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Abstract. Prompt optimization is essential for enhancing the per-
formance of Large Language Models (LLMs) in a range of Natural
Language Processing (NLP) tasks, particularly in scenarios of few-
shot learning where training examples are incorporated directly into
the prompt. Despite the growing interest in optimizing prompts with
few-shot examples, existing methods for prompt optimization are
often resource-intensive or perform inadequately. In this work, we
propose PrOmpting with Episodic Memory (POEM), a novel prompt
optimization technique that is simple, efficient, and demonstrates
strong generalization capabilities. We approach prompt optimization
as a Reinforcement Learning (RL) challenge, using episodic memory
to archive combinations of input data, permutations of few-shot exam-
ples, and the rewards observed during training. In the testing phase,
we optimize the sequence of examples for each test query by select-
ing the sequence that yields the highest total rewards from the top-k
most similar training examples in the episodic memory. Our results
show that POEM outperforms recent techniques like TEMPERA and
RLPrompt by over 5.3% in various text classification tasks. Further-
more, our approach adapts well to broader language understanding
tasks, consistently outperforming conventional heuristic methods for
ordering examples.

1 Introduction

The recent rapid advancements in Language Models (LMs) have
underscored the increasing significance of utilizing pre-trained lan-
guage models, especially when paired with appropriate prompts, as
evidenced by seminal works [3, 4, 10]. As Language Models increase
in parameter count, they unveil new capabilities such as In-Context
Learning (ICL) [3], enabling LLMs to tackle tasks with just a few
example demonstrations in the prompt. ICL offers a data-efficient
approach for performing NLP tasks, achieving remarkable few-shot
performances across many downstream tasks [20, 22, 23].

However, the prompt content and ICL examples necessitate meticu-
lous tuning to ensure consistent performance across various tasks. To
optimize prompt contents, early attempts focus on tuning the embed-
dings via gradient descent ("soft prompts", [18, 23]). Unfortunately,
soft prompts require gradients from LLMs to construct prompts and
often face challenges with interpretability and quality [13, 18]. Addi-
tionally, they struggle to handle ICL examples within the prompt, and
thus can only be used for zero-shot prompting. Consequently, the cur-
rent state-of-the-art has shifted towards discrete prompt optimization
[6, 41], which enhances interpretability and permits ICL optimization.

Selecting the right in-context examples and their orders in prompts
is crucial for ICL optimization [22]. This task is challenging due
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to the vast array of possible combinations and diverse instructions
[25]. Furthermore, the arrangement of these examples may introduce
biases, including majority, recency, and primacy biases [25, 43, 27].
Although reasonable example selection can be achieved through near-
est neighbor retrieval [22], determining the optimal order of examples
remains an unresolved research challenge.

Initial efforts employed heuristic rules to rank examples in descend-
ing or ascending order based on their similarity to the test instance
[22, 25]. More recent work attempts to use LLMs as black-box op-
timizer [35, 28], calibration [43] or applies RL-based method for
generating prompts with ICL examples [41].

Discrete prompt optimization presents its own set of challenges.
Heuristic methods lack optimization principles, leading to success in
some cases but failure in others [22]. Black-box methods are guided-
optimization and gradient-free. However, they are query-agnostic,
thus failing to incorporate any query-related context into the prompt,
which can lead to downstream performance degradation. Moreover,
they often require additional LLM computation for prompt generation,
resulting in extensive resource usage [39, 29, 44]. Although using
RL-based methods for prompt editing sequentially presents a potential
solution that does not require extra LLM for prompt generation [41],
their slow convergence and intrinsic complexity hinder effectiveness.

In this paper, we propose a novel and efficient memory-based ap-
proach to optimize the order of ICL examples within LLM prompts.
Drawing inspiration from the rapid, model-free, and instance-based
learning evident in the hippocampus region of the human brain [17],
our method eliminates the necessity for complex reinforcement learn-
ing optimization while being more reliable than heuristic methods
through performance-driven optimization. Leveraging episodic con-
trol mechanisms in reinforcement learning [2, 16, 14], we formulate
each evaluation of training data as an episode and utilize an episodic
memory to store the performance of any combination of the training
data and ICL orderings. By sampling and evaluating certain training
inputs and ICL order pairs, we avoid exhaustive searches across all
data-ICL order combinations, which is particularly beneficial when
LLM evaluation is costly. During testing, this memory serves as a
non-parametric nearest-neighbors model, utilizing the recorded per-
formance of similar training data to determine the optimal order for
the testing data.

To ensure the robust generalization of our episodic memory, we
devise specialized representations for both the text input and the
ordering of ICL examples. Specifically, we encode the input using
the last hidden states of a pre-trained language model, ensuring high-
quality similarity-based retrieval during testing.

