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Abstract. In the field of Natural Language Processing (NLP),
Aspect-Based Sentiment Analysis (ABSA) has gained significant at-
tention in recent years due to its ability to perform fine-grained sen-
timent analysis. Generative methods tackle various ABSA tasks by
autoregressively generating the target sequence of sentiment tuples
in a specified format. However, the sentiment tuple is intrinsically
an unordered set, and the method introduces an order bias between
the generated sequence and the original target. Therefore, to inves-
tigate the impact of sentiment tuples order on model performance,
we conduct a pilot experiment, unveiling that the order of tuples sig-
nificantly influences the learning outcomes of the Seq2Seq model.
Thus, we propose a novel tuple-order learning method that priori-
tizes tuples from simple to complex, facilitated by a discrete eval-
uation method that assesses the difficulty of each individual tuple.
Specifically, we incorporate positional information on tuples and em-
ploy an effective strategy to expedite the assessment of individual
tuples. The method optimizes the learning process while maintain-
ing the structural integrity of existing generative models. Extensive
experiments show that our approach significantly advances the per-
formance on 14 datasets of 5 benchmark tasks. We will release our
code at https://github.com/gongzhenhu/TOL.

1 Introduction

Aspect-based Sentiment Analysis (ABSA) is the fine-grained Senti-
ment Analysis (SA) task, which aims to extract sentiment tuples for a
given text of elements such as the aspect term (at), opinion term (ot),
aspect category (ac), and sentiment polarity (sp) [30]. For example, in
the sentence “the sushi was awful!”, the corresponding elements are
“sushi”, “food quality”, “awful”, and “negative”. Early studies pri-
marily focus on the identification of single sentiment element such
as Aspect Term Extraction (ATE)[28, 10], Opinion Term Extraction
(OTE)[13], Aspect Category Detection (ACD) [32] or Aspect Senti-
ment Polarity Classification (ASC) [9, 20]. Due to the interconnec-
tivity among sentiment elements, recent works propose compound
ABSA tasks involving multiple associated elements with several rep-
resentative tasks such as aspect opinion pair extraction (AOPE) [5],
aspect sentiment triplet extraction (ASTE) [15], target aspect sen-
timent detection (TASD) [22], Aspect Sentiment Quad Extraction
(ASQP and ACOS) [3, 23]. Their output formats are shown in Ta-
ble 1.
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Table 1. The Aspect sentiment tuple prediction tasks with their
corresponding output formats.

Task type Task name output

Quad Aspect Category Opinion Sentiment (ACOS) (a, c, o, s)
Aspect Sentiment Quad Extraction (ASQP) (a, c, o, s)

Triplet Aspect Sentiment Triplet Extraction (ASTE) (a,o,s)
Target Aspect Sentiment Detection (TASD) (a,c,s)

Pair Aspect Opinion Pair Extraction (AOPE) (a,o)

Recent developments in the field of ABSA have shifted towards
creating a unified framework capable of handling various ABSA
tasks concurrently, moving away from the traditional approach of
employing distinct models for each task. Thus, the Sequence-to-
Sequence(Seq2Seq) models have been applied to the ABSA tasks
by formulating them as a text-to-text problem [29], where the output
is a sequence of sentiment tuples. To be specific, they use class in-
dex [26], sentiment element sequence [29], sentence annotation [29],
natural language[23], structured extraction schema [11] or opinion
tree [1] to construct sequence of sentiment tuples as the target of the
generation models.

However, the ABSA task is not inherently a typical generative
task. While this paradigm shows promise, it encounters a challenge
due to the unidirectional nature of the decoder in the generative pre-
trained language model [19]. This unidirectional decoder generates
the target sequence starting from the beginning and proceeding to its
end. This results in the formation of sequential relationships among
the constructed sentiment tuples, which may potentially affect the
learning effectiveness of the model. Consider a sentence that includes
n sentiment tuples, defined as {tuple1, tuple2, . . . , tuplen}, where
each tuple consists of the output element as determined by the ABSA
task. The process of constructing the targeted sequence of sentiment
tuples has n! different permutation possibilities. These varying or-
ders of arrangement may potentially impact the learning effective-
ness of the models.

