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Abstract. Generative document retrieval (GDR) uses pre-trained
Transformer-based large language models (LLMs) to extract con-
textual information and directly predict document identifier token
sequences, outperforming traditional document retrieval methods.
However, LLMs incur significant computational costs, hindering
GDR’s practical application and making inference acceleration es-
sential. Early exiting is one of the conditional computing techniques
that expedites LLM inference, but it faces challenges when integrated
into GDR due to GDR’s semantically hierarchical structured identi-
fiers, which cause error amplification from premature exits. More-
over, although beam search expands the search space, the hierarchi-
cal structure of document identifiers restricts the diversity of initial
tokens, leading to inefficiencies. In this work, we introduce Bi-Level
Early Exiting for Generative Document Retrieval (BiLEE), compris-
ing Layer Level Early Exiting (LLEE) and Token Level Early Ex-
iting (TLEE). LLEE are designed for hierarchical document identi-
fiers, dynamically escaping from the middle layer of the Transformer
calculation based on a data-driven calibrated token threshold. TLEE
exiting from unpromising candidate sequences, thus discarding un-
promising search beams and enhancing beam search efficiency. Both
components dynamically balance the speed-to-accuracy trade-offs
for different token positions, doubling GDR’s inference speed and
obtaining 13× reduction for FLOPs while maintaining the same level
of accuracy. Source code: https://github.com/Rui-Fang/BiLEE.

1 Introduction

Document retrieval [29, 2, 38, 33] is a technique critical to search
engines, question-answering, and dialog systems. Past document re-
trieval methods [29, 2, 38, 33] can be categorized into sparse re-
trieval (SR) and dense retrieval (DR). However, both approaches
have their limitations. On the one hand, SR [27, 26], based on
keyword-matching, assumes word overlaps between queries and rel-
evant documents and often fails to grasp semantic subtleties. On the
other hand, DR [20] addresses the limitations of SR by adopting an
embedding technique to explore the document semantic rather than
lexical matching, which improves the likelihood of finding relevant
results. However, when a query is related to multiple documents in
the semantic space, DR struggles to retrieve all relevant documents
by a single embedding representation [33, 36].

Recently, generative document retrieval (GDR), utilizing pre-
trained large language models (LLMs) to explore document seman-
tics, has gained significant attention [29, 39, 33]. In GDR, LLMs
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function as document repositories, with the training process implic-
itly memorizing and facilitating connections between queries and
documents via the attention mechanism in Transformers [31], auto-
matically generating identifiers that points to documents relevant to
the given queries [22, 10]. Unlike natural language generation tasks,
a sequence of tokens for GDR represents a path along a top-down hi-
erarchical structure based on the taxonomy of the documents. Each
token from start to end of the sequence represents levels of subclasses
from top to bottom of the hierarchical structure. A sequence of tokens
is denoted as a docid (document identifiers).1 In the inference stage
of a GDR model, Beam search [17] is employed to simultaneously
explore multiple sequences of tokens (termed beam hypotheses), that
is, partially constructed docids, and selects the top candidates to pre-
dict the next token. With beam search, GDR avoids being trapped in
a local optimum when predicting docid. Note that document retrieval
for downstream tasks such as web search or retrieval-then-rank that
requires numerous ranked candidate documents usually requires a
larger beam search size.

Although GDR demonstrates potential advantages over traditional
document retrieval methods, its computational demands are substan-
tial [33], primarily due to the Transformer-based LLM architecture.
Moreover, while beam search allows for comprehensive exploration
of the docid search space, it further increases computational com-
plexity, presenting a clear trade-off between the beam search size
and efficiency. To address this challenge, the Early Exiting strat-
egy [30, 28] is a promising way to reduce the computational for
multi-layered LLMs, where the number of layers required for cor-
rect token prediction can dynamically adjust based on the difficulty
of each token. The core idea of early exiting is to calculate a confi-
dence level for individual layers during the transformer’s layer-by-
layer computation, determining whether to bypass the subsequent
layers (i.e., exit) or to continue for the inference calculation of the
current token. If the exit point is correctly chosen, exiting the layer-
by-layer computation early allows LLMs to generate the correct to-
ken using the output from an intermediate layer rather than the final
layer of a transformer, thereby conserving computational resources.

A prior work by Schuster et al. [28] has explored adopting early
exiting on LLMs for language generation tasks. However, several
challenges arise when applying early exiting to GDR due to the
distinct characteristics of docids required for GDR. Firstly, the hi-
erarchical structure of document categorization in a docid leads to
a cascading effect where errors in earlier tokens significantly im-

1 The hierarchical k-means algorithm is commonly used to cluster documents
into docid based on their semantic correlation. When the prefix digits of do-
cid are identical, it indicates a higher relevance between the two documents.
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(a) Conventional GDR inference with multi-layered transformer.

