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Abstract. Syntactically controlled paraphrase generation is to gen-
erate diverse sentences that have the same semantics as the given
original sentence but conform to the target syntactic structure. An op-
timal opportunity to enhance diversity is to make word substitutions
during rephrasing based on syntactic control. Existing unsupervised
methods have made great progress in syntactic control, but the gen-
erated paraphrases rarely have substitutions due to the limitation of
training data. In this paper, we propose a Diversity syntactically con-
trolled Paraphrase generation framework (DiPara), in which a novel
training strategy is designed to obtain semantic sentences while us-
ing the given sentence as training objects. As diverse words vary the
syntactic structure around them, we propose a phrase-aware attention
mechanism to capture the syntactic structure associated with the cur-
rent word. To achieve it, the linearized triple sequence is introduced
to represent structure singly. Experiment results on two datasets show
that DiPara outperforms strong baselines, especially diversity (Self-
BLEU,) is improved by 10.18% in ParaNMT-Small.

1 Introduction

Paraphrases are texts that convey the same meaning but in alterna-
tive vocabulary and syntactic structures [29, 1]. Syntactically Con-
trolled Paraphrase Generation (SCPG) aims to produce diverse para-
phrases of the given sentence by matching the specified target syntax
[19, 21, 28]. Apart from the meaning and syntax of paraphrases, we
also explicitly focus on the diversity of generated paraphrases be-
cause trivial paraphrases with minimal changes may not be helpful
for applications [3]. It has been used in various language understand-
ing tasks, such as creative generation [11, 20], adversarial example
generation [7, 15], and question generation [17]. Existing syntacti-
cally controlled paraphrase generation networks [19, 26] have pro-
duced paraphrases with syntactic control, but they focus on large
parallel paraphrase pairs for training. Unfortunately, paraphrase pairs
are not only hardly accessible, but most of the established pairs are
just rearrangements of words with different syntax [23].

To overcome an absence of parallel corpus, Yang et al.[24] first
investigated the problem of unsupervised SCPG, which learns syn-
tactically controlled paraphrase generation with non-parallel data, as
shown in Figure 1. Since then, several unsupervised SCPG models
have been reported in the literature and achieved competitive perfor-
mance in both syntax control and semantic maintenance[5, 6]. How-
ever, our experiments have shown that existing unsupervised mod-
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Figure 1. Differences between the existing methods and our method
during SCPG (i.e., Syntactically Controlled Paraphrase Generation) training.
‘sem’ and ‘syn’ mean the semantics and syntax. The yellow and green
background indicate the inputs and output of the model, respectively.

els perform poorly for the diversity of generated paraphrases (in Ta-
ble 1). These methods still fail to produce diverse paraphrases, al-
though they may alleviate the reliance on paraphrase pairs.

Furthermore, we construct a preliminary experiment to explore
word diversity using Large Language Models (see Table 1), which
have remarkable capabilities on semantic understanding[21, 26]. Sur-
prisingly, the generated paraphrases are very diverse from both the
original and target sentences. However, LLMs prefer to preserve the
syntax of original sentences when generating diverse paraphrases in
the SCPG task without being controlled by the target syntax at all,
especially for compound sentences. This suggests that LLMs may
have a negative impact on syntax control due to abundant linguis-
tic knowledge. As a result, it is extremely challenging to attain both
syntactic control and word diversity for unsupervised SCPG.

To address the above challenge, we propose a Diversity syntacti-
cally controlled Paraphrase generation framework (DiPara) that pro-
duces diverse paraphrases while conforming to target syntax. As
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shown in Figure 1, we employ LLMs to generate multiple para-
phrases with diverse words and determine the most appropriate se-
mantic sentence by balancing semantics, syntax, and word. However,
the involvement of diverse words changes the syntactic structure of
their neighbors, and we observed that differences between two syn-
taxes are invariably reflected in the phrases. So, we propose phrase-
aware attention to capture the structure associated with the current
word. Motivated by this, the linearized triple sequence is designed to
singly represent structures by splitting the content of the constituent
parse tree before syntactic encoding.
In a nutshell, our contributions are as follows:

e We first present an LLM-based word diversity model to enhance
the semantics of the original sentence by steadily producing di-
verse paraphrases performed with word substitutions.

e We propose a linearized triple sequence and phrase-aware atten-
tion mechanism to represent and capture the syntactic structure
associated with the current word.

e We conduct extensive experiments with two datasets, and the re-
sults show that DiPara outperforms strong baselines in generat-
ing diverse paraphrases with target syntax. Moreover, the ablation
study demonstrates the effectiveness of our proposed modules.