Moreover, directly encoding the permutation as a sequence of ICL
examples would result in a vast search space. Suppose there are M
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Figure 1.

POEM Architecture. Training (left): In this phase, we select examples from the in-context dataset D;.. The training query and the ICL example

ordering are encoded into s and a, respectively, and are used to construct a prompt for each training query. Then, we receive a reward r by feeding the prompt to

the downstream language model (LM), and we store the state, action, and reward in memory M using Memory Writing (Eq. 10). Testing (right): During this

phase, for each testing query s¢, we conduct Memory Reading using nearest neighbor estimation to get the action with the highest estimated value (Eq. 11). We

then build the prompt for the test query by producing the ICL examples that correspond to the best ordering action a¢.

training samples in total and we can select m examples for each
prompt, we would have ﬁ possible ICL arrangements. Instead,
we represent the ordering as a permutation of the similarity rank of
the in-context examples. Specifically, given a specific ordering of ICL
examples, we (1) gauge the similarity between the examples to the
testing input, (2) assign a rank to each example based on the similarity,
and (3) encode the ICL ordering as the sequence of the ranks. Our
encoding operates within the similarity rank space rather than the
text space, effectively reducing the search space from (MA%[;Z)' to m!.
More importantly, this approach also encourages generalization as the
permutation focuses solely on the arrangement of the example rank
rather than specific content.

In summary, we propose POEM, a method that optimizes in-context
example ordering during test time using an Episodic Memory. It
utilizes a similarity ranking to encode example orders based on their
proximity to the test instance.

In our few-shot classification experiments across seven datasets,
POEM outperforms TEMPERA on six of these datasets. Additionally,
POEM achieves an average performance improvement of 13.4% over
RLPrompt, demonstrating a significant advantage. For tasks requiring
larger LLMs, such as Commonsense Reasoning and Question An-
swering, POEM consistently outperforms heuristic baselines across
all four LLMs tested. Our code is available at [8].

2 Method
2.1 Problem Formulation

Few-shot text classification. We follow the standard few-shot set-
ting for downstream tasks of language models [3]. In this setup, a
pretrained language model £ is paired with a task-specific dataset
D, where ) represents the label space. )) may vary in form; it can
be categorical, as in classification tasks, or sequential, as in question
answering and commonsense reasoning tasks. For classification tasks,
we randomly assemble a dataset of L = g x G samples, with g as the
samples per label and G as the total labels. In cases without categori-

cal labels, we randomly sample L instances from D. This forms the
training dataset, denoted as Dyyqin = {xi, yi}le, while a separate
hold-out set Dy.s: is reserved for evaluation.

In-context Learning. Following GPT-3 paper [3], In-context
Learning is a paradigm that allows language models to learn tasks
given only a few examples in the form of demonstration. Given a
test sentence Test, template-based construction W, along with an
optional task description tq4esc and a set of in-context examples
T = {zi,yi }i~1, denoting I" as the prompt construction function, we
can formulate an input prompt p as follows:

p= r (tdes(:7 T, xtest)
=taesc ® Y (21,91) B B Y (T, Ym) B ¥ (Trest, *)

where @ is the concatenate function and m is the number of in-context
examples for each prompt. In line with the few-shot setting [41, 6],
we consider an in-context set of M samples, denoted as D;. € D,
excluding the few-shot training data. The in-context examples will be
sampled only from this set.

In-context learning facilitates the construction of the task’s output
distribution prar (y|z, p), where x represents the input string and y
represents the output string. This powerful approach allows in-context
learning to play an active role in shaping the selection and arrangement
of the demonstration set 7 within the input prompt p. By carefully
curating and organizing these demonstrations, in-context learning
can significantly enhance the model’s ability to perform effective
optimization, ultimately leading to more accurate and reliable task
outcomes.

Reinforcement Learning Formulation. We formulate in-context
prompt optimization as an RL problem where a state s = & (z)
is the embedding of the input x, where £ is a pre-trained encoder.
During training, given a set of m in-context examples, the RL agent
selects one of the possible permutations as its action a from the
action space A. We then construct the prompt p using the default
task description/instruction (if any), combined with the a-ordered
in-context examples, and query it to the downstream LM to get the

€]
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Algorithm 1 In-context examples order optimization with Episodic
Memory
Require: Language model £, State encoder &, Training set Dyrain,
Evaluation set D;.s¢, In-context set D;., Number of iterations
N, Episodic Memory M, Number of neighbors k, Task descrip-
tion t4esc, Template transformation ¥, Number of in-context
examples per prompt m, Prompt construction function I'
1: Initialize M = ()
2: Training:
3: for episode n = 1to N do