Based on the above, the following issue has arisen: Does the order
of the tuples impact the performance of generative pre-trained lan-
guage models? Thus, we conduct a pilot experiment to investigate the
impact of different arrangement orders on the various ABSA tasks.
From these experiments, we observed that: (1) The order of tuples
significantly influences the learning effectiveness of the Seq2Seq
model; (2) In most cases, ordering the tuples according to their natu-
ral occurrence within the sentence benefits the learning of the model.
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Motivated by the observations and analyses, our objective is to
identify an optimized ordering that enhances the learning effective-
ness of existing generative paradigms without modifying the struc-
tures of the model. Therefore, we propose a tuple-order learning ap-
proach for ABSA. Inspired by curriculum learning approaches [2],
our method adopts the simple-prioritized principle to adaptively learn
the tuple order for each sample, utilizing the generation of the simple
tuples to facilitate the generating of more challenging tuples. Specif-
ically, we first convert every sentiment tuple into a sequence with
special markers and train a selector based on the format of a single
sentence as input and its corresponding single tuple sequence as out-
put, which enables it to initially assess the difficulty level of each
tuple. Then, we utilize the selector to categorize the tuple as either
simple or difficult. Additionally, a simplified approach is proposed
to reduce the time cost of the selector evaluation process. At last, we
incorporate positional information and perplexity to sort the tuples
and fine-tune the model with the sorted tuples.

The experimental results demonstrate that our method achieves
effective performance across multiple datasets and various ABSA
tasks. Our contribution can be summarized as follows:

• We study the influence of tuple order in the various ABSA tasks,
showing the order of tuples significantly influences the learning
effectiveness of the Seq2Seq model. To the best of our knowl-
edge, this work is the first attempt to investigate tuple order for
the various ABSA tasks.

• We propose a tuple-order learning method based on a simple-
prioritized principle. The method evaluates the difficulty of each
independent tuple by training a selector and integrates positional
information and prediction accuracy to determine a comprehen-
sive score. Additionally, a simplified approach is proposed to re-
duce the time cost of the selector evaluation process.

• Extensive experimental validation has demonstrated that our
method effectively enhances the learning effectiveness of the
model, resulting in favorable outcomes.

2 Related Work

Aspect-based sentiment analysis (ABSA) is the problem of identify-
ing sentiment elements of interest for a concerned text, either a single
sentiment element or multiple elements with the dependency relation
between them [30]. Early studies focus on the prediction of a single
element, such as extracting the aspect term[10], detecting the men-
tioned aspect category [32], and predicting the sentiment polarity[20]
for a given aspect. The four elements do not exist independently, and
they have strong connections with each other. Therefore, the focus
shifted toward the simultaneous extraction of multiple sentiment ele-
ments. Thus, pair extraction, triplet extraction, and quadruple extrac-
tion tasks are proposed in the ABSA field.[3, 5, 15, 22, 23].

In the field of ABSA, two main approaches have been primarily
explored. Discriminative approaches rely on encoder-based architec-
tures. For instance, GTS employs a tagging scheme to address the
AOPE task, subsequently extending it to address the ASTE task [24].
Building on GTS, EMC-GCN improves ASTE task performance by
incorporating additional information such as dependency and part-
of-speech into the model [4]. Meanwhile, Mirror restructures Infor-
mation Extraction (IE) problems into a unified framework of multi-
slot tuples, thereby facilitating diverse IE tasks [33]. Conversely, gen-
erative methods tackle various ABSA tasks by transforming labels
into sequences[23, 29], which avoids the complex modeling and in-
ference processes typical of traditional discriminative methods while

Sentence: The portions are small but being that the food was so good makes up for that.

Label: ��� ��� ��� ���

portions FOOD#STYLE_OPTIONS small negative

food FOOD#GENERAL good positive

	
��
�� ����� ����� �����
	
��
�� ����� ����� �����

[A] portions [C] food style_options [O] small [S] bad

[A] food [C] food general [O] good [S] great

Figure 1. An example of mapping sentiment tuples with the function f

demonstrating excellent results. Specifically, Zhang et al.[29] utilized
the T5 model as a generative framework, proposing Extraction-style
and Annotation-style paradigms. This framework is capable of uni-
fying various ABSA tasks. Yan et al.[27] achieved a unified approach
using the BART model, with the positional indices of sentiment el-
ements in the sequence as the output target, and fused information
from both the encoder and decoder for sentiment classification. The
design of the output targets has a significant impact on the generative
results. To better align these targets with the pre-trained knowledge
embedded in the language models, Zhang et al. [23] modeled the
outputs as natural language sequences.

However, the generative paradigm exhibits order biases between
the generated sequences and the original targets. To address these is-
sues, research has focused on the order of four sentiment elements,
referred to as the template order. Hu et al. [8] proposed selecting
the sequence from these 24 permutations that yield the minimum en-
tropy at the T5 decoder as the training target. Gou et al. [7] learn
information from various template orders and aggregate predictions
across different templates during inference. Beyond template order,
researchers have attempted to generate all sentiment tuples concur-
rently. Mao et al. [12] utilized beam search to simultaneously gen-
erate all triplets for input in sentiment triplet extraction tasks. Com-
plementarily, Fei et al. [6] proposed a Nonautoregressive Encoder-
Decoder Neural Framework, which generates all corresponding sen-
timent elements in parallel through a parallel decoder design. These
methods eliminate the sequential relationships between tuples by
modifying the decoder, but they also reduce model universality and
make it difficult to combine with existing Pre-trained Language Mod-
els(PLMs).