2 Related Work

SCPG aims to rewrite a text that conforms to the target syntax. More
recent works typically utilize the Seq2Seq model [7] to generate di-
verse paraphrases by enhancing semantic encoder [26], syntactic en-
coder [25] or decoder [9, 26]. Particularly, some methods improve the
quality of paraphrases by carefully selecting target syntactic struc-
tures [12, 28] and syntactic reordering [4, 19, 25]. These methods
have made great advances in generating paraphrases with syntactic
control, but they rely on large paraphrase pairs for training.

Considering paraphrase pairs are not easily available for many lan-
guages, [24] first proposes unsupervised SCPG, which does not re-
quire any parallel paraphrase data. Since then, [5] encodes the seman-
tics without syntax by removing the position encoding. [6] employs
abstract meaning representations to enhance semantic and syntac-
tic embeddings further. Though these methods alleviate the reliance
on paraphrase pairs, they still struggle to generate high-quality para-
phrases.

In addition, large pre-trained models have been used for para-
phrase generation. [3] present novelty-controlled paraphrase gener-
ation for different levels of novelty by specialized prompts. [21] pro-
pose a novel adaptation of prefix-tuning to reduce training costs.

In this work, we focus on the diversity of generated paraphrases
and propose enhanced semantic encoding to capture subtle variations
across words.

3 Approach
3.1 Problem Statement

Given a sentence x; = {x%,xf, ..., i} and the target syntax s;,
Syntactically Controlled Paraphrase Generation (SCPG) is defined
to generate a diverse paraphrase p; = {p%,p?, ...,pi"} that con-
veys the same meaning of given sentence x; while conforming to
the target syntax s;, where n and m are the length of given sentence
and generated paraphrase, respectively.

For the unsupervised SCPG, the training set D = {xl}'f:"l has
only input sentence x;. Therefore, the model requires reconstructing
the sentence x; using only the given sentence z; and its syntax s;,

without annotated paraphrase pairs. As shown in Figure 2, the model
aims to generate the same text as the input sentence “over the course
of 6 years, we have lived in 15 cities.".

3.2  Enhanced Semantic Encoding

To facilitate diversity learning, we first promote LLM to obtain se-
mantic sentences with the same semantic and diverse words as the
original sentence for training. It assumes that LLMs can generate
text with the same semantics and diverse words since they have been
pre-trained on the large-scale corpus. Then, to ensure the quality of
semantic sentences, we divide the process into two steps: semantic
sentence generation and selection.

Semantic Sentence Generation. To exploit the potential of LLMs
in generating diverse paraphrases, we first generate multiple candi-
date semantic sentences by constructing the instruction, consisting of
the task description, a few demonstrations, and an original sentence.

Formally, given the task description of diverse semantic sen-
tence generation I, we manually design k sentence pairs (z1,y1)
with diverse words as demonstrations, formalized as D, =
{(z1,y1), (x1,91), .-, (zk,yr)}. The original sentence z is also
fed into LLMs, generating its corresponding semantic sentences y.

LLMs(I,Dg,z) =1y

To ensure diversity, we highlight the diversity and quantity re-
quirements in the task description. Manually designed sentence pairs
are as diverse as possible while maintaining semantics.

Semantic Sentence Selection. To relieve the poor quality of para-
phrases due to performance instability, we select the optimum se-
mantic sentence by considering multiple metrics. Specifically, we
first set the semantic threshold since the low self-BLEU value may be
caused by word diversity or the wrong word. Then, they are ranked
from calculated diversity and syntactic matching scores, respectively.
We select the semantic sentence with high semantic and diversity
scores but low syntax matching values. Low syntax matching reduces
the syntactic impact during semantic encoding and increases the di-
versity of training samples.

In addition, the contextualized semantic embedding zsem is Ob-
tained by feeding the semantic sentence y; into the semantic encoder,
formalized as:

Zsem = Encsem (yilay%v-“:y?,) (D

where n’ represents the length of sentence ;.

3.3 Multi-level Syntactic Encoding

To capture the syntactic structure associated with the current word,
we propose the multi-level syntactic encoding module, which con-
sists of two stages: linearized triple sequence and syntax encoder.