4 Random sample batch B ~ Dirqin

5 forx € B do

6: Receive state s = £ ()

7 Receive in-context examples T = (s, Dic)

8 Select permutation a <— linearly decaying e-greedy policy
9: (Eq. 9) using M (Eq. 11)

10: Reorder the in-context examples set 7;* = V (75, a)
11: Get prompt p = I (tgese, ¥ (7))

12: Receive reward r

13: Update M using Memory writing with » (Eq. 10)
14: endfor

15: endfor

16: Testing:

17: for x; € Dicst do

18: Receive state s; = £ ()

19: Receive in-context example set 75, = 2 (s¢, Dic)

20: Obtain M (st, a) with Memory reading (Eq. 11)

21: Obtain a: (Eq. 12)

22: Reorder the in-context examples set 7" = V (75, , at)
23: Get prompt p = T (tgesc, ¥ (T53t))

24: Get prediction § = L (z¢, p)

25: endfor

reward r. The goal of the agent is to learn a policy that maximizes
the episodic return R; = zhH;Ot Tt+h, Where H is the time step at
which the episode ends. To simplify the formulation, our episode
consists of only one step, during which the sole action is selecting the
permutation of the in-context examples.

2.2 Prompting with Episodic Memory

In this section, we present the architecture of our episodic memory.
The memory is structured as a dictionary, storing the embeddings
of training sentences (states) as keys. Each key’s value is another
dictionary, mapping a permutation (action) to its respective reward.
We denote a key by s;, and for each key, a; represents the j-th
permutation, while r;; denotes the associated reward. Our episodic
memory M can be represented by the following structure:

ap T}l 2)

Here, p signifies the total number of permutations available for the
in-context examples (with m examples per prompt, p = m!). L is
the total of the stored states in the episodic memory. An illustration
of our memory architecture is given in Fig. 1. Below are the detailed
components of the memory.

State representation Obtaining accurate and meaningful text repre-
sentations for the state is crucial for both memory storage and efficient
retrieval. In our approach, we leverage the power of the encoder &,
specifically utilizing the SentenceTransformers model [30]. This en-
coder is designed to generate high-quality sentence embeddings that

M = {Sl : {a1 LT1,a2 T2, ..

Example 1
_ st qvery
T G o oy hler
Example m
Figure 2. Illustration of an action being encoded.

can be effectively applied across a wide range of NLP tasks, ensur-
ing that the textual data is both rich in information and can be used
effectively in various NLP tasks.

Example selection To simplify the optimization, we do not aim to
optimize the example selection process. Therefore, following prior
work [22], from the in-context dataset D;., given input x, we select
m in-context examples that are semantically closest to . We measure
the semantic similarity between in-context example !, and the input
query z using Cosine Similarity:

s sk

[Isllllsil

In the context of a few-shot classification task, where label biases
can significantly influence the prompting outcome, it is crucial to
maintain an equal number of examples for each label. To address
this, we propose the following strategy: if there are G unique labels
in D, and G < m, we select L%J closest samples from each label.
Conversely, if G > m, we iteratively choose one sample for each label
until we have sufficient in-context examples. We denote the above
process as the function € that retrieves context examples for each
state s:

cs (m x) 3)

Ts = Q(s, Dic) (C))

where T is the set of in-context example for the state s

Action encoding An action refers to a specific arrangement of
in-context examples within 7. As mentioned in the introduction, a
naive approach of encoding the action as a sequence of ICL examples
will lead to a huge action space. Therefore, we propose to encode the
action as a sequence of similarity ranks. Concretely, for each state s,
we measure the semantic similarity between it and the states of the in-
context examples using Eq. 3. Next, we rank each example according
to its similarity to the input query and encode the ICL ordering as a
sequence of these ranks.

For illustration, consider the action encoding process illustrated
in Fig. 2. First, we compute the cosine similarity between each in-
context example and the test query, which ranks these examples based
on their distance. To encode an action, we create a permutation of
these rankings, resulting in a unique action sequence. For instance, in
Fig. 2, the action a = (m, 3, ..., 1) represents a specific permutation
of the in-context examples. Here, the first example is the farthest
from the test query, the second is the third closest, and so on, with
the m-th position being the closest to the test query. Each action is
thus a vector with m elements. This encoding captures the relational
similarity among the in-context examples and the test query, with the
action space size being m!.