(b) Layer Level Early Exiting (LLEE).

(c) Token Level Early Exiting (TLEE).

Figure 1. Illustration of BiLEE during a token generation process for GDR. (a) depicts the case where neither TLEE nor LLEE is triggered; (b) presents
LLEE: when an adaptor finds confidence score surpasses the designated layer threshold λl, the calculation can exit at this layer; (c) If the overall confidence

score for the final embedding is below the token threshold λt, the search for this token will be removed (exited) among the beam search candidates.

pact subsequent tokens’ accuracy. Intuitively, such a condition re-
quires a higher precision for earlier tokens than for later ones. How-
ever, we observe that the prediction difficulty of the end of a do-
cid sequence also increases since these tokens require differentiating
between smaller semantic differences within finer categories. Such
striking characteristics cause token prediction difficulty to fluctuate
based on token position, deviating from a simple monotonic trend.
As a result, since prior work [28] assumes a monotonic decrease in
token difficulty with sentence length, it produces sub-optimal out-
comes when applied to GDR. In addition, the smaller vocabulary
size of GDR causes the conventional approach of fine-tuning the en-
tire model to be prone to overfitting.

Secondly, beam search results also create redundancy because the
diversity of initial tokens in these search results is not required for
GDR. Since docid is hierarchically structured, most beam hypothe-
ses during the initial 1 ∼ 2 tokens explorations exhibit a very low
score and will be discarded in the later decoding stages, resulting
in a significant waste of compute. Nevertheless, the usual layer-wise
confidence levels of these low-score hypotheses are usually too low
to meet the layer-level early exit thresholds, necessitating alternative
early exiting designs.

To address the aforementioned challenges, we introduce an ac-
celeration framework designed for GDR: Bi-Level Early Exiting for
Generative Document Retrieval (BiLEE). As illustrated in Figure 1,
BiLEE prevents redundant computations for highly confident tokens
at the layer level for accelerating token inference with Layer Level
Early Exiting (LLEE) and reduces redundant computations for low-
confidence tokens at the token level by identifying and terminating
less likely docid candidates within the beam search process with To-
ken Level Early Exiting (TLEE).

Specifically, through a data-driven calibration process, LLEE es-
tablishes the thresholds for each token to better adapt to the varying
difficulty of different token positions, facilitating early exiting for
each token position without compromising the overall performance.
Besides, to tackle the overfitting problem caused by the smaller to-
ken vocabulary size, LLEE employs layer-wise adaptor training pro-

cesses instead of the conventional approach of fine-tuning the en-
tire model (see Figure 1(b) and Figure 2). Simultaneously, TLEE
presents an early exiting strategy for the beam search process by
preemptively terminating beam hypothesis branches based on beam
confidence scores (i.e., relevance scores); we minimize inefficiencies
within the beam search space and reinforce the efficacy of our early
exit strategies (see Figure 1(c)).

During the inference phase, our model leverages LLEE to exit
early from layers exhibiting high confidence and utilizes TLEE to
exit from low-confidence branches during beam search. Experimen-
tal results demonstrate that BiLEE reduced the FLOPs usage of GDR
inference by up to 12.59× and enhanced throughput by up to 2.53×,
all while maintaining accuracy levels without notable degradation.

Our contributions are summarized as follows:

• We introduce Bi-Level Early Exiting for Generative Document Re-
trieval (BiLEE), representing the inaugural accelerated GDR ap-
proach employing early exiting strategies. To our knowledge, this
is the first work to accelerate GDR via early exiting.

• We introduce a bi-level acceleration framework: Layer Level
Early Exiting (LLEE) operates at the layer level to skip redundant
computations for individual token predictions, while Token Level
Early Exiting (TLEE) focuses on exiting low-confidence tokens
and narrowing the beam search space.

• Combining LLEE and TLEE, BiLEE yields up to 4.34× reduction
in FLOPs with a 1.92× increase in throughput acceleration on
the NQ320k dataset and up to 12.59× reduction in FLOPs with a
2.53× increase in throughput on the TriviaQA dataset.