Step 1: Linearized Triple Sequence. Following previous works
[24], we use the constituency parse tree (without leaf nodes) to pro-
vide syntactic information obtained by the Stanford CoreNLP [13],
as shown in Figure 2.

Given the original sentence x, we first obtain its constituency parse
tree T’syn by the Stanford CoreNLP. Then, linearized triplet sequence
is used to split it into content sequence Syn, structure sequences
P_Syn and P_Parent, formalized as:

Syn ={n;,i=1,2,...,N}
P*Syn:{pﬂi:]wza"’?vai € [17N}}
P_Parent = {pa;,i =1,...,N,pa; € [0,N —m]}
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Figure 2. The overall architecture of our proposed method. It consists of an LLM-based word diversity module for semantic encoding, linearized triple
sequences, and a phrase-aware attention mechanism for syntactic control.

where m is the number of POS tags and n; is the syntactic node in
Tsyn. p; and pa; indicate the absolute position of each element and
its parent node, which are encoded in a depth-first manner. Therefore,
it satisfies that:

e If n; is the parent node of n;, then p; = pa;;
e If n; and n; are sibling nodes, then pa; = pa;.

Compared with the existing bracketed formats [7, 24], linearized
triple sequence has the following advantages: Firstly, the con-
stituency parse tree could be reconstructed more easily with P_Syn
and P_Parent. Secondly, it provides structural information more di-
rectly through absolute positional coding. More importantly, it re-
duces the average length of sequences from 160 [10] to 80.

Step 2: Syntax Encoder. Considering that the attention range of
syntactic nodes gradually expands as the number of layers, we em-
ploy a tree transformer to encode linearized triplet sequence.

For each node n;, we first obtain the node embedding n; € R
and positional embedding p; € R?, where d is the embedding di-
mension. The contextual matrix M € RV >V is designed to focus
on siblings and parent-child nodes, formalized as:

s — 4 L i pai = paj or pai(j) = pja);
71 0, otherwise
)

At each layer, we compute the hidden state h; of each node in a
tree-structure manner.

hfnc - Encsyn(ni + pi, Mz)

Further, multi-head attention mechanism is utilized to get the con-
textual representation of the syntactic sequence. Finally, we obtain
syntactic representation z,, from the last layer of syntax encoder.

3.4 Phrase-aware Attention

Inspired by the observation that syntactic differences between two
paraphrases are invariably reflected in the structure of phrases, we
design a phrase-aware attention module to learn the importance dis-
tributions of syntactic nodes for each word adaptively.

Monotonic Attention. Since the Part-Of-Speech (POS) tagging of
each word is deterministic and monotonic, we first obtain likelihood
1, that a syntactic node n; would be the POS tag of the target word by
computing the correlation r; between syntactic representation zsyn
and hidden states h{°S .

re = VT tanh(Wi" " hi®] + W0  zgyn + b™°")

l; = softmax(r: + €)

where V', W™ W o™ and bynon are learnable weights. € obeys
the standard normal distribution.

Then, the importance distribution at the current moment ¢ is con-
strained by it at the former moment cov;_ 1, formalized as:

ot =1l - Cprod(1 — 1) - Csum (%537@)

where Cprod(-) and Csum(+) are defined as:

Cprod(z) = [1, T1,T1T2, ..., Hmil xz]

=1

=1

Csum(z) = [ml, r1 + To,. .., Zm xl}

Cross-phrase Attention. After locating the POS tag of the target
word, we learn [ distance matrixes D € RV X to determine levels
of other syntactic nodes centered on the POS tag. The element df;j
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means the probability that n; and n; belong to the [-level phrase,
obtained as follows:

1 i -1
dij = Cij — C'L'j

where d}j =m;j;, [ > 1and cﬁj is computed as:

N-1

U -1
C;; = min (1, E jy Cik kaj)

Differently, déj indicates the distance between node ¢ and node j
is exactly equal to [, while cﬁj indicates it is less than or equal to
l. Based on this, the importance distribution of syntactic nodes at

different levels is computed as follows:

ﬂ:}jﬂyxf

where 8" is trainable parameters.

Inter-phrase Attention. Considering the varying effects of syn-
tactic nodes on the target word, even in the same phrase, we employ
self-attention to capture semantic correlations between these nodes.

(W;'LZSyn)(kazSyn)T)
Vd
where W,", and W™ are learnable weights.