Given a set of in-context examples 7 and an action a, we define a
permutation function V, used to reorder the elements of 7 according
to the sequence specified by a. The action a represents a specific
ordering of indices that correspond to the elements in 7. Formally,
we have:
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SST-2 Boolq CR AGNews IMDB QNLI COLA Average
Finetune 80.6(3.9) 553(3.1) 73.3(75) 84.9(3.6)  854(52) 554(1.6) 55.6(9.9) 70.1
Manual Prompt 82.8 61.0 79.6 76.9 85.0 51.0 32.0 66.9
In-Context Demo. 85.8(0.7)  583(0.4) 85.5(1.5) 74.9(0.8)  69.8(0.6) 53.50.5) 56.0(1.2)  69.1
Instruction 89.0 61.0 80.8 54.8 89.0 56.0 6L.0 70.2
Black-box Tuning 89.10.9) 53.3(1.7) 87.4(1.0) 83.500.9)  68.9(5.1) 50.8(0.6) 51.4(2.1) 692
RLPrompt 87.73.6) 41.63.0) 90.4(1.7) 73.8(58)  57.3(8.9) 50.10.8) 51.6(1.5) 64.6
TEMPERA 90.5(1.6) 54.9(58) 9L.1(1.1) 81.6(2.5)  85.3(2.8) 5L6(1.0) 542(55) 727
Random Ordering 81.5(0.9) 62.7(09) 872(04)  57(0.2) 74.1(0.5)  53.9(04) 41.63(13) 654
POEM (Ours) 93.4(0.2)  66.1(0.1)  92.6(0.2) 80.3(1.1)  90.9(0.1) 543(0.2) 68.4(0.4) 78.0

Table 1.

Accuracy and standard derivation (if available) of different baselines on few-shot classification over 4 seeds. Some methods like Manual Prompt produce

the same results across seeds, and thus, have no standard derivation to report. The highest accuracy is bolded and the second-highest accuracy is underlined. The

last column shows the average accuracy across all datasets in this table.

T =V (Tsa) ®)

where T.* represents the sequence of in-context examples rearranged
in accordance with action a.

Reward design For classification tasks that use Masked LM such
as RoBERTa [24], for each query x, we define the reward based on
the log probability of the output label of the model log Pr (§|x, p)

m(c,z,p) = A log P (Je | ,p) — Az maxlog P Fe l@p) (6
CFC

where A1 > 0 and A2 > 0 are the two balance hyperparameters for
the positive and negative terms respectively.

For generative tasks (e.g: Commonsense Reasoning, Question An-
swering) that use Causal LM such as Llama [36], where ground truth
label c is a sequence of tokens, we define the reward as:

lel

T(C,I,p) = >\1 Zlogpﬁ (1’ | xzp) -
! &)

||

A log Pz (j | z,
2161712163; ogPr (j | ,p)

In the equations above, ¢’ is the token/sequence that has the highest
probability. In Eq. 7, 4 and 5 are the tokens of two sequences ¢ and ¢/,
respectively. Intuitively, for classification tasks, the reward is positive
when the prediction is correct and negative otherwise.

For tasks that use Causal LM and Exact Match as evaluation metrics,
we define the reward as:

1, ife=¢
r(c,z,p) = {0, otherwise ®

2.3 Episodic Memory Operations

Our memory operation involves two main phases. Training: The RL
agent interacts with the LLM to try actions and collect rewards for
(s, @) pairs to fill the memory. Testing: The RL agent uses the memory
to determine the ICL ordering for testing data.

Training In this phase, we collect and store the rewards defined
above for state-action pairs (s, a). Given an input query € Diin,
we obtain its representation using the pre-trained encoder, s = & (z).
The action at training time is selected via a linearly decaying e-greedy
policy, defined as:

t

+ ©)

€t = Einitial — (ﬁinilial - 6tinal) .

where ¢, is the value of € at episode ¢, N is the total number of
training iterations, €initiat and €gnar are the initial and final values of ¢,
respectively.

Given the a pair of state and action (s, a) and the reward r, follow-
ing [2], our Episodic Memory M is updated using Memory writing
as follows:

if (s,a) ¢ M

otherwise (10)

T’
M(s,a) {max {M(s,a),r},

It is noted that the stored rewards never decrease, indicating a focus
on high-return actions. In our setting, we use the highest possible
reward that the downstream LM can achieve for the pair (s, a) to
estimate the value of using ICL ordering a for input z. The motivation
behind this is to emulate the brain’s specialized learning mechanisms
that exploit predictable patterns in the environment, enabling rapid
learning from high-return actions recorded in memory.

We limit the size of our memory to be equal to the size of the
training dataset Dirqin. In the few-shot scenario where there are
limited training samples, it is guaranteed that our memory will not be
overflowed. However, in other settings where Ds,qir 1S too big, our
memory can have a fixed smaller size, and when a new state-value pair
has to be introduced, the least recently used state will be discarded.