Different from the previous research, we explore the impact of dif-
ferent tuple orders on the model’s performance, aiming to identify an
optimized ordering that enhances the learning effectiveness of gener-
ative paradigms without modifying the decoder and integrates seam-
lessly with existing PLMs.

3 Preliminary and Pilot Experiment

3.1 Problem Formulation

In this section, we focus on the quadruple task and the other tasks
can be regarded as special cases of it. Given a sentence x =
{x1, x2, ..., xN} with N words, we aim to identify all sentiment
tuples G = {(ai, ci, oi, si) | i = 1, 2, . . . , |G|}, where ai, ci, oi,
si represent aspect term (at), aspect category (ac), opinion term
(ot), sentiment polarity (sp), respectively. The aspect term (at) and
the opinion term (ot) are typically text spans in the sentence x
while they can also be null if they are not explicitly mentioned:
a ∈ Vx ∪ {∅}, where Vx denotes the set containing all possible con-
tinuous spans of x. The aspect category (ac) falls into a category set
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Vc. The sentiment polarity (sp) belongs to one of the sentiment class
{positive, neutral, negative} denoting the positive, neutral, and
negative sentiment, respectively.

3.2 Seq2Seq Learning

The encoder-decoder model is utilized to rephrase the source sen-
tence x into the target sequence y. Therefore, we need to convert the
sentiment tuple G into the target sequence y. To leverage pre-trained
knowledge and the semantic information of labels, we follow pre-
vious research [23], mapping implicit aspect term (at) and implicit
opinion term (ot) to "it" and "null", respectively; the sentiment polar-
ity {positive, neutral, negative} are mapped to {great, ok, bad}.
To indicate different sentiment elements, we follow the previous
method [8, 7], and design special markers to represent the structure of
the information [14]. The markers for xat, xac, xot, xsp are [A], [C],
[O], [S], respectively. We add the corresponding marker as a prefix to
each element and concatenate them according to a specified permuta-
tion. The above process is denoted as a function f and is specifically
illustrated in Figure 1. When dealing with multiple sentiment tuples
for an input sentence, we utilize a special symbol [SSEP ] to con-
catenate each tuple, thereby forming the final target sequence y. Thus
we obtain an input-output pair for Seq2Seq training.

The Seq2Seq model further decomposes p(y|x) autoregressively
using the chain rule as follows:

pθ(y|x) = pθ(y1, y2, . . . , yT |x)

= pθ(y1|x)
T∏

t=2

pθ(yt|y1, . . . , yt−1, x),
(1)

where θ denotes the parameters of the Seq2Seq model. During train-
ing, a pre-trained encoder-decoder model, i.e. T5 [19], is chosen to
initialize the parameter θ and fine-tuned with minimizing the cross-
entropy loss:

L(x, y) = −
T∑

t=1

log pθ(yt|x, y<t) (2)

where T is the length of the target sequence y.

3.3 Pilot Study

Due to G being a set, where tuples are unordered, while sequence
y contains an order, our optimization target p(y|x) is an approxi-
mation of the original target p(G|x) in Section 3.2. This introduces
an inherent order bias. It raises the question of whether the order of
tuples within G affects the effectiveness of the Seq2Seq model. To
explore this, we conducted a pilot experiment focusing on various
ABSA tasks. In this experiment, we predefined the order of elements
within each tuple to follow “a → o → c → s”. The results of the
experiment are displayed in Table 2.

In this experiment, we employ various ordering strategies to orga-
nize tuples and construct target sequences based on these to study the
impact of different target sequences.

. The Default Order [8, 23, 29] refers to the construction of
target sequences based on the default ordering of tuples within
the dataset. The Random Order refers to randomly selecting one
valid sequence as the ground truth sequence for a sentence.
The MVP Order [7] means we sort the tuples of a sentence in
max(Ind(xat, x), Ind(xot, x)) and build ground truth sequence
based on the sorted tuples, where Ind(xat, x) represents the index

Stage1: Training Selector

Stage2:Tuple Permutation

Stage3: Fine-tuning T5 with selected tuple orders 
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Figure 2. The proposed method is composed of three stages. The objective
of the first stage is to train a selector for scoring tuples in the subsequent

stage. The second stage utilizes the trained selector to score tuples and sort
them based on their scores. The third stage constructs training samples with

the sorted tuples and fine-tunes the T5 model.

of aspect term xat in sentence x and Ind(xot, x) represents the in-
dex of opinion term xat in sentence x. The SLGM Order [31] indi-
cates sorting the tuples by Ind(xat, x) and, if they are the same, fur-
ther sorting them by Ind(xot, x). The SLGM Order Reversed means
building the ground truth sequence in an order that is the reverse of
the SLGM Order. Based on the results of the pilot experiment, we
have the following findings.