Combining c, 3 and -, it forms phrase-level attention vector ) €
RN*N formalized as:

~ = Softmax (

n=ax(B+v) )

Finally, the syntactic structure associated with the target word zzyn
is represented as:

= D
syn i—1 J=1 1,] sYyn 5

The final training objective of DiPara is to reconstruct the source
sentence x by feeding the semantic embedding zsen and syntactic
embedding 2.y, into the transformer decoder. Therefore, we mini-
mize the following cross-entropy loss:

|D|
L=- Zi:l logP(I1|y7 t7 yl:t—l)

4 Experiments
4.1 Datasets

Following previous work [9], we evaluate DiPara on ParaNMT-Small
and QQP-Pos.

o ParaNMT-Small. ParaNMT-Small [2] contains 500k paraphrase
pairs for training, 500 and 800 manually labeled paraphrase pairs
for validation and testing. It is a subset of the ParaNMT-50M
dataset [23], constructed automatically by back-translating origi-
nal English sentences. We produce 200k semantic enhanced para-
phrase pairs during training and integrate them into the remaining
data.

o QQP-Pos contains about 140K training pairs and 3K/3K pairs for
testing/validation from the Quora Question Pairs (QQP) dataset I
Again, 7k enhanced paraphrase pairs are to be produced.

L https://www.kaggle.com/competitions/quora-question-pairs/

4.2  Evaluation Metrics

We evaluated three aspects using various evaluation metrics, includ-
ing diversity, semantics, and syntax.

Diversity Metrics. We conducted the metric with words and
phrases. In terms of words, we used Self-BLEU1, i.e., BLEU-1 [14]
between the input and generated paraphrase, to assess the capability
of models in generating fresh words. Self-BLEU, [3] is calculated to
account for n-gram overlaps. Low Self-BLEU implies high diversity.

Semantic Metrics. We employed Reference-BLEU, to evaluate
the literal similarity between generated paraphrases and references.
Further, we encoded the ground truth and generated paraphrase by
Sentence-BERT [16] and then accessed their semantic similarity
through cosine value.

Syntactic Metrics. We used the Exact Syntactic Match (ESM)
and tree edit distance (TED) against the parse tree of the reference,
following previous works[24, 28].

In addition, iBLEU [18] is calculated to evaluate the overall qual-
ity of paraphrases, calculated by iBLEU = « Reference-BLEU4
—(1 — ) Self-BLEUy, where « is set 0.8 following [28].

4.3 Baselines

We evaluate our method by comparing its performance with the fol-
lowing three kinds of models:

e To get a better sense of the natural diversity and semantic fidelity
of the dataset, compared with the basic model: Copying, simply
copying the original text; Ground Truth, using the ground truths
as predictions themselves.

e To demonstrate the ability of syntactic control, compared with
SCPG models: supervised methods, SOW-REAP [4], AESOP
[19] and SI-SCP [25]. And unsupervised methods, including
SIVAE [27], SUP [24] and SynPG [5].

e Methods based on LLMs: using GPT-3.5-Turbo as the base model:
ChatGPT (Zero-Shot), Give an original sentence and a target
syntax, ChatGPT generate a paraphrase that is semantically con-
sistent with the original sentence and conforms to the target syn-
tax. ChatGPT (Few-Shot), choosing three paraphrase pairs as
demonstrations according to the corresponding formatting.

4.4  Implementation Details

All sentences in the datasets are parsed as constituency parse using
Stanford CoreNLP [13]. We used the scheduled Adam optimizer [8]
for optimization, and the learning rate was set to 2.0 for all experi-
ments. We set the hidden state size to 300 (i.e., d), filter size to 1024,
and head number to 4. The number of layers of the semantic en-
coder, syntax encoder, and sentence decoder were set to 4, 3, and 4,
respectively. The batch size was set to 128. We used BPE tokens pre-
trained with 30000 iterations. All hyperparameter tuning was based
on the BLEU score on the validation set.

During the process of evaluating diversity, we found that not only
diversity is a factor of impact on the self-BLEU, but another pos-
sible factor is the generation of some irrelevant words. It seriously
affects the authority of our evaluation. In addition, we first evaluate
the semantic fidelity. Then, the top 30% paraphrases are selected to
calculate the diversity metrics, and experimental results showed that
these paraphrases are higher than 87 on Sentence-BERT for all SCGP
models.
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Table 1. Performance of syntactically controlled paraphrase generation. ‘EP’ refers to “Enhanced Paraphrase pairs" generated by ChatGPT. ‘>’ is calculated
from the trained model, publicly available in the original paper.

