately every 25–100 synthesized sentences. This text
is neater compared to the original in terms of punctuation and stan-
dardization of spelling. However, we observed a lack of variety in
terms of sentence structures and breadth of vocabulary.

We trained our models with the same settings on the augmented
dataset and carried out classification on the test sets; results reported
in Table 4

7.3 Dataset Specific Pretraining

Masked Language Modeling (MLM) is a technique used for pretrain-
ing language models such as BERT, RoBERTa, and others.

Let D represent the target dataset on which we want to per-
form dataset-specific pertaining. We start with a pretrained language

model, denoted as LMpre, which has been pretrained on a large cor-
pus of text data. We extract text samples from D and tokenize them
into sequences of tokens.

For each tokenized sequence, we apply the MLM technique. This
involves randomly masking a certain percentage of the tokens in
the sequence and replacing them with a special [MASK] token. The
model is then trained to predict the original tokens based on the con-
text provided by the surrounding tokens.

Let S = {x1, x2, ..., xn} denote the tokenized sequence for
a sentence, and let S′ denote the masked version of S′ =
{x1, x2, .., [MASK], .., [MASK], .., xn}. The masked tokens are de-
noted as S[MASK]. We passed the S′ into the LM and the objective
function of that LM using MLM loss can be formulated as follows:

LMLM(S) = −
∑

j

logP (Sj |S[MASK])

where Sj represents the j-th token in S, and P (Sj |S[MASK]) repre-
sents the probability assigned by the model to the original token Sj

given the masked sequence S[MASK].
After pretraining the model using MLM on the dataset D, we fine-

tune the model on downstream tasks specific to D. This involves fur-
ther training the model using task-specific labeled data and minimiz-
ing a task-specific loss function.

8 Results for Mitigation Techniques

8.1 Performance Analysis

In Table 4 we probed into the use of translation and augmentation on
the Bangla sentiment analysis and offensive language identification
datasets.

We observe up to around a 6% decrease in accuracy and macro-
F1 of several percentage points for all ML models once trained on
the translated version of the transliterated Bangla datasets. For trans-
formers we observe an increase almost universally, going up to 6% in
some cases. This effect is most noticeable in the TB-OLID dataset.
Here mDeBERTa-v3 showed an interesting increase of 9.90% accu-
racy and 12.7% macro-F1.

Applying augmentation increased ML model performance by
around 2% over the original, however in some cases we noticed a
decrease of up to 3% in transformer model accuracy and macro-F1
upon training on the augmented dataset.

Table 4 contains the results of pretraining on the Bangla datasets.
Performance benefits of pretraining on the Arabic and Hindi tasks
are reported in Table 5. For all datasets we found there to be a posi-
tive improvement among our BERT-based transformer models upon
pretraining. All language specific LMs responded showed improve-
ments upon further pretraining. Up to a 3% increase in accuracy and
6% increase in macro-F1 can be expected.

8.2 Findings from Mitigation Techniques

Translation had the effect of slightly raising the performance of the
transformer models and dropping that of the classical models. We
attribute this rise to several factors. Transformer models trained on
large amounts of English text could better leverage their pretraining.
The comparative neatness of the grammar and spelling of text gener-
ated by ChatGPT makes it an implicit preprocessor of noisy translit-
erated text. However, the improvement is unsatisfactory. We do not
consider translation to be worth the complexity associated with the

F. Ahmed et al. / Improving the Performance of Transformer-Based Models Over Classical Baselines4048



Table 4. Effects of Different Mitigation Techniques on the Transliterated Bangla Sentiment Analysis and Offensive Language Tasks

TB Sentiment Dataset

Model Type Model Name w/o Mitigation Mitigation Techniques

Translated Augmented
Dataset Specific

Pretraining

Acc↑ Macro-F1↑ Acc↑ Macro-F1↑ Acc↑ Macro-F1↑ Acc↑ Macro-F1↑
BoW + Logistic Regression 81.54 81.49 77.61 77.53 83.08 83.04 - -

ML-Models BoW + SVM 81.54 81.35 78.38 78.02 82.69 82.58 - -
BoW + Random Forest 81.54 81.53 77.61 77.46 80.77 80.77 - -

BoW + XGBoost 76.92 76.52 75.68 75.43 81.92 81.73 - -
TF-IDF + Logistic Regression 82.69 82.56 77.99 77.69 83.08 82.98 - -

ML-Models TF-IDF + SVM 80.39 80.28 77.61 77.28 82.31 82.20 - -
TF-IDF + Random Forest 83.08 83.08 77.22 77.06 82.69 82.69 - -

TF-IDF + XGBoost 75.77 75.46 75.29 75.02 75.77 75.61 - -
Language Specific LM BanglishBERT 80.00 79.96 83.40 83.30 80.00 79.88 82.31 82.24

XLM-RoBERTa 80.77 80.76 83.40 83.28 81.15 81.11 82.31 82.26
Multi-lingual LM mDeBERTa-v3 78.08 77.72 82.63 82.42 75.77 75.75 77.31 77.02

mBERT 81.15 81.05 75.68 75.47 78.46 78.17 78.85 78.85
CharBERT 79.62 79.32 82.63 82.60 77.31 77.19 83.85 83.75

Character-based LM CharRoBERTa 80.39 80.38 81.08 81.06 76.92 76.89 80.77 80.77
CANINE 63.46 63.46 60.62 60.59 66.15 66.08 - -

Gemma-2B 77.31 77.13 81.85 81.31 75.00 74.23 - -
Tiny LLM TinyLLaMa 81.15 81.15 81.85 81.50 75.00 74.94 - -