2 Related Work
2.1 Generative Document Retrieval

Document retrieval facilitates the location of relevant documents
within a database or corpus based on user queries, with various ap-
plications, including web searches [19], question answering [12],
and dialogue systems [3]. Traditional sparse retrieval (SR) methods
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[27, 26, 25] rely on word overlaps between queries and documents,
often faltering due to lexical mismatches. Dense retrieval (DR) meth-
ods [12, 34, 24] employ encoders for semantic matching, mitigat-
ing the zero-recall phenomenon. However, a single query represen-
tation may struggle to recall all relevant documents, as they may not
align closely in the semantic space [36]. Moreover, DR methods may
not fully exploit the capabilities of Large Language Models (LLMs)
to understand semantics. Recently, Generative Document Retrieval
(GDR) has emerged as a paradigm within DR, directly mapping in-
put queries to corresponding document identifiers using generative
models. The pioneering work GENRE [5] generates document titles
using constrained beam search. Subsequent works employ various
strategies for docid, such as filenames [5], random numbers [29],
single atomic embeddings [22, 21], and multi-view identifiers [15].
While these identifiers either cannot map semantically similar docu-
ments together or require a vast vocabulary to map the entire corpus,
a recent line of studies employs trained LLM to generate semanti-
cally clustered docid in a Seq2seq manner. For instance, DSI [29] as-
signs hierarchically and semantically clustered docids to documents,
while DSI-QG [39] enhances DSI by generating pseudo queries us-
ing doc2query. NCI [33] and RIPOR [35] also introduce improve-
ments by generating pseudo queries, incorporating location offset
prefixes to docid, and employing prefix-aware weight-adaptive de-
coders. However, the practical adoption of GDR faces limitations.
LLMs entail significant computational demands, necessitating large
model scales to memorize corpus information [22] effectively. Addi-
tionally, GDR requires large beam sizes to generate multiple candi-
date documents, resulting in significant computational requirements.

2.2 Early Exiting for LLM

Early Exiting [30] dynamically adjusts computational resources for
tokens, offering simplicity and effectiveness. Initially developed for
convolutional neural networks, it terminates computation once the
model achieves sufficient confidence, reducing inference resources
and time [18]. While extensively applied to encoder-only transformer
models, especially in the BERT series [8, 37, 16], generalizing it
to Encoder-Decoder poses challenges due to structural and paradig-
matic differences. CALM [28] pioneers the application of Early Exit-
ing on Encoder-Decoder Transformers, addressing crucial issues like
layer-level early exit strategies and linking sequence-level constraints
with individual per-token exit decisions. SkipDecode [6] proposes
a uniform exit point at each token position for batch inference in
Decoder-only models but lacks adaptability to token complexity vari-
ations. Chen et al. [4] introduces a framework named EE-LLM for
large-scale training and inference of Early-Exit LLMs, tackling scal-
ability challenges. However, the above methods employ exit thresh-
olds decreasing monotonically with sentence length, failing to ad-
dress token difficulty diversity in GDR outputs and requiring whole
model fine-tuning, leading to overfitting. In contrast, our BiLEE uti-
lizes finer-grained thresholds and uses the adaptors rather than fine-
tuning the whole model to resolve these issues. Additionally, we ex-
tend Early Exit to the beam search process, addressing search space
waste in GDR beam search by calibrating token-level exit thresholds.

3 Preliminaries
To ensure documents with similar semantics have close document
identifiers (docids), GDR with semantic ID utilizes a hierarchical k-
means algorithm. Each document d in the corpus C is initially en-
coded by a pre-trained LLM [13] to obtain a vector embedding. Sub-

sequently, the k-means algorithm is recursively applied to these rep-
resentations, forming a hierarchical clustering [33]. For clusters with
fewer than c documents at any level, k-means clustering is reapplied
to create k sub-clusters within that cluster. This hierarchical cluster-
ing results in a tree structure where each document d resides in a leaf
node, establishing a deterministic path r = [r0, r1, . . . , rm], with
ri ∈ [0, k), ∀, i < m and rm ∈ [0, c), which serves as the docid for
each document d.

An encoder-decoder transformer model is trained to autoregres-
sively generate a sequence of docid from a given query q. Specifi-
cally, each token ri at position i in the docid sequence is iteratively
predicted based on the query q and the sequence of previously pre-
dicted tokens up to position i, denoted as r<i. This prediction is facil-
itated by the transformer’s output and a position-specific embedding
matrix Wi. Formally, the hidden state output hL

i for the ith token
from the final decoder layer L is represented as

hL
i = Decoder(Encoder(q), r<i, θ), (1)

where θ denotes the model parameters. The prediction probability p
can be expressed as follows.

p(ri|q, r<i, θ) = SoftMax(Wih
L
i ), (2)

where r<i denotes the predicted docid tokens up to position i. With
early exiting, prediction probabilities are calculated using decoder
layers earlier than L. Specifically, the hidden state from a mid-layer
j is denoted as hj .

Finally, the relevance of a docid sequence rn up to position n is
quantified by a relevance score Sn.