Self- Self- Reference- . Sentence-
Model BLEU, () BLEU4()) BLEU4 (1) i-BLEU(T) BERT (1) ESM(1) TED()
ParaNMT-Small
Copying/Ground Truth 100/41.77 100 /9.96 9.96/100 -12.03/78.01  79.27/100  36.88/100  11.80/0
Supervised Methods
SOW-REAP [4] > 65.03 24.89 27.00 16.62 67.77 - -
AESOP [19] > 45.49 11.69 20.44 14.01 71.87 77.38 6.74
SI-SCP [25] > 46.23 13.02 27.81 19.64 76.92 88.87 5.70
Unsupervised Methods
SIVAE [27] - 20.90 12.80 6.06 70.80 82.60 -
SUP [24] - 20.70 33.10 22.34 74.70 89.20 -
SynPG [5] - 18.84 32.20 21.99 76.49 88.37 -
DiPara (w/o EP) 42.21 10.83 30.51 22.24 77.30 92.13 5.54
ChatGPT (Zero-shot) 40.24 9.18 10.56 6.61 77.98 42.50 13.76
ChatGPT (Few-shot) 44.27 21.12 13.78 6.80 79.04 43.75 11.12
DiPara (Ours) 37.26 8.66 33.51 25.08 78.11 92.96 5.23
QQP-Pos

Copying/Ground Truth 100/42.76 100/14.25 14.25/100 -8.6/77.15 84.07/100  37.30/100  14.00/0
Supervised Methods
SOW-REAP [4] > 66.19 25.78 36.55 24.08 66.13 - -
AESOP [19] > 62.05 39.84 43.41 26.76 83.89 80.86 5.35
SI-SCP [25] > 45.57 19.10 48.83 35.24 88.11 81.43 5.20
Unsupervised Methods
SIVAE [27] - 29.00 32.60 20.28 76.00 81.7 -
SUP [24] - 32.70 43.70 28.42 80.90 87.50 -
SynPG [5] - 19.15 33.20 22.73 73.84 81.50 -
DiPara (w/o EP) 42.05 14.78 44.55 32.68 87.53 85.86 4.98
ChatGPT (Zero-shot) 47.31 17.39 11.18 5.47 89.20 34.62 17.93
ChatGPT (Few-shot) 46.59 20.59 12.23 5.67 95.01 29.13 15.61
DiPara (Ours) 3941 12.84 48.85 36.51 88.37 87.93 4.79

4.5 Main Results

Table 1 summarizes the experimental results on ParaNMT-Small and
QQP-Pos. We observe that DiPara achieves the best performance
among all SCPG methods in terms of diversity and syntactic control
without using parallel paraphrase pairs.

o DiPara achieves the best results on all three evaluation metrics of
diversity, even compared with ChatGPT. It indicates that DiPara
effectively generates diverse paraphrases by training enhanced
paraphrase pairs with abundant word or phrase substitutions.

e For syntactic control, DiPara achieves the state-of-the-art ESM
scores of 92.96 on ParaNMT-Small and 87.93 on QQP-Pos. In ad-
dition, it also improves 0.83 points and 2.07 points using enhanced
paraphrase pairs. It indicates that diversity paraphrase pairs are
also beneficial for improving syntactic control.

e In addition, DiPara is optimized in almost all the metrics on the se-
mantic and is only weaker than ChatGPT on the Sentence-BERT
metric. This suggests that the DiPara model can maintain seman-
tics excellently during paraphrase generation.

In conclusion, DiPara greatly improved the performance of syn-
tactically controlled paraphrase generation while balancing quality
and diversity.

4.6 Human Evaluation

We further conduct the human evaluation on generated paraphrases,
following previous work [7, 24, 28]. Specifically, we randomly sam-
ple 100 generated paraphrases from the ParaNMT test set. Three an-
notators are then asked to rate them from two aspects: the overall
quality and diversity against the original sentence. For the overall
quality, 0 means it is not a paraphrase at all, 1 means it is a paraphrase

with some grammatical errors and 2 means it is a grammatically cor-
rect paraphrase. For the diversity, 0 means it is almost identical to the
original sentence, 1 means it is a paraphrase with some new words,
and 2 means it has a different syntax and words. We also let anno-
tators evaluate syntactic controllability (ESM-H): the percentage of
generated sentences that follow the given syntax.

Table 2 shows the results of human evaluation, which are some-
what consistent with the automatic metrics. DiPara is superior in pro-
ducing diverse paraphrases with both new words and different syn-
taxes, which tend to follow the given target syntax.