Testing In this phase, we select the optimal permutation for each
testing query. In reality, it is common to receive novel states (states
that are not seen in training). To handle this, we employ a nearest-
neighbor estimator. In particular, we obtain the approximated value
of a testing state s; and a candidate action a using the following
Memory Reading process [15]:

C’S(zt,zi)

M (s0,0) = SF M (s a) ST oSt if (s¢,a) ¢ M
M (s¢,a), otherwise

(11

where s', i = 1,..., k are the k states with the highest similarity to

the testing state s;, C'S (z+,z") is the Cosine Similarity between the
neighbor z* to the test query x+. The motivation behind the weighted
sum is that we believe the semantic similarity between training data
and the test query should correspondingly affect its weight in the
ordering process. After having calculated M (s¢, a), we get the action
as for s; as follow:

at = arg max./T/l\(st, a)
a

(12)

We note that with enough training steps, the actions for each state
in the memory are filled to assure Eq. 12 is valid. In addition, the
nearest neighbor estimation here is a different process from the nearest
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Model name Baseline Hellaswag PIQA TruthfulQA  TriviaQA
acc. acc. acc. EM
0-shot 57.79 76.38 25.99 18.90
Random 58.59 77.37 32.38 58.65
Ascending 58.36 76.22 26.94 57.06
Descending 59.61 78.73 38.90 59.01
Llama 2 7B POEM (Ours) 59.65 79.27 38.91 59.06
0-shot 60.73 77.58 24.63 27.26
Random 62.40 79.05 32.79 65.98
Ascending 61.39 76.77 26.94 64.00
Descending 63.17 79.00 4041 67.13
Llama 2 13B POEM (Ours) 63.13 79.43 40.95 67.06
0-shot 63.76 79.27 28.16 42.69
Random 65.59 80.72 38.64 73.09
Ascending 65.59 80.79 32.24 72.07
Descending 66.99 81.66 45.17 73.53
Llama 2 70B POEM(Ours) 67.15 81.12 45.71 73.56
0-shot 65.98 80.20 46.26 32.41
Random 66.29 81.77 54.01 63.07
Ascending 65.47 81.50 50.88 62.04
Descending 67.00 83.51 59.46 63.75
Mistral 7B POEM (k=10) 67.14 83.35 59.46 63.83

Table 2. Comparison between POEM and other heuristic baselines. All baselines (except for 0-shot) use 4 in-context examples for each prompt. Bolded are the
best results and underlined are the second best. The metric for evaluation for each dataset is written below the dataset names. acc. stands for accuracy and EM

stands for exact match.

neighbor retrieval in the example selection described in Section 2.2.
Algo. 1 summarizes the procedure of our method.

3 Experiments
3.1 Few-Shot Text Classification

Datasets. For classification tasks, we conduct experiments for senti-
ment analysis, Natural Language Understanding (NLU), topic clas-
sification, and natural language inference datasets. For sentiment
analysis, we choose SST-2 [34], IMDB [26] and CR [11] as datasets.
For NLU task, we select COLA [38]. For Reading Comprehension,
we choose Boolq [5]. For topic classification, we use AG News [42].
For Natural Language Inference (NLI), we choose QNLI [37]. The
statistics, manual templates, and label words of this dataset are shown
in [9].

Baselines. For few-shot classification tasks, we compare our work
with previous continuous and discrete prompt optimization methods.
Finetuning is the method that finetunes the entire language model with
a classification head using the few-shot dataset. For Manual Prompt,
we use the hand-written prompts from [33]. In-context Demonstra-
tion randomly selects one example and concatenates it with the test
query. Black-box Tuning [35] combines a discrete component opti-
mized through non-gradient methods and a soft component refined
via gradient descent. RLPrompt [6] generates discrete prompt tokens
using RL framework. TEMPERA [41] trains a RL agent to edit prompt
sequentially. To ensure a fair comparison, we rerun these methods
under our setting. Besides complicated baselines, we also investigate
a simple heuristic baseline. Random Ordering adopts nearest neighbor
example selection, randomly permutes the in-context examples, and
concatenates with the test query.

Experiment Setup. We use RoBERTa-large [24] as the down-
stream LM. To ensure a fair comparison, we follow the same setting
from [6, 41] by testing all baselines on a few-shot text classification
setting. Training dataset Dy, has 16 examples per class, and we
sample another 16 data points as in-context dataset D;. (M = 16).
For reporting the testing results, we make use of the models having

the highest performance on the validation set and do inference on the
test set Dest provided by the task. We use m = 4 examples for each
prompt as in prior works [41]. For each run, we use the same training
and in-context samples for all baselines. At test time, we select the
number of nearest-neighbor £ = 10 for POEM.