Sn(q, r) =
n∑

i=1

log p(ri|q, r<i, θ), (3)

where Sn is used to rank candidate docid sub-sequences. In GDR, a
beam search creates a ranked list of candidate docid sequences. This
method iteratively keeps the top N candidate docid sub-sequences
of length n, extends each sub-sequence to the next position by sam-
pling multiple token candidates for each docid candidate according
to Equation (2), and then selects the top N candidates again based
on their Sn+1 scores.

The hierarchical structure of docid in GDR allows for a smaller
vocabulary and shorter content than traditional seq2seq tasks. docid
tokens in different positions carry distinct semantics despite having
the same embeddings. For example, r = [1, 4] and r′ = [2, 4] share
the token 4, but represent different document sub-clusters. Unlike
natural language, where tokens generally have consistent meanings,
GDR’s position-specific semantics necessitate separate embedding
matrices Wi for different positions as defined in Equation (2), unlike
the unified W used in natural language tasks.

4 Bi-Level Early Exiting for Generative Document
Retrieval

We introduce Bi-Level Early Exiting for Generative Document Re-
trieval (BiLEE), designed to expedite GDR using the Layer Level
Early Exiting (LLEE) and Token Level Early Exiting (TLEE) strate-
gies. Specifically, LLEE dynamical determines the optimal layer
for an early exit and calibrates token-specific thresholds within
a revised learn-then-test (LTT) framework to minimize unneces-
sary computations. Meanwhile, TLEE curtails low-confidence beam
search branches, effectively narrowing the search space by omitting
tokens irrelevant to the query.
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Figure 2. Adaptor training scheme. The adaptor is trained to transform
earlier layer hidden states into the final layer outputs. The transformer layers

of the GDR model are frozen during adaptor training.

4.1 Layer Level Early Exiting (LLEE)

First, LLEE dynamically adjusts computing depth by determining
how many decoder layers to skip during inference to conserve com-
putational resources. It calculates the confidence score cij for layer
j at token i, with a corresponding exit threshold λi

j . The framework
exits at layer je when e represents the optimal exit position.

je = min({j | cij > λi
j}),

Mearly(q, r<i) = SoftMax(W jehje
i ),

(4)

where W je represents the output embedding matrix of exited layer
je which projects the hidden states hje

i to the final logits.
Previous early exiting approaches for LLMs in natural language

tasks [28] involve sharing the embedding matrix W je across all lay-
ers, including the final word embedding, and fine-tuning the entire
model using a cross-entropy loss function. However, since docid in
GDR consists of a much smaller vocabulary size (10 ∼ 300) than
typical sequence generation models (> 30000), naively applying
such an approach leads to significant overfitting such that the GDR
model converges to a performance level much below that of the orig-
inal model. Furthermore, prior works set the exit threshold λi

l by a
fixed exponential function that monotonically decreases with token
position, which does not suit GDR’s variant token difficulty nature.2

We developed LLEE to manage varying token difficulties and
mitigate overfitting dynamically. Rather than fine-tuning the entire
model, we implement layer-wise adaptors Ai with shared weights
and unique biases to reflect varying confidence levels across layers
while keeping the trained GDR model parameters fixed. Confidence
scores c are derived from the difference between the top two outputs
of the adaptor, as calculated by SoftMax(Alhl

i).
As illustrated in Figure 2, our adaptor training objective is to mini-

mize the KL divergence between the final logits and the early skipped
logits, with the aim of ensuring that the output of the probability dis-
tribution at each exit layer closely approximates the probability dis-
tribution of the final result. Namely,

Lgt =
L∑

j=1

ωjLKL

(
Ajhj ,WLhL

)
. (5)

We average losses for each layer to obtain the objective function.
The ωj is each layer’s layer weights, and we employ a reversed layer
weighting strategy ωj = (L− j)/

∑L
k=1 k to favor lower layers.

For exit thresholds λ, we use a token-wise learn-then-test calibra-
tion algorithm to determine the optimal value for each token position.
The learn-then-test framework redefines hyper-parameter optimiza-
tion as a multiple-testing procedure. Employing a textual consistency

2 Refer to section 5.3.3 for qualitative proof of variant token complexity.

Algorithm 1 Token-wise threshold calibrating algorithm
1: function CALIBRATE((Mearly,Mfull, St, δ, ε)
2: Λ = [λ1, λ2, · · · , λT ] = [1.0, 1.0, · · · , 1.0]
3: F = True
4: while F do
5: F = False
6: for i = 1 to T do
7: Randomly sample n elements from St to form s.
8: λi = λi − d
9: Ê = D (Mearly (s,Λ) ,Mfull (s))

10: pHB = Hoeffding-Bentkus
(
Ê, δ, n,

)
11: if pHB > ε then
12: F = True
13: else
14: λi = λi + d

15: return Λ

calibrating framework and an exit threshold grid Λ = (λ1, . . . , λT ),
the LTT calibration hypothesis is established.