Tuple order influences the learning performance of Seq2Seq

Model. In Table 2, the F1 score is from 62.19% to 65.3% for the
Rest15 dataset of the ASTE task. Similarly, the F1 score is from
42.97% to 44.1% for the Laptop dataset of the ACOS task. Based
on the results of Table 2, we can conclude that the order of tuples
impacts the learning of the model. Furthermore, the performance of
a particular order varies across different ABSA tasks, indicating that
it is challenging to identify an ordering strategy that consistently out-
performs all ABSA tasks.

Sorting tuples based on their sequential occurrence within the

sentence tends to be an effective sorting strategy.. Further analyz-
ing the results presented in Table 2, we observe that the performance
obtained by the SLGM Order, MVP Order, and Default Order fre-
quently ranked at the top compared with other sorting methods in
this experiment. Specifically, the SLGM Order and MVP Order first
evaluate the position of the tuples within the sentence and then sort
the tuples based on those evaluations. In the case of the Default Or-
der, we find that it is mostly similar to the SLGM Order, but there
are still some data where tuples that appear at the beginning of the
sentence are placed at the end after sorting. To further validate our
findings, We further designed an experiment named the SLGM Order
Reversed, which involves reversing the ordering results of the SLGM
Order. The outcomes of this experiment are summarized in Table
2, demonstrating unsatisfactory performance across various ABSA
tasks. Therefore, we can conclude that generating sequences con-
structed based on the order in which tuples appear in the sentence is
an effective approach for the Seq2Seq model.
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Table 2. Preliminary experimental results on various tasks in ABSA. All the reported F1(F1,%) scores are the average of five runs.

Ordering Method ACOS ASQP ASTE TASD AOPE
Lap Rest R15 R16 L14 R14 R15 R16 R15 R16 L14 R14 R15 R16

Default Order 44.1 59.82 48.37 59.35 62.47 72.25 65.3 72.39 63.34 70.44 70.18 73.87 69.25 77.13
Random Order 42.74 58.8 47.81 57.35 61.59 71.71 62.63 70.48 62.39 69.27 70.12 73.67 67.32 75.45
SLGM Order 43.67 59.96 48.71 59.22 63.54 73.52 65.24 72.04 62.5 71.15 71.75 74.05 68.78 77.45

MVP Order 43.94 59.41 48.9 59.26 63.21 73.25 65.43 72.65 62.5 71.15 71.89 73.92 68.57 77.34
SLGM Order Reversed 42.97 58.43 46.7 57.75 61.76 71.96 62.19 70.76 61.35 69.61 70.67 74.98 66.72 75.47

In summary, these pilot experiments indicate that (1) The tuple or-
der influences the effectiveness of Seq2Seq, which means that there
may be an optimal order for model learning, and (2) In general, Con-
structing target sequences based on the natural order of tuples within
sentences enhances the effectiveness of Seq2Seq model. Therefore,
it is crucial to develop a learnable target sequence for optimal perfor-
mance.

4 Methodology

In the previous section, we found the order of tuples affects the
learning effectiveness of the Seq2Seq model in various ABSA tasks.
Therefore, we aim to identify an optimized ordering that enhances
the learning effectiveness of generative paradigms. Inspired by cur-
riculum learning [2], which starts from easy instances and then grad-
ually handles harder ones, we consider organizing tuples in an order
based on the simple-prioritized principle. In this pattern, generating
information about simple tuples can help and facilitate the genera-
tion of more challenging tuples. In addition, as analyzed in the pilot
experiment, the order in which context appears also facilitates model
generation. Therefore, we adopted a discrete evaluation method to
determine the difficulty of tuples and integrate it with positional in-
formation and perplexity. Figure 2 depicts the framework of our ap-
proach, which will be introduced in detail next.

4.1 Selector Training

To evaluate the difficulty of tuples in various ABSA tasks, we es-
timate how accurately the model is trained for each tuple. We first
reorganize the training data and treat each tuple as an indepen-
dent learning objective. Give an input sentence x, the correspond-
ing set of labels is denoted by G = {g1, g2, . . . , g|G|}, where
each label gi = (ai, ci, oi, si) represents a tuple. We transform
the original training dataset into a new set of training samples
{(x, f(g1)), (x, f(g2)), . . . , (x, f(g|G|))}. Then, to enhance the ca-
pability of the model to generate single tuples, we train the T5 model
by optimizing the minimizing the Eq. 3:

L(x, f(gi)) = −
|G|∑

i=1

1

Li
log p(f(gi)|x), (3)

where Li denotes the number of tokens for each f(gi).
Based on this training mode, the model can gradually show the

ability to generate individual tuples, and the tuple with better gener-
ated is easier for the model to learn, here we call it a simple tuple,
and the reverse is a difficult tuple. This model derived from this pro-
cess is referred to as the selector and used in the subsequent stage, as
shown in Figure 2.