Results. We present our few-shot text classification results over 4
runs in Tab. 1. We can see that on most tasks, POEM outperforms
previous baselines by a large margin. For example, we have a 2.9 %
absolute gain on SST-2 task (over TEMPERA), and 5.6 % on IMDB,
and the performance is almost comparable to finetuning the LM on
QNLI task. Especially, for NLI and NLU tasks, on harder datasets like
Boolq and COLA, we have a significance gain of 11.2 % and 14.2
% respectively. We also see that POEM has a much smaller variance
between different runs than all other baselines, which indicates that
it is more stable across different datasets. Unlike TEMPERA, which
requires sequential modification of in-context examples, our method,
POEM, enables one-step optimization. Our approach not only sim-
plifies the process but also overcomes TEMPERA’s slow inference
involving several numbers of edits for each prompt. POEM also out-
performs Random Ordering significantly, by nearly 13% on average,
highlighting the importance of ICL optimization. More comparisons
with advanced heuristic approaches are given in [9].

3.2 General Language Understanding Tasks

We further extend experiments of our method to general language un-
derstanding tasks that require stronger downstream LLM to generate
the answers.

Datasets. We measure performance on two main tasks with four
datasets, categorized as follows: Commonsense Reasoning. Hel-
laswag [40], PIQA [1]; Question Answering. TruthfulQA-mc1 [21],
TriviaQA [12]. For more complex tasks such as Question Answering
and Reading Comprehension, which involve multiple text fields, we
employ a reranking approach based on the field containing the most
relevant information. In cases like TruthfulQA, where certain fields
like fype and category lack semantic significance, we measure textual
distances between examples using the question field, which typically
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SST-2 CR COLA  AG News
Imbalanced labels ~ 93.5 92.2 58.6 69.7
Balanced labels 93.4 92.6 68.4 80.3
Table 3. Average accuracy over 4 runs on imbalanced in-context examples

selection.

Algorithms Accuracy
RLPrompt 52.6
TEMPERA 88.0
POEM 93.4
Table 4. Accuracy (60 iterations) of POEM, RLPrompt and TEMPERA on

SST-2 dataset.

encapsulates the query to be answered. For more detailed information
on datasets and the fields used for retrieval, please refer to [9].

Baselines. We note that complicated optimization baselines such as
RLPrompt and TEMPERA have not been designed and applied to this
task. Therefore, we compare POEM with several heuristic baselines. 0-
shot only includes the test query. Random Ordering randomly permute
the examples. Ascending Ordering arranges in-context examples by
increasing relevance, placing the most pertinent example closest to the
test instance. In contrast, Descending Ordering positions examples
from most to least relevant in relation to the test instance.

Experiment Setup. We use Llama-2-7b-chat, Llama-2-13b-chat,
Llama-2-70b-chat [36] with default parameters. For all datasets, sim-
ilar to classification tasks, we randomly sample 16 examples for
training and another 16 examples to form an in-context dataset. For
all baselines (except for 0-shot), we use m = 4 in-context examples
for each test query. At test time, we select the number of nearest
neighbors k£ = 10. Baselines that use ICL examples share the same
example selection mechanism described in the Method section. The
details of parameters used for these language models can be seen in
[9].

Results. We present our results for general language understand-
ing tasks in Tab. 2. Overall, it is clear that POEM shows superior
results compared to Random and 0-shot baselines. This suggests
that our approach is beneficial for optimizing ICL example ordering.
Compared to heuristic methods, in the context of 4 examples and
for these datasets, POEM performs slightly better. This is because
in these cases, the LLMs seem to favor the examples to be ordered
descendingly. However, we note that POEM performs better in 9 out
of 12 different settings compared to the Descending baseline. We also
would like to highlight that POEM consistently shows up in the top
2 best baselines across all datasets. We acknowledge the challenges
in replicating Llama’s evaluation setup due to the unavailability of
their system prompts. Consequently, to maintain simplicity and con-
sistency, our study does not incorporate specific instructions into the
prompts for LLMs. Instead, we apply uniform templates across all
baselines. This approach ensures fair comparison between POEM
and other baselines, thus showing the impact of in-context example
reordering. For further details on the templates for this task, please
see [9].