Table 2. Human evaluation on ParaNMT dataset.

Model Quality (1)  Diversity (1) ESM-H (1)
SynPG 1.01 0.73 89.0
ChatGPT 1.89 1.44 80.0
DiPara (Ours) 1.47 1.53 96.0

4.7 Ablation Study

To investigate the effectiveness of each module in the proposed
method, we design several ablated versions of our model. The main
differences between the variants and our proposed approach are dis-
played in Table 3.

The upper section of Table 3 shows the ablation study results on
the test set in the ParaNMT dataset. From the table, we came to the
following observations:

e As expected, Baseline gets the worst performance of all variants,
and our method improves the base model by a large margin.

e Compared with the Baseline, Baseline + Word Diversity can ob-
tain improved performances on three diversity metrics without a
drop in semantic fidelity and syntactic control. The results show
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Table 3. Ablation study on the ParaNMT.
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Self- Self- Reference- . Sentence-
Model BLEU(J) BLEU4() BLEUyt) BLEUM  “pppr  ESM(D)  TEDW)
Baseline 47.52 14.96 25.95 17.77 75.27 89.38 8.27
Baseline + Word Diversity 41.75 10.29 27.51 19.95 76.27 89.87 8.06
Baseline + Linearization 45.57 12.90 27.81 19.72 76.40 90.86 7.66
Baseline + Word Diversity + Linearization 38.80 9.27 30.31 22.28 77.23 90.75 6.57
Baseline + Word Diversity + Phrase-aware Attn 39.17 9.97 29.83 21.87 76.97 91.50 6.40
Baseline + Linearization + Phrase-aware Attn 4221 10.83 31.91 23.36 77.30 92.13 5.94
DiPara (Ours) 37.26 8.66 33.51 25.08 78.11 92.96 5.23
w/o Monotonic Attention 37.72 8.75 32.04 23.88 77.60 93.29 5.38
w/o Cross-phrase Attention 38.24 9.04 33.03 24.62 77.92 93.21 5.67
w/o Inter-phrase Attention 37.40 8.62 32.71 24.44 78.09 92.01 5.85
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Figure 3. Attention scores of syntactic nodes for generating each words.

that ChatGPT-based augmented data helps generate high-quality
paraphrased sentences with diversity.

e Compared with the Baseline, the performance of Baseline + Lin-
earization is improved by 1.13 points and 1.48 points in Sentence-
BERT and ESM, which indicates that combining the tree trans-
former encoder and the linearized triple sequence can capture
richer syntactic structure information than the single-sequence
processing approach.

e Moreover, a comparison between the Baseline + Word Diversity
/ Baseline + Linearization and the Baseline + Word Diversity +
Linearization illustrates that jointly using word diversity and lin-
earization can obtain a clear improvement on all metrics.

e We can observe that the Baseline + Word Diversity + Phrase-
aware Attn / Baseline + Linearization + Phrase-aware Attn have
further improvements to Baseline + Word Diversity / Baseline
+ Linearization, demonstrating the effectiveness of our phrase-
aware attention.

Ablation study of phrase-level attention. We also conducted the
ablation study to verify the necessity of three components of phrase-
level attention. As shown in Table 3, the three phrase-level attentions
collectively contribute to the model’s performance in various aspects,
demonstrating that the three components of the phrase-level attention
are effective in capturing target syntactic structures.

5 Analysis
5.1 LLM-based Word Diversity Analysis

As shown in Table 1, enhanced paraphrase pairs are effective for
improving the capability of generating diverse paraphrases. Specifi-
cally, removing EP severely decreases by 4.95 points and 2.17 points

in terms of Self-BLEU; and Self-BLEU,4 on the ParaNMT-Small,
respectively. Furthermore, as shown in Table 4, we compared dif-
ferences between the original sentence and paraphrases to provide
a visible look at the diversity. Paraphrases are from the ground
truth of training set, and sentences are generated by baseline SCPG
models, ChatGPT-based models and Dipara. It is obvious that para-
phrases from the ChatGPT-based models have greater diversity than
the the other baselines models but lack syntactic control, while Di-
para achieves better diversity in satisfying the syntactic control.

In addition, we also conducted the ablation study (in the table 3),
which effectively validates the effectiveness of LLM-based word di-
versity module.