4.2 Tuple Permutation

The core of our methodology is employing a trained selector to as-
sess the difficulty of individual tuple. It is challenging to evaluate

�� The food here is exquisite and delicious, coupled with excellent service, and you have  

yourself the beginning of a great evening 

�
���� [A] food [C] food quality [O] exquisite [S] great

�
���� [A] food [C] food quality [O] delicious [S] great

�
���� [A] service [C] service general [O] excellent [S] great

(a) (b)

decoder

	
���

[A]  ���

� [C]  ����

� [O]  ����
� [S]  ����

� 	
 ����

[O]

exquisite

delicious…

…

…

[A]
service

food

…

…

Figure 3. An example for demonstrating the schematic diagram of tuple
generation. (a) The tuple generated by using beam search; (b) The generated

tuple of the simplified strategy.

how difficult to generate a tuple sequence. The general measurement,
like perplexity, is to look at the overall coarse-grained perspective. In
our method, the difficulty of tuple requires fine-grained considera-
tion of the accuracy of generating all tokens inside, even if a single
token generation error will cause the entire tuple to be generated in-
correctly. In addition, it is necessary to avoid simple illusions due to
the frequency of certain patterns within the training dataset. There-
fore, we propose a tuple permutation approach by fully considering
the accuracy of model generation, which is the discrete indicator to
assess the difficulty level of tuples. We show the details as follows.

4.2.1 Preliminary Evaluation of Tuple Difficulty

Based on the selector training stage, we can intuitively conclude the
accuracy of single tuple predictions. For the sample where the predic-
tion is completely correct, it is easily learned by the model. However,
it is worth noting that in the data used to train the model, there are
different tuple outputs under the same input.Thus on the inference
stage, we should use the beam search strategy instead of the greedy
search strategy. Figure 3 provides a schematic diagram, the input x
corresponds to three different tuples. When generating results based
on the Seq2Seq model, the token following [A] should most likely be
“food” or “service” (indicating that these two tokens have the highest
selection probabilities). To ensure that both words can be found, it is
necessary to increase the beam width during beam search, As shown
in Figure 3(a).

Therefore, for each input x, the set of sequences
{f(g1(x)), f(g2(x)), . . . , f(g|G|(x))} is the |G| sequences
that the model considers to be the most probable. By setting the
beam search width to |G|, we can extract from the model the |G|
most likely generated outcomes for a given input x. If the sequences
in {(x, f(g1)), (x, f(g2)), . . . , (x, f(g|G|))} are successfully gen-
erated by the selector, we naturally define them as “simple tuples”,
indicating that these tuples are ones the model can predict accurately.
Conversely, sequences that the model fails to generate are defined as
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“difficult tuples”.
Process simplification In beam search, as the beam width is in-
creased, the number of candidate sequences considered at each step
grows, leading to a corresponding increase in the computational re-
quirements and time taken for beam search. Therefore, we have ap-
proximated it. Specifically, as depicted in Figure 3(b), we fed the
sequence f(gi) into the decoder of the Selector, while the sentence x
is input into the encoder. Subsequently, the decoder generates the se-
quence f(g̃i) in parallel. We then calculate the number of token mis-
matches between f(gi) and f(g̃i), denoted as error. Tuples with
error value less than or equal to 1 are defined as “simple tuples”,
whereas those with error value greater than 1 are defined as “diffi-
cult tuples”.

4.2.2 Tuple Scheduler

After obtaining the preliminary evaluation of tuples, the next step is
to determine the distribution of the output target and refer to the order
of the tuples, which is the tuple scheduler. The tuple scheduler takes
into account both position information and perplexity measurement
and provides the tuple permutation.

Based on the preliminary evaluation, the tuples of each sample x
are divided into simple tuples Gs and difficult tuples Gd. As analyzed
in the previous pilot analysis, for the model, the easier it is to generate
a tuple that is more consistent with the position of the input text.
Here, we assess the position of the tuples based on the location of
the sentiment elements (aspect terms and opinion terms) within the
sentence. let ws = {w1

s , · · · , wns
s } represents the score of tuples in

Gs, we set:

wj
s =

1

lpja + pjo/l
, j ∈ {1, 2, · · · , ns}, (4)

where ns is the number of tuples in Gs, j is the j-th tuple, l is the
length of x, pja is the position of aspect in x for the j-th tuple and
pjo is the position of opinion in x for the j-th tuple. For the difficult
tuples Gd, we calculate the perplexity of each one and obtain the
wd = {w1

d, · · · , wnd
d }:

wj
d = PPL(f(gjd)|x; θ), j ∈ {1, 2, · · · , nd}, (5)

where nd is the number of tuples in Gd, gjd is the j-th tuple in Gd,
and wj

d represents the score of gjd. Finally, we obtain the simple tuple
order Gs

ordered and difficult tuple order Gd
ordered in terms of ws and

wd. The final tuple permutation is denoted as Gordered = Gs
ordered⊕

Gd
ordered.