3.3 Ablation Studies
3.3.1 Analysis of Efficiency

We provide empirical evidence for our claim of POEM being fast and
efficient. We compare performance and runtime on SST-2 dataset [34]
between POEM, RLPrompt and TEMPERA. For a fair evaluation, all
experiments were conducted with one identical GPU Nvidia A100.
As shown in Tab. 6, the training time (until convergence) of POEM is
approximately 150 times faster than that of TEMPERA and RLPrompt
while achieving better accuracy. We also compare the performance of

SST-2 CR COLA AG News

Naive Action 91.0 914 68.0 79.6
Rank Action 93.4 92.6 68.4 80.3
Table 5. Ablation on action encoding. Average accuracy over 4 runs.

Algorithms Training time (min) Accuracy

RLPrompt 3100 87.7

TEMPERA 3208 90.5

POEM 21 93.4

Table 6. Comparison between POEM, RLPrompt and TEMPERA in terms of
training time until convergence (minutes, the smaller the better) and accuracy
of SST-2 dataset.

POEM with that of TEMPERA and RLPrompt after 60 iterations. The
results in Tab. 4 reveal that POEM has attained a state of convergence,
demonstrating the effectiveness of its learning algorithm within the
given iteration frame. On the other hand, TEMPERA exhibits ongoing
optimization efforts beyond the 60-iteration mark. This observation
leads us to posit that TEMPERA’s decent performance is attributable
to its initial prompt construction methodology. RLPrompt, however,
is still in the early stages of training, reflected by its near-random
accuracy. It is expected that RLPrompt will need more iterations to
properly improve its prompt generation process.

3.3.2  Analysis of POEM’s Components

Action encoding. We aim to investigate further how our action encod-
ing contributes to our framework. To achieve this, we design a naive
action encoding for a sequence of m examples. This approach results
in an action space of (M”fpm), rather than m!, where M denotes the
total number of in-context examples and m represents the number of
examples per prompt. As demonstrated in Tab. 5, the absence of our
similarity-ranked encoding leads to a noticeable decrease in perfor-
mance across all classification tasks. Notably, on the SST-2 dataset,
the accuracy drops by 2.4 percentage points, from 93.4% to 91.0%.
This drop highlights the significant impact of our similarity-ranked
encoding on maintaining high performance levels.

Imbalanced labels. For few-shot classification task, we aim to in-
vestigate how imbalanced in-context example labels can affect perfor-
mance. Instead of employing our example selection strategy described
in Section 2.2 to ensure an equal number of labels within a prompt, we
now select the top-m closest examples to the test query regardless of
their labels and use them to construct prompts. The results can be seen
in Tab. 3. We can clearly see that for sentiment classification datasets
(SST-2 and CR), POEM with imbalanced labels can still perform well.
For datasets that require natural language understanding (NLU) like
COLA, or those with more labels like AG News, the performances
surprisingly dropped significantly. This perhaps indicates that there
might be a strong bias coming from the imbalanced example selection
for test queries.

3.3.3 Hyperparameter Sensitivity

Number of iterations. We present results for different numbers of
training iterations, specifically 10, 60 (the default setting), and 120. As
shown in Tab. 7, increasing the number of iterations tends to improve
Memory Writing by allowing POEM to discover more effective
permutations. This indicates that more iterations can enhance the
model’s ability to refine its training. However, we have selected 60
iterations as the default to balance training time with convergence
stability, ensuring that the model achieves robust performance without
excessive training duration.

Size of in-context dataset D;.. We aim to further investigate how
the size of the in-context dataset impacts performance. Intuitively,
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Parameter Value SST-2  CR COLA AG
News
10 92.9 90.8 67.2 79.7
N 60 93.4 92.6 68.4 80.3
120 93.3 92.5 68.2 80.2
8 93.0 90.8 68.7 80.0
M 12 93.1 91.0 68.7 80.2
16 93.4 92.6 68.4 80.3
2 91.8 92.1 67.9 59.4
m 4 93.4 92.6 68.4 80.3
6 91.1 90.8 68.2 71.4
6 93.1 92.3 68.1 79.9
k 10 93.4 92.6 68.4 80.3
12 93.1 92.5 68.1 79.5

Table 7. Average accuracy across different NV, M, m and k for few-shot
text classification datasets.

a larger selection of examples should enhance the effectiveness of
the prompts, providing a richer context for generating responses.
As shown in Tab. 7, increasing the size of the in-context dataset,
denoted as M, results in a noticeable improvement in performance.
This indicates that expanding the dataset contributes positively to the
quality of the prompts,

Number of nearest neighbors k in memory reading. We provide
results with different number of neighbors to study the robustness
of POEM. With k¥ = 6, k = 10 and £ = 12, we obtain the re-
sults shown in Tab. 7 for few-shot classification datasets, and Tab.
8 for general language understanding datasets. It can be seen that
POEM’s performance holds for different k£, which indices our method
is relatively stable. We believe the reason behind this stability comes
from the weighted sum formula in Eq. 11, meaning that the order is
predominantly determined by test query’s closest neighbors.