H : (E [D (Mearly (St,Λ) ,Mfull (St))] ≥ δ) (6)

where D is the retrieval result dissimilarity function, a function that
can measure the difference in retrieval performance between two
models. δ ∈ (0, 1) stands for error tolerance between the perfor-
mance of full and early exited models. HypothesisH can be rejected
by the Hoeffding-Bentkus inequality p-value pHB[9].3 Considering
the cascading errors brought about by the hierarchical identifiers in
GDR, i.e., errors in preceding tokens potentially causing the entire
sequence to be incorrect, we can iteratively calibrate these thresholds
token-by-token, allowing them to converge to an optimal configura-
tion. Therefore, we proposed the token-wise calibrating algorithm
with step size d in Algorithm 1. Note that even we did not fine-tune
the threshold for each layer, each layer’s adaptor possesses its own
bias to reflect the confidence level for exiting at different layers.

4.2 Token Level Early Exiting (TLEE)

While GDR generates a docid based on a query, beam search simul-
taneously allows multiple candidate docid sequences. Beam search
selects the top N candidates at each position, corresponding to each
level in the document cluster hierarchy. Typically, N remains con-
stant as a hyperparameter, ensuring consistent candidate exploration.
However, extensive ranked content is necessary for applications like
web search, leading to a challenging trade-off to consider. Specif-
ically, setting N too small limits the possible beam search explo-
ration, thus degrading the performance; setting N too large causes
the search space and, thereby, the computation complexity to ex-
plode.

To tackle this challenge, we aim to design a novel early exiting
strategy for the beam search process. We notice that due to the cas-
cading error characteristics of GDR, even with a large beam size,
the diversity in search results for the initial tokens remains extremely
low. For example, over 94% of the correct first tokens appear within
the top 5 candidates. Therefore, we introduce Token Level Early
Exiting to efficiently minimize computational overhead by rapidly
abandoning unpromising paths. This is achieved by combining the
above-mentioned LTT framework with a token-level early exit strat-
egy. Specifically, after computing each token, any beam hypothesis

3 This p-value can be obtained by combining inverted Hoeffding’s inequal-
ity [9] and Bentkus inequality [1].
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Figure 3. Comparison of the Oracle Exit Positions. During inference, the
Oracle Exit Positions are 2 to 4 behind the training case, indicating a serious

Training-Inference Misalignment.

with sequence or token confidence below a predefined threshold is
discarded, thereby shortening the candidate list. The LTT framework
adjusts the token confidence threshold λt similar to the LLEE thresh-
old to maintain the integrity of the original model’s performance.

Note that TLEE stands apart from earlier beam pruning tech-
niques [7]. Unlike traditional methods, TLEE dynamically adjusts
thresholds for each token, catering to the variable search complex-
ities across different tokens in GDR. Furthermore, it uses absolute
thresholds instead of relative ones, reducing uncertainty during the
LTT phase and thus streamlining the complexity of the ranking pro-
cess within the LTT framework.

4.3 Training-Inference Misalignment

In previous research on early exiting for generation models, such
as SkipDecode [6] and CALM [28], parameters of early exiting
components are typically trained using Teacher-Forcing mode. Dur-
ing Teacher-Forcing training, adaptors process hidden states h gen-
erated from ground truth tokens as depicted in Equation 1, r =
[r1, r2, . . . , ], tokens following the first one will only encounter the
correct preceding token and their corresponding hidden states. How-
ever, during inference, adaptors or or other corresponding early exit-
ing components frequently handle incorrect previous tokens, leading
to errors in result and confidence estimation, a discrepancy known as
Training-Inference Misalignment.

First, we introduce Oracle Exit Position, which is the point where
the first adaptor produces the same prediction result as the full model,
i.e.,

jo = min
(
{jo | argmax(W johjo

j ) = argmax(WLhL)}
)
. (7)

This metric assesses the effectiveness of an early exiting system by
pinpointing the earliest possible point for an error-free exit. As il-
lustrated in Figure 3, the Oracle Exit Position is notably earlier dur-
ing the training phase (i.e., under Teacher-Forcing) compared to the
inference phase. For example, in the NQ320k experiment using a
2-layer adaptor, the model could correctly exit after an average of
1.5 layers during training. In contrast, 5.7 layers were required to
achieve a correct exiting point during inference. Improving adaptor
capabilities can address this discrepancy, though at the expense of
increased computational demand. This issue was deemed minor in
CALM, likely due to smaller beam sizes in traditional generation
tasks with early exiting, which reduces the impact of misalignment
compared to GDR.