4.3 Fine-tuning with Tuple Orders

After obtaining the ordered tuple sequence Gordered, our objective is
to enable the model to leverage the knowledge gained from gener-
ating simple tuples to then attempt the generation of difficult tuples.
Therefore, we concatenate each tuple in Gordered after applying the
function f using the special token [SSEP ] to form the sequence ỹ,
and continue to train the T5 model on (x, ỹ) by the minimizing Eq. 6:

L(x, ỹ) = −
|N|∑

i=1

log pθ(ỹi|x, ỹ<i), (6)

where N is the length of ỹ.

5 Experiments

5.1 Tasks and Dataset

We conduct our methods on 14 datasets over 5 tasks, including
quadruplet tasks, ASQP and ACOS, triplet tasks, ASTE and TASD,
and a pair task, AOPE. For a fair comparison, we apply the same data
splits as previous works.

For the ASQP task, we adopt two datasets in the restaurant domain
based on SemEval tasks [16, 17, 18], Rest15 (R15) and Rest16 (R16)
aligned and completed by zhang et al.[23] subsequently. For the
ACOS task, we apply Restaurant-ACOS (Rest) and Laptop-ACOS
(Lap) constructed by Cai et al. [3]. Although the ACOS and ASQP
tasks share the same output format, the dataset used for the ACOS
task places a greater emphasis on the analysis of implicit aspects and
opinions compared to that of the ASQP task, which helps to mea-
sure our methods comprehensively. For the ASTE tasks, we adopt
the datasets provided by Xu et al.[25], which is the revised variant
of Peng et al. [15], the revised dataset addresses missing triplets with
overlapping opinions. We adopt the dataset provided by Wan et al.
[22] and Fan et al. [5] for TASD and AOPE tasks, respectively.

5.2 Implement Details

We employ the T5-Base model [19] from Huggingface Transformers
library1 as the pre-trained model of stage 3. To maintain consistency
with the model used during the fine-tuning stage, our Selector is also
trained using the same pre-trained model. The structure of the T5
encoder and decoder is similar to that of the Transformer [21].

For all ABSA tasks, we use a fixed batch size of 16 and a fixed
learning rate 1e−4 to train the selector and model of Stage 3 with
a single Nvidia A100 GPU. In the training process of the selector,
we have kept the learning rate and batch size settings the same as
previously established to maintain consistency with the fine-tuning
process in the subsequent third phase to better understand tuple dif-
ficulty. Regarding the number of training epochs for the selector, we
have uniformly set it to 5 rounds across all datasets for all tasks. For
the training of the model in Stage 3, we followed the methodology of
previous studies[7, 8, 29] by conducting training over 20 epochs and
choosing the model from the final epoch for testing. During the in-
ference, we utilize the greedy search decoding to generate the output
sequence.

5.3 Evaluation Metrics

For all ABSA tasks, a predicted sentiment tuple is considered as cor-
rect if and only if all its elements are exactly the same as the gold
tuple. We use F1 scores as the main evaluation metrics [3, 7, 23]. All
reported F1 scores are averaged over 5 runs with different random
seeds.

5.4 Compared method

We compare our methods with the following two types of previous
strong baseline methods:

Discriminative methods generally utilize BERT as the language
encoder and predict sentiment tuples. TAS-BERT [22], based on ex-
traction jointly detects the sentiment tuples. GTS [24] introduces a
grid tagging scheme for the AOPE task and extends it to the ASTE

1 https://github.com/huggingface/transformers
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Table 3. Main results on 14 datasets of ASQP, ACOS, TASD , ASTE and AOPE tasks. F1 scores are reported; the best results are in bold, while the second
best are underlined. All the reported F1(F1,%) scores are the average of five runs.

Baseline Method
ACOS ASQP ASTE TASD AOPE

Lap Rest R15 R16 L14 R14 R15 R16 R15 R16 L14 R14 R15 R16

TAS-BERT 27.31 33.53 34.78 43.71 - - - - 57.51 65.89 - - - -
GTS - - - - 55.42 68.81 58.6 67.58 - - 65.67 75.53 67.53 74.62

EMC-GCN - - - - 58.81 71.78 61.93 68.33 - - - - - -
Extract-Classify 35.8 44.61 36.42 43.77 - - - - - - - - - -

GAS - - 45.98 56.04 58.19 70.52 60.23 69.05 60.63 68.31 68.08 74.12 67.19 74.54
Paraphrase 43.51 59.18 46.93 57.93 60.55 70.89 62.82 71.70 63.06 70.87 - - - -

BARTABSA - - - - 57.59 72.46 60.11 69.98 - - 66.11 77.68 67.98 77.38
DLO 43.64 59.99 48.18 59.79 61.46 72.39 64.26 73.03 62.95 71.79 - - - -