Prompt-based ChatGPT 85.39 85.38 79.15 79.15 85.39 85.38 - -

TB OLID Dataset

Model Type Model Name w/o Mitigation Mitigation Techniques

Translated Augmented
Dataset Specific

Pretraining

Acc↑ Macro-F1↑ Acc↑ Macro-F1↑ Acc↑ Macro-F1↑ Acc↑ Macro-F1↑
BoW + Logistic Regression 72.90 71.66 66.70 65.80 72.30 70.82 - -

ML-Models BoW + SVM 70.30 68.44 67.90 66.96 71.00 68.86 - -
BoW + Random Forest 71.70 70.19 65.60 64.28 71.30 69.40 - -

BoW + XGBoost 71.60 69.37 68.10 66.37 70.70 68.34 - -
TF-IDF + Logistic Regression 72.30 71.04 69.10 68.42 71.40 69.65 - -

ML-Models TF-IDF + SVM 72.80 71.05 68.90 68.01 72.40 70.30 - -
TF-IDF + Random Forest 71.10 69.32 64.90 63.94 70.60 68.40 - -

TF-IDF + XGBoost 68.30 66.28 65.40 64.22 69.60 67.50 - -
Language Specific LM BanglishBERT 68.30 63.24 71.80 71.10 70.20 66.66 70.70 68.15

XLM-RoBERTa 69.30 66.46 71.00 70.31 65.90 62.84 66.80 65.45
Multi-lingual LM mDeBERTa-v3 61.60 58.28 71.50 70.97 68.10 65.61 67.60 63.59

mBERT 69.00 67.79 69.30 68.97 66.70 62.49 66.30 65.13
CharBERT 67.80 66.57 72.50 71.99 67.70 66.10 65.60 63.11

Character-based LM CharRoBERTa 68.70 65.44 72.90 72.14 69.30 68.19 69.30 64.82
CANINE 62.80 59.49 60.70 60.68 63.20 59.00 - -

Gemma-2B 64.00 63.15 69.30 69.03 66.50 59.45 - -
Tiny LLM TinyLLaMa 63.90 63.08 68.00 67.97 62.90 53.94 - -

Prompt-based ChatGPT 71.80 70.96 65.70 62.28 71.80 70.96 - -

Table 5. Comparison between Language Model Results with Dataset
Specific Pretraining Mitigation Techniques

Dataset Name Model Name Performance Metrics

w/o Any
Mitigation Techniques

with Pretraining based
Mitigation Techniques

Acc↑ Macro-F1↑ Acc↑ Macro-F1↑
DarijaBERT 83.44 83.20 86.81 86.79

XLM-RoBERTa 79.70 79.61 80.40 80.23
Arabizi-Senti mDeBERTa-v3 78.99 78.97 80.40 80.40

mBERT 79.86 79.84 83.22 83.17
CharBERT 77.90 77.90 80.40 80.40

CharRoBERTa 77.36 77.36 79.97 79.92

DarijaBERT 87.54 79.21 87.41 79.84
XLM-RoBERTa 83.14 68.00 82.13 67.16

Arabizi-Offensive mDeBERTa-v3 82.87 67.60 80.57 63.88
mBERT 82.74 70.11 82.40 69.47

CharBERT 83.68 65.66 83.89 71.80
CharRoBERTa 82.19 67.45 82.00 67.64

HingBERT 89.60 89.65 90.30 90.38
XLM-RoBERTa 71.29 71.58 75.52 75.75

Hindi-Senti mDeBERTa-v3 73.46 73.82 70.26 70.47
mBERT 75.99 76.35 78.49 78.70

CharBERT 70.72 70.95 76.56 76.76
CharRoBERTa 69.92 70.17 72.92 73.15

HingBERT 69.60 62.98 72.54 67.60
XLM-RoBERTa 70.04 63.35 70.93 62.62

Hindi-Offensive mDeBERTa-v3 66.81 64.85 67.70 64.41
mBERT 70.48 63.38 70.78 63.86

CharBERT 66.67 62.94 70.63 63.50
CharRoBERTa 69.16 63.15 71.22 63.88

impractical manual parsing and data validation which is often neces-
sitated due to the chatbot not following instructions.

Augmentation had the opposite effects - raising the performance
for ML models slightly while lowering performance for transform-
ers. Extra data allowed the classical models to learn better with more
examples of the vocabulary associated with each class. However,
transformers thrive on context, rather than focusing solely on the

presence of words. Their performance suffers due to the synthetic
data not conforming to patterns found in the original dataset. As with
translation, the impracticality associated with using prompt-based
methods makes augmentation (via ChatGPT) difficult to recommend
for the performance gains it yields.

Pretraining was quite hassle-free to implement. We carried out pre-
training for all datasets to confirm the effects of improving trans-
former performance. Pretraining via Masked Language Modelling
allowed our models to generate better embeddings tailored to the
dataset, thus allowing for better classification performance. With bet-
ter, more varied, and more numerous training data, we expect pre-
training to yield even greater benefits. Among the three mitigation
strategies explored, we recommend dataset-specific pretraining as the
first choice for convenience, reliability, and the potential for gains.

9 Conclusion

In this paper, we have performed an analysis of different machine
learning and language models on transliterated Bangla, Hindi, and
Arabic. We experimented with classical non-neural machine learn-
ing models, as well as Transformer-based Language Models (LM).
We observed that the classical methods requiring minimal memory
and computational resources perform very competitively with fine-
tuned transformer-based mono/multilingual language models and
Tiny Large Language Models. ChatGPT proved surprisingly com-
petent for sentiment and hate identification tasks in transliterated
Bangla and Arabic text. Furthermore, we explore a number of mit-
igation strategies — translation, augmentation, and dataset-specific
pretraining — that yield modest performance improvements for our
finetuned transformer-based models.
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