5.2 Phrase-aware Attention Analysis

To have a clear view of the role that phrase-aware attention plays
in DiPara, we visualize the attention scores of each syntactic node
with respect to words in the sentence “over the course of 6 years, we
have lived in 15 cities.", as shown in Figure 3. For the target word
‘lived’, the phrase-aware attention highlights 1-level syntactic nodes
‘VP’, ‘PP’ and even 2-level nodes ‘VBP’, ‘IN’, rather than just on its
POS tag ‘VBN’. This aligns well with our design motivation, which
adaptively captures the syntactic structure associated with the target
word.

To further demonstrate the effectiveness of three components of
phrase-level attention, we visualize the syntactic attention scores us-
ing only one attention mechanism. Specifically, monotonic attention
enables the model to locate only the corresponding POS tag with
each target word, as shown in Figure 3(a). It may be because POS
tags are monotonic and deterministic, such as “have lived in" match



3970 S. Wu et al. / Diversity-Enhanced Learning for Unsupervised Syntactically Controlled Paraphrase Generation

‘VBP’ ‘VBN’ and ‘IN’, respectively. Then, it is observed that the im-
portance is increased for syntactic nodes, which are closer to the tar-
get word after using the cross-phrase component. Moreover, when at
the same distance from the POS tag, they are mostly assigned same
weight, such as ‘VP and PP’ equally, ‘VP, VBP, IN and NP’ also
have the same attention value for the target word ‘lived’, as shown
in Figure 3(b). It demonstrates that cross-phrase attention could ef-
fectively control syntactic structure in terms of levels. Furthermore,
inter-phrase attention focused more on learning the importance of
different syntactic nodes within the same level, as shown in Fig-
ure 3(c). For example, ‘VP, VBP, IN and NP’ belong to the same
level for the POS tag ‘VBN’, but they are all calculated with differ-
ent attention values. In addition, the performance is decreased after
gradually removing three attention, which also verifies the necessity
of three components (see Table 3).

5.3 Qualitative Analysis

We show a typical case on the ParaNMT-Small, which consists
of the original sentence, target syntax and generated paraphrases
by different models, as well as their corresponding constituency
phrase. Moreover, models include baseline supervised SCPG mod-
els, ChatGPT-based models and DiPara, as shown in Table 4.

From an overall perspective, DiPara is able to balance diversity
and syntactic control, though each model generated different results.
Moreover, baseline SCPG models are good at syntactic control, while
ChatGPT-based models are better at semantic restructuring.

Compared with the baseline SCPG models, our model not only
generates a diverse paraphrase but also has excellent performance
syntactic control. As shown in the last line of Table 4, DiPara gen-
erates the paraphrase “We have stayed in fifteen cities during six
years.", different from the ground truth. But it is more diverse com-
pared to the original sentence, while matching the target syntax ex-
actly. It is challenging to generate diverse paraphrases for the base-
line model. For example, the paraphrase “i lived in fifteen cities for
six years." generated by AESOP has a near match in syntax. Unfor-
tunately, there is only one keyword substitution, replacing ‘we’ with
‘1’, leading to semantics being broken.

ChatGPT-based models always generate somewhat diverse para-
phrases while maintaining semantics. In addition, if the instruction
excludes demonstration examples, it remains almost the syntax of the
original sentence without being controlled by the target syntax at all,
as shown in Table 4. However, if the instruction contains demonstra-
tion examples, the diversity of generated paraphrases decreases, even
though the performance of syntactic control improves. For example,
it generates the paraphrase “During a span of 6 years, we have resided
in a total of 15 different cities." before demonstrations are added and
generates “We have lived in 15 cities over the span of 6 years" after-
ward. Moreover, it has little effect on generating paraphrases whether
demonstrations are added without inputting the target syntax.

In conclusion, DiPara can effectively generate diverse paraphrases
conforming to the target syntax, which is attributed to the ability to
balance semantics, syntax, and diversity.

6 Applications on Downstream Tasks

To further test the performance of DiPara in downstream tasks, we
apply it to augment data for few-shot learning in text classification
tasks. Specifically, we select SST-2, MRPC, and QQP classification
tasks from GLUE [22] as evaluation benchmarks. Then, we randomly
sample 500 instances from the training set and fine-tune roberta-base

Table 4. An example of SCPG. Paraphrases are generated by baseline
SCPG models, ChatGPT-based models and DiPara, with their constituency
phrases on the right of the sentences. Blue fonts indicate the input. Magenta

and grey fonts represent different words from the original sentence and

different syntax from the target constituent phrase, respectively.