SVP(heuristic) 43.83 59.38 49.02 59.56 62.09 72.61 65.29 73.27 61.98 71.57 - - - -
MVP 43.92 61.54 51.04 60.39 63.33 74.05 65.89 73.48 64.53 72.76 - - - -

SLGM Order 43.67 59.96 48.71 59.22 63.54 73.52 65.24 72.04 62.5 71.15 71.75 74.05 68.78 77.45
MVP Order 43.94 59.41 48.9 59.26 63.21 73.25 65.43 72.65 62.5 71.15 71.89 73.92 68.57 77.34

Default Order 44.1 59.82 48.37 59.35 62.47 72.25 65.3 72.39 63.34 70.44 70.18 73.87 69.25 77.13

Our 44.21 60.65 50.34 60.12 64.21 73.92 66.34 73.66 63.54 71.87 72.42 74.46 69.86 78.73

task. EMC-GCN [4] propose an enhanced multi-channel graph con-
volutional network model to address the ASTE task by utilizing the
relations between words. Extract-Classify [3] decomposes the quad
extraction task into two steps.

Generative methods usually concatenate multiple tuples together
into a sequence and then use the Seq2Seq model process. GAS [29]
propose a model of various ABSA tasks as a generation process.
BARTABSA redefines every ABSA subtask target as a sequence
mixed by pointer indexes and sentiment class indexes, which con-
verts all ABSA subtasks into a unified generative formulation. Para-

phrase [23] designs semantic templates filled with fixed-order ele-
ments of tuples as generation targets. DLO/ILO [8] propose a sim-
ple but effective method to identify the most proper order, and further
combine multiple proper templates as data augmentation to improve
the ASQP task. MVP [7] introduces element order prompts to guide
the language model to generate multiple sentiment tuples, each with
a different template order, and then selects the most reasonable tu-
ples by voting. When the process is simplified to utilize a single fixed
heuristic template template, it transitions to SVP (heuristic)(Single-
View Prompting) [7]. For comparison, we include three strategies
from pilot experiments—SLGM Order, MVP Order, and Default

Order into our baseline.
As a fair comparison, all results of these supervised methods are

obtained from the base pre-trained model, either BERT, BART, or
T5.

5.5 Experimental Results

5.5.1 Overall Results

Experimental results of various approaches are reported in Table 3.
The best F1 score are marked in bold, and the second-best F1 score
are marked in underlined. We observed that compared to baseline
methods, our approach demonstrated robust performance. Although
it did not surpass the MVP method on certain datasets, it achieved
comprehensive performance improvements over the SVP method.
Moreover, unlike the MVP method, which aggregates different tem-
plate orders after fixing the tuple order, our method significantly out-
performs the MVP scheme in terms of both training and inference
speed, due we only consider one template. Furthermore, upon com-
paring our proposed ordering method with the three best-performing
ordering methods from the pilot experiments—namely, SLGM Or-
der, MVP Order, and Default Order—we observed comprehensive

Table 4. F1 scores of ablation study on ASTE dataset

Model L14 R14 R15 R16

Our Approach 64.21 73.92 66.34 73.66
w/o discrete evaluation 62.84 71.71 62.61 71.02

w/o selector 63.54 73.52 65.24 72.04

improvements. This further validates the rationality and effective-
ness of our proposed approach. In the case of the R14 dataset for
the AOPE task, the majority of generative methods exhibited rela-
tively weaker performance, with the exception of BARTABSA. Our
analysis suggests that it is difficult for the model to generate the token
of this dataset on the decoder, while BARTABSA selects the desired
token on the encoder by a pointer network.

5.5.2 Ablation Study

Taking the ASTE task as an example, we conducted ablation stud-
ies to analyze the impact of each strategy within our method. The
results of ablation experiments are presented in Table4. The term
"w/o discrete evaluation" indicates that we refrained from employ-
ing a discrete evaluation approach for assessing tuples. Instead, we
chose to sort them based on their perplexity within the selector. "w/o
selector" indicates that we did not utilize the selector for evaluating
tuples, and instead, adopted the SLGM Order for constructing the
target sequences. The performance significantly declined after omit-
ting the discrete evaluation method. We ascribe this decline to two
primary factors. Firstly, perplexity is an inadequate metric for as-
sessing the complexity of tuples, as a lower perplexity value does
not inherently signify that a tuple is straightforward or foreseeable.
This limitation arises from the fact that perplexity evaluates the en-
tire sequence, whereas the criteria for various ABSA tasks are strin-
gent—even a single word error within the sequence can compro-
mise the correctness of the tuple. Secondly, perplexity-based tuple
evaluation neglects the positional information of tuples within sen-
tences. Previous pilot experiments have demonstrated that sorting tu-
ples based on their sentence positions can enhance model learning
effectiveness. Therefore, using perplexity as an evaluation tool is not
only impractical but also disregards the inherent sentence structure,
elucidating why the "w/o discrete evaluation" approach yields infe-
rior results compared to the "w/o Selector" method. Furthermore, we
observed a slight decline in model performance when the selector
was absent. This occurred even though the model utilized positional
information for tuples within sentences. The absence of a difficulty
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Figure 4. The impact of train epoch nums for Selector on the ASTE
dataset (F1-score, %)

assessment mechanism led to the placement of complex and unpre-
dictable tuples at the beginning of the sequence, thereby compromis-
ing overall performance.