To mitigate this issue, we refined the training approach, which en-
tails training with the layer hidden states and final hidden states ac-

quired during beam search. This is expressed as follows.

Lgen =
T∑

i=1

L∑
j=1

ωiLKL

(
W j

i h
j
i ,W

L
i h

L
i

)
ωi = max

(
SoftMax

(
WL

i h
L
i

))
hi ∈ Beam Search (Encoder (q))

(8)

ωi represents the confidence weight designed to prevent hypothe-
ses with excessively low confidence from disrupting learning. T and
L denote the maximum number of tokens and layers, respectively.
hi refers to all hidden states generated in the beam search at token
position i.

5 Experiments

5.1 Experiment Setting

We experiment on two popular question-answering databases with
natural language queries and corresponding datasets: TriviaQA [11],
consisting of 78k query-document pairs, and NQ320k [14], consist-
ing of 320k query-document pairs. We employ the predefined train-
ing and validation splits for evaluation. Following previous works by
Wang et al. [33] and Zhuang et al. [39], we use a T5-Large[23] LLM
with a 24-layer encoder and a 12-layer decoder and designate a 2-
layer multilayer perceptron with layer normalization and a dropout
layer as the adapter. For model training, queries are generated us-
ing DocT5Query, and the first 64 terms of each document are also
utilized as queries. The training batch size is set to 256, the infer-
ence batch size to 16, and the learning rate to 1 × 10−4, with an
Adam optimizer. We evaluate GDR performance using the standard
document retrieval metrics Recall@N and Mean Reciprocal Rank
(MRR).4 All experiments are performed using Python 3.9.12, Py-
Torch 2.0.1, and HuggingFace Transformers 3.4.0, and are run on
an HP DL580 server with an Intel 2.10GHz CPU, 1TB RAM, and an
NVIDIA V100 GPU.

5.2 Main Result

We first conduct a quantitative analysis comparing our BiLEE with
the leading Encoder-Decoder early exiting approach CALM [28],
and the unaccelerated original GDR model [33]. We evaluate various
beam sizes from 5 to 100 and document the outcomes for each size.
As detailed in Table 1, BiLEE significantly surpasses CALM in per-
formance across multiple beam sizes and datasets, achieving up to a
12.59× reduction in FLOPs and a 2.53× increase in inference speed
for the NQ320k dataset at a 100 beam size. For the TriviaQA dataset,
our method also shows considerable gains, with a 4.34× reduction
in FLOPs and a 1.92× improvement in throughput, underscoring its
effectiveness.5

On the TriviaQA dataset, our method enables earlier exits by an
average of two layers compared to CALM, with a lesser impact on re-
call, offering a substantial performance benefit. For NQ320k, a more
complex dataset compared with TriviaQA, CALM achieved 1.60×

4 MRR measures the inverse rank of the first relevant document retrieved [32],
while Recall@N measures how often the desired document appears in the
top N results.

5 It’s worth noting that the improvements in throughput are less marked than
those in FLOPs, potentially due to factors like CPU-GPU communication
or scheduling bottlenecks, suggesting areas for further throughput opti-
mization.
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Table 1. Main Results

Beam Size Recall at MRR Exit At TP FLOPs Acc. Rate
1 5 10 20 50 100 TP FLOPs

N
Q

32
0k

Baseline

5 65.41% 81.44% / / / / 0.718 / 49.72 1.27E+11 1.0x 1.0x
10 65.86% 81.84% 85.19% / / / 0.723 / 27.38 2.36E+11 1.0x 1.0x
20 65.86% 81.84% 85.17% 88.01% / / 0.725 / 15.71 4.68E+11 1.0x 1.0x
50 65.86% 81.84% 85.17% 88.05% 90.56% / 0.726 / 6.40 1.2E+12 1.0x 1.0x
100 65.86% 81.84% 85.17% 88.05% 90.56% 92.23% 0.726 / 3.22 2.41E+12 1.0x 1.0x

CALM

5 42.16% 61.07% / / / / 0.497 8.94 47.09 9.37E+10 0.95x 1.35x
10 42.25% 62.91% 68.28% / / / 0.51 9.10 30.77 1.67E+11 1.12x 1.41x
20 42.25% 63.07% 68.94% 73.60% / / 0.514 9.22 18.58 3.22E+11 1.18x 1.45x
50 42.25% 63.07% 68.94% 73.75% 78.75% / 0.516 9.20 8.17 7.93E+11 1.28x 1.51x
100 42.25% 63.07% 68.94% 73.75% 78.66% 82.01% 0.516 8.80 4.33 1.51E+12 1.34x 1.60x