Models Sentence Constituency Phrase
TP | (ROOT (S (PP (IN) (NP (NP (DT) (NN)) (PP (IN)
Original Sentence a‘:’,v‘:‘i;:;“if I"Sf Snyi:;"b > | (NP (CD) (NNS))))) (,) (NP (PRP)) (VP (VBP)
) o (VP (VBN) (PP (IN) (NP (CD) (NNS))))) (.)))
ve have lived in fifteen | (ROOT (S (NP (PRP)) (VP (VBP) (VP (VBN)
Ground Truth cities over six years (PP (IN) (NP (CD) (NNS)) (PP (IN) (NP (CD)
i (NNS)) (1))
AT (ROOT (S (NP (PRP)) (VP (VBP) (VP (VBN)
SOW-REAP z’:ﬂ"&:gﬂr':els clies | (pp (IN) (NP (NP (CD) (NNS)) (PP (IN) (NP
i (DT) (NN ()
i lived in fifteen cities (ROOT (S (NP (PRP)) (VP (VED)
AESOP for six years (PP (IN) (NP (CD) (NNS)) (PP (IN) (NP (CD)
) o (NNS))))) ()
e v been vine n (ROOT (S (NP (PRP)) (VP (VBP) (VP (VBN)
SI-SCP 15 citios for i years (VP (VBG (PP (IN) (NP (CD) (NNS)) (PP (IN)
N o (NP (CD) (NNS)))) ()
Durine a span of 6 years (ROOT (S (PP (IN) (NP (DT) (NN) (PP (IN) (NP
ChatGPT o YA | (CD) (NNS))))) (.) (NP (PRP) (VP (VBP) (VP
(Zero-Shot) 15 ditfonent cities. | (VBN) (PP (IN) (NP (NP (DT) (NN)) (PP (IN)
) ) (NP (CD) (JJ) (NNS)))))) ()
- - — (ROOT (S (NP (PRP)) (VP (VBP) (VP (VBN) (PP
&iﬁ‘fslﬁl) X‘\;ftal;’:\ll‘)":]do‘félieca‘r‘;“ (IN) (NP (CD) (NNS)) (PP (IN) (NP (DT) (NN))
. (PP (IN) (NP (CD) (NNS)))))) ()
PR (ROOT (S (NP (PRP)) (VP (VBP) (VP (VBN)
DiPara (Ours) z:[fiﬁ:r;‘]“ fld\ ‘;e'z";‘fe" (PP (IN) (NP (CD) (NNS)) (PP (IN) (NP (CD)
) - > (NNS))))) ()

Table 5. Performance of downstream tasks (i.e., MRPC, QQP, and SST-2)
after adding paraphrases with different methods to the original baseline for
data augmentation.

Methods MRPC QQP  SST-2
Baseline 80.44 68.38  67.83
+ ChatGPT 82.49 71.07  69.52
+ DiPara(w/o EP)  83.30 70.51  68.92
+ DiPara(Ours) 86.69 74.06 70.33

to obtain a baseline classifier. In addition, we utilize different para-
phrase generation models to generate the paraphrases for the training
set separately. The augmented data from the training set is used to
train the classifier along with the original instances. We adopt the
Accuracy metric to evaluate the model classification performance.
The results in Table 5 show that our method provides the great-
est improvement compared to other methods. Specifically, the data
augmentation of the DiPara model greatly improves the performance
of the three classification tasks even before the training of enhanced
paraphrase pairs. Meanwhile, ChatGPT’s data augmentation method
also achieved excellent results. Nevertheless, our DiPara model fur-
ther improves the final performance after being enhanced with di-
verse, high-quality data. In conclusion, our DiPara performs best un-
der all strategies, which shows that our approach can effectively en-
hance the application value of SCPG models in downstream tasks.

7 Conclusion

In this paper, we have presented DiPara, a novel framework that can
effectively generate diverse paraphrases conforming to the target syn-
tax by acquiring semantic sentences with diverse words and treating
the given sentence as an objective. Experiments demonstrate that Di-
Para achieves the best performance in diversity and syntactic con-
trol across different datasets. We believe that DiPara opens up a new
horizon for generating tasks (e.g., machine translation) that balance
quality and diversity. It also provides an alternative to improve the
diversity of enhanced data in many downstream tasks (e.g., question
generation). In the future, we will consider merging SCPG models
into large language models to enhance their generality and controlla-
bility by local fine-tuning.
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