5.5.3 The impact of training epoch number for Selector

In our approach, a critical hyperparameter for training the selector
is the number of training epochs. To this end, we conducted experi-
ments on the ASTE dataset to analyze the impact of the number of
training epochs for the Selector. As illustrated in Figure 4, it is ob-
served that the best number of training epochs varies across different
ASTE datasets. Nonetheless, the F1 score curves for all four datasets
exhibit a trend of initially increasing and then slightly decreasing.
We ascribe this phenomenon to the constrained knowledge gained
during the initial stages of selector training, leading the system to
classify the majority of tuples as difficult and subsequently sort them
based on perplexity. This method does not fully leverage the posi-
tional information of tuples in sentences, and relying solely on per-
plexity to evaluate tuple difficulty is unreasonable. In extreme cases,
resembling the effect of random ordering in prior experiments. As
the training epoch increases, overfitting results in most tuples being
classified as easy, which in extreme cases approaches the ordering
used in our prior experiment with the SLGM Order and the MVP Or-
der. This experiment also validates the effectiveness of our proposed
selector, demonstrating that after an appropriate number of training
epochs, the selector can effectively evaluate tuples.

5.5.4 Performance on Multi-Tuple data

To assess the effectiveness of our model in handling Multi-Tuple
data, we used the ASTE task as a case study, dividing the data in
the test dataset into Single-Tuple and Multi-Tuple to further analyze
the impact of our method on these two types of data. The experi-
mental results are shown in Figure 5. These results indicate that our
method significantly enhances the model’s performance on Multi-
Tuple data. Taking the exact match metric as an example, compared
to the SLGM Order, our approach achieves improvements of 2.1%,
0.56%, 3.98%, and 2.20% on the L14, R4, R15, and R16 datasets,
respectively, for Multi-Tuple data. Additionally, the performance on
Single-Tuple data is similar to that achieved with the SLGM Or-
der. Additionally, the findings indirectly validate that sorting tuples
from simple to difficult is an effective approach for Multi-Tuple data,
thereby confirming the rationality and effectiveness of our method.

Figure 5. F1-score (%) for Single-Tuple Sentence and Multi-Tuple
Sentence on ASTE Datasets compared with SLGM Order

5.6 Time Complexity Analysis

For a simple, we assume the length of the input sentence is denoted
by l, and there are n tuples. After undergoing the transformation
by function f in Figure 1, suppose the target sequence, constructed
from n tuples, has a length t =

∑n
i=1 ti, where ti represents the

length of the i tuple after transformation. Let m represent the num-
ber of training rounds in Stage 1, and g denote the training rounds
in Stage 3 as illustrated in Figure 2. When the sequence is not too
long, we can ignore the consumption of attention, as the time com-
plexity of a Seq2Seq model is linearly related to the sequence length.
For the selector training in Stage 1, its time complexity is approxi-
mately O(nml+mt). In Stage 2, the time complexity of the discrete
evaluation method has been optimized in Section 4.2.1, resembling
speculative decoding, resulting in a time complexity of O(nl + t).
For the fine-tuning stage of Stage 3, its time complexity is approxi-
mately O(gl+gt+g(n−1)). Although the selector training and dis-
crete evaluation introduce additional time, this overhead is mitigated
by: (1) Only needing to be done once, with results saved for later
training stages, (2) The number of training epochs for the selector is
usually not large, making the time overhead acceptable compared to
the improvements they bring.

6 Conclusion

In this work, we delve into the influence of tuple order on the per-
formance of various ABSA tasks. Inspired by findings from pilot
experiments and the proven effectiveness of the simple-prioritized
principle in the domain of curriculum learning, we introduced an in-
novative tuple-order learning method. It is based on a discrete eval-
uation pattern to train a selector by reconstructing the training data
and effectively evaluating the difficulty of each tuple. In addition,
we also incorporate the positional information of tuples in sentences
and the perplexity of tuple prediction to refine the tuple permutation,
thereby enhancing the performance of various ABSA tasks. Specifi-
cally, considering the time efficiency of the model, we have designed
an approximate evaluation strategy for assessiong the difficulty of
single tuple by selector. By fine-tuning a pre-trained model with the
target sequence constructed in the aforementioned tuple order, our
model achieved significantly competitive performance.
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