BiLEE

5 65.40% 80.59% / / / / 0.715 6.84 54.43 6.15E+10 1.09x 2.06x
10 65.48% 80.55% 83.92% / / / 0.718 6.90 38.26 8.91E+10 1.40x 2.64x
20 65.48% 80.13% 83.97% 86.25% / / 0.719 6.78 26.51 1.23E+11 1.69x 3.81x
50 65.48% 79.74% 83.59% 86.28% 89.03% / 0.719 6.50 14.04 1.65E+11 2.20x 7.24x
100 65.48% 79.72% 83.51% 86.17% 89.03% 90.42% 0.719 6.36 8.16 1.91E+11 2.53x 12.59x

Tr
iv

ia
Q

A

Baseline

5 73.29% 89.31% / / / / 0.38 / 42.00 1.22E+11 1.0x 1.0x
10 73.30% 90.01% 92.29% / / / 0.384 / 26.93 2.21E+11 1.0x 1.0x
20 73.30% 90.04% 92.61% 93.96% / / 0.385 / 15.90 4.22E+11 1.0x 1.0x
50 73.32% 90.04% 92.61% 94.08% 95.48% / 0.385 / 7.08 1.04E+12 1.0x 1.0x
100 73.30% 90.04% 92.61% 94.08% 95.46% 96.44% 0.385 / 3.58 2.12E+12 1.0x 1.0x

CALM

5 67.02% 84.86% / / / / 0.348 8.76 49.20 9.16E+10 1.17x 1.34x
10 67.07% 86.26% 89.11% / / / 0.353 8.77 32.24 1.59E+11 1.20x 1.39x
20 67.07% 86.29% 89.79% 91.69% / / 0.354 8.74 19.95 2.91E+11 1.25x 1.45x
50 67.07% 86.29% 89.79% 91.69% 94.04% / 0.355 8.75 8.87 6.91E+11 1.25x 1.51x
100 67.07% 86.29% 89.81% 91.91% 94.17% 95.16% 0.355 8.52 4.51 1.31E+12 1.26x 1.62x

BiLEE

5 72.41% 87.91% / / / / 0.374 6.55 53.90 6.48E+10 1.28x 1.89x
10 72.42% 88.50% 90.88% / / / 0.377 6.73 36.70 1.04E+11 1.36x 2.13x
20 72.42% 88.53% 91.18% 92.97% / / 0.378 6.87 24.03 1.76E+11 1.51x 2.40x
50 72.42% 88.53% 91.18% 93.07% 94.79% / 0.378 6.91 12.16 3.27E+11 1.72x 3.19x
100 72.42% 88.53% 91.18% 93.07% 94.77% 95.69% 0.378 6.79 6.89 4.89E+11 1.92x 4.34x

Table 2. Ablation experiment results

Exp. Name Recall Rate LLEE Exit At MRR Acc.Rate
TP FLOPs

N
Q

32
0k Baseline 92.23% / 0.726 1.00x 1.00x

+ LLEE 90.82% 7.09 0.714 1.34x 1.94x
+ TLEE 91.66% / 0.726 1.74x 2.95x

+ LLEE + TLEE 90.42% 6.36 0.719 2.53x 12.59x

Tr
iv

ia
Q

A Baseline 96.44% / 0.385 1.00x 1.00x
+ LLEE 95.88% 6.99 0.379 1.46x 2.00x
+ TLEE 96.30% / 0.385 1.45x 1.92x

+ LLEE + TLEE 95.69% 6.79 0.378 1.92x 4.34x

acceleration in FLOPS but suffered a notable 10.22% drop in re-
call rate, indicating that it is failing to achieve satisfactory accuracy
on complex datasets. This is particularly evident from the significant
decline in the MRR metric, highlighting its reduced ranking accu-
racy. Moreover, these findings indicate that CALM’s fine-tune-based
approach may not be suited for the GDR method due to overfitting
issues related to a limited vocabulary, leading to premature exits and
a cascade of errors. Additionally, our method demonstrates strong
acceleration effects even with smaller beam sizes, achieving a 1.89×
to 2.06× increase in FLOPS savings and a 1.09× to 1.28× boost

in throughput. Notably, our method performs better on the NQ320k
dataset, likely due to its larger data volume and longer average do-
cid length, which enlarged TLEE’s ability to reduce computational
wastage.

5.3 In-depth Analysis

We present the in-depth analysis, including an ablation study that
evaluates the individual contributions of LLEE and TLEE, a com-
parative examination of different adaptor types, and an analysis of
layer-level exit positions and token-level exiting rates during the op-
eration of BiLEE.