Number of examples per prompt. We ablate on the number of
examples m used for demonstration in our algorithm. We choose the
size of 2, 4, 6 for this analysis. For few-shot classification, as shown
in Tab. 7, POEM performs optimally with 4 examples. A similar
trend is observed for general language understanding, with results
presented in Tab. 8. It is noteworthy that, in the original study [36],
an increment in the number of examples from four to five also led to
reduced accuracy. This implies that an overabundance of examples
might introduce noise, thereby leading to incorrect model decisions.

4 Related Works

Prompt Engineering. The traditional approach to using pre-trained
LMs involves fine-tuning downstream datasets [7, 19], which involves
extensive updates to model parameters. However, this method has
shown limited success on downstream tasks. Another approach in-
volves utilizing manual prompts to guide LLMs in performing NLP
tasks without requiring additional training [3, 32, 33]. A different line
of work in prompt engineering aims to develop instructional prompts,
which offer task descriptions instead of fill-in-the-blank questions.
In-context Learning [3, 22, 25] achieves impressive performance by
incorporating in-context demonstrations. However, these prompt en-
gineering approaches are time-consuming and require manual tuning,
which is not always feasible.

Prompt Optimization. Previous studies have also explored the
application of RL for prompt optimization. [6] propose using RL to
directly generate prompts agnostic to specific queries ; however, the
generated prompts may lack meaningfulness. Another previous RL
editing method [41] allowed editing task descriptions and in-context
examples. Yet, editing descriptions seldom aids optimization, and
swapping examples can be time-consuming, potentially leading back
to the initial state. Moreover, the method suits categorical tasks like

Model m k TruthfulQA  PIQA
2 10 35.10 78.67
4 10 38.91 79.27
Llama 2 7B 6 10 38.64 78.73
2 10 36.33 78.94
4 10 40.95 79.43
Llama2 13B 6 10 40.27 79.00
4 6 39.46 78.78
4 10 38.91 79.27
Llama 2 7B 4 12 38.37 79.00
4 6 40.54 79.43
4 10 40.95 79.43
Llama2 13B 4 12 40.41 78.84

Table 8. Accuracy across different m and k for general language understand-
ing datasets.

classification. In the realm of continuous embedding space, gradients
derived from LMs are employed to directly facilitate prompt optimiza-
tion, a method also referred to as soft prompt tuning [20]. However,
due to their continuous nature, soft prompts pose challenges in com-
prehension [18] and lack reusability across diverse models because of
disparities in latent embedding spaces. With the expansion of LLMs
in terms of both capacity and capabilities, there has emerged a new
line of research that employs LLMs as prompt generators, prompt
editors, or prompt scorers. [39] propose a method utilizing LLMs as
prompt optimizers, where the generated prompts rely on the prior
knowledge encoded within the LLMs. [44] utilize two distinct LLMs,
one as a zero-shot instruction generator and the other as a scorer to
optimize instructions . However, these approaches share the drawback
of relying heavily on the prior knowledge encoded within LLMs,
necessitating high-quality LL.Ms, which can be resource-intensive.
Furthermore, the variability in generated outputs by LLMs can be
unpredictable and challenging to interpret.

Examplars retrieval and ordering in In-context learning. Re-
search has demonstrated the significant influence of in-context ex-
ample selection and arrangement on the performance of LMs. For
instance, [31] utilize a retriever to select in-context examples . Ad-
ditionally, [22] propose a heuristic approach to ordering examples,
ranking them based on the textual similarity between the test query
and in-context examples. Recently, [41] have applied RL to enable
the swapping of in-context examples within their action space. These
studies underscore the impact of selecting and arranging in-context
examples on downstream task performance. Compared to heuristics,
RL solutions are theoretically guaranteed. Unfortunately, existing
RL-based methods are complicated and slow during training. Our
study is the first RL-based prompt optimization method that is both
simple and efficient, demonstrating superior performance compared
to existing counterparts.

5 Discussion

We have introduced POEM, a novel approach to prompt optimiza-
tion within the RL paradigm. By strategically reordering few-shot
examples using episodic memory, POEM significantly enhances the
performance of LLMs across a wide range of NLP tasks. Our method
consistently outperforms existing techniques in few-shot classification
on various datasets and demonstrates clear advancements over heuris-
tic baselines in general language understanding tasks. The synergy
between NLP and RL in POEM underscores the potential for future
innovations in test-time prompt optimization algorithms, which could
prove pivotal for real-world applications.
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