5.3.1 Ablation Study

We carried out an ablation study to evaluate the efficacy of vari-
ous acceleration techniques, comparing the performance across the
original model, using only TLEE or LLEE, and a final method em-
ploying both acceleration methods. Due to the space limitation, we
only present results with beam size 100. Unless otherwise noted, this
beam size setting will also be applied in subsequent experiments. As
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Figure 4. Mean exit positions for NQ320k while inference. The dashed line
represents the Oracle Exit Position, and the B-N stands for beam size N. Both
actual and Oracle show non-monotonic trends, with the Oracle Exit Position

shifting later as beam size increases.

Figure 5. Token level early exiting rate for NQ320k. Aside from the final
token, earlier tokens are more frequently early exited, which aligns with our

observation that earlier tokens exhibit less diversity.

Table 3. Comparison of adaptor design types

Share Params Recall Rate MRR
Acc. Rate

TP FLOPs

NQ320k
Weights & bias 958k 90.42% 0.719 2.53x 12.59x
Only Weights 943k 90.37% 0.717 2.22x 11.92x
No Sharing 11.5m 90.80% 0.719 2.21x 11.54x

TriviaQA
Weights & bias 958k 95.69% 0.378 1.92x 4.34x
Only Weights 943k 95.21% 0.377 1.84x 3.95x
No Sharing 11.5m 95.60% 0.377 1.92x 4.72x

demonstrated in Table 2, each acceleration method can effectively
speed up inference, and their combined effect surpasses the sum of
the two. This is due to the TLEE reducing the number of branches
with low confidence, which increases the proportion of branches that
the LLEE can prematurely exit. The advancement of the LLTT exit
point further corroborates this observation.

5.3.2 Adaptor Design

In order to identify an efficient adaptor design, we tested several dif-
ferent types of adaptors, including one where all weights and biases
are shared (i.e., all layers sharing one same adaptor), one where only
weights are shared (the approach we utilized), and one where each
layer has an independent adaptor. It can be observed from Table 3
that sharing all parameters, due to the lack of differentiated biases
reflecting the confidence levels of each layer, results in a loss of ac-
curacy and acceleration efficiency. On the other hand, using an in-
dependent adaptor for each layer significantly increases the number
of parameters. Although this approach can improve acceleration per-
formance in certain cases, we consider it an alternative option when
sensitivity to parameter count is not a concern.

5.3.3 Layer Level Exit Position

To analyze the differences in layer level early exiting among vari-
ous tokens, we measure the mean exit positions of each token during
inference. As illustrated in Figure 4, the initial token does not typi-
cally trigger an early exit in our model due to its significant impact
on subsequent sequences. In subsequent tokens, our model tends to
exit early at the second token and then progressively adopts a more

cautious strategy until reaching the EOS tokens, which can exit im-
mediately. The phenomenon observed may be attributed to the sec-
ond token being situated at the intersection of semantics diversity
and cascading error impacts. Specifically, before the second token,
the main barrier to early exits is the cascading errors resulting from
incorrect predictions. After the second token, the increase in the se-
mantics diversity in the search space makes it harder for the adap-
tor to mimic the full model’s output with enough confidence to exit.
The above observations validate our hypothesis that the GDR model
exhibits significant differences in the difficulty of early exits across
different token positions.

5.3.4 Token Level Exiting Rate

We explored our token-level early exiting algorithm across different
beam sizes and token positions. As shown in Figure 5, the proportion
of early exits is higher for earlier tokens, supporting our hypothesis
that the initial tokens generally exhibit low diversity. An exception
is the final token, where hypotheses other than the End-Of-Sentences
token typically receive very low confidence scores and cause a higher
exiting rate. An extensive search on these tokens consumes signifi-
cant computational resources unnecessarily. Moreover, with larger
beam sizes, there is a marked increase in the exiting rate due to a
larger beam size generating more low-confidence branches. Those
patterns indicate that our algorithm, calibrated with the LTT, effec-
tively exits at appropriate token-wise thresholds.

6 Conclusion

In this paper, we introduced the Bi-Level Early Exiting for Gener-
ative Document Retrieval (BiLEE), a novel framework employing
bi-level early exiting strategies comprising Layer Level Early Exit-
ing (LLEE) and Token Level Early Exiting (TLEE). Our approach
innovatively adjusts the early exiting thresholds dynamically, signif-
icantly enhancing computational efficiency in GDR without com-
promising accuracy. By integrating LLEE to manage layer-specific
exit decisions and TLEE to refine token-level search space efficiency
during the beam search process, BiLEE significantly reduces FLOPs
consumption and improves throughput in GDR tasks.
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