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Abstract. Existing Chinese spelling check (CSC) methods have
limitations in correcting variable-length error characters, requiring
the input and output to be the same length. They mainly focus on
modelling Chinese characters’ phonetic information and generating
candidates for each position. In contrast, few approaches delve into
the intricacies of splitting Chinese characters to address glyph er-
rors and splitting variable-length corrections. We define the Chinese
Splitting Error Correction (CSEC) task and develop CSEC datasets
in news and social media domains to address this issue. We then
propose Soft-Masked Multi-feature Error Correction (SoMu) model,
which first generates semantic, phonetic, graphic, and unique Chi-
nese Wubi embeddings, then integrates those features through selec-
tive gating fusion, followed by a soft-mask strategy to filter incor-
rect tokens and finally use transformer layers to predict the correct
ones. This model effectively addresses both spelling and splitting er-
rors. Extensive analysis shows that our model significantly improves
character-splitting information modelling for CSEC. Our dataset is
available at https://github.com/Skywalker-Harrison/SoMu.

1 Introduction

Spelling errors are prevalent daily and are usually caused by misiden-
tification of Automatic Speech Recognition (ASR), Optical Charac-
ter Recognition (OCR), or keyboard typing systems since some Chi-
nese characters are similar in either phonology or morphology. Chi-
nese Spelling Checking (CSC) aims to rectify the wrong Chinese
characters in the sentence [25, 22].

In addition to spelling errors, splitting errors also appear in Chi-
nese text recognition and editing since Chinese characters have
unique compositions. For example, splitting errors occur in handwrit-
ing [28] when the spacing between the user’s handwritten Chinese
characters is relatively large, or the model over-segments an image.
Splitting errors also occur in printed Chinese characters [30] and
ancient text recognition [15] when dealing with low-quality images
(e.g., being blurry, poorly lit, or noisy). Splitting also appears in on-
line chatting; some people on the Internet may intentionally use split
characters, such as typing “妈” as “女马” and “种” as “禾中”, which
poses challenges for semantic understanding or other language pro-
cessing tasks.
∗ Corresponding Author

Task Source Sent. Target Sent.

CSC 希望你们好好跳无(wú) 希望你们好好跳舞(wǔ)
(Phonetic error) I hope you dance well.

CSC 这件商品兔费 这件商品免费
(Graphic error) This item is free.

CSEC 请不要乱扔土立圾 请不要乱扔垃圾
(Splitting error) Please do not litter!

CSEC 这些是直八正的创新 这些是真正的创新
(Splitting error) These are real innovations.

Table 1: An example of CSC and CSEC Task, the original and target
sentences are shown along with their English translation. The wrong
character is shown in red color and the corrected character is shown
in blue color. The error type is noted below the original sentence. The
English translation of error token is highlighted in bold, best viewed
in color.

Contrasting with traditional Chinese Spelling Check, which pri-
marily corrects individual incorrect Chinese characters using pho-
netic or glyphic similarities, CSEC tackles errors related to charac-
ter splitting. In other words, CSEC algorithmically explores merging
multiple split characters into the correct one. While CSC typically
maintains the same length between the input and the output, CSEC
may result in a shorter output.

Table 1 demonstrates examples for CSC and CSEC. For the CSC,
in the first example, the phonetic error “无”(wú, nothing) needs to
be corrected as “舞” (wǔ, dance), and the second example requires
the graphic error “兔” (rabbit) be corrected as “免” (free). Those
two CSC examples only involve the correction of individual Chi-
nese characters, and the correction pair (无-舞 and兔-免) may share
phonological or glyphic similarities. Table 1 also demonstrates two
CSEC examples. In the first example, “土立” is separated from “垃”
(rubbish). In the second example, “直八” is separated from “真”
(real), where two split characters are combined to restore the orig-
inal, correct character.

Current methods focus mainly on CSC, originating from the as-
sumption that 1) the equivalence in length between input and output
sequences [8], and 2) the prevalence of phonetic errors associated
with Chinese characters, with comparatively limited occurrence of
glyph-related errors [1]. However, those assumptions do not hold
true in real-world applications, and the less common glyph-related
errors adversely affect the user’s satisfaction and relevant down-
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stream tasks. Therefore, it is crucial to investigate further and ana-
lyze the glyph error category in CSC tasks to enhance the robustness
and effectiveness of the existing techniques. Another challenge with
existing models is that there is no separate multi-feature error detec-
tion module, so the model has to generate candidates for correction
at each position, regardless of whether it is correct or not.

To address the aforementioned challenges, we propose a SoMu
(Soft-Masked Multi-feature Error Correction) model to reliably de-
tect and correct both spelling and splitting errors in Chinese text. Our
contributions include:

• We define the CSEC task. To our knowledge, this is an important
but untapped area in this field.

• We propose a novel SoMu model to address both CSC and CSEC
tasks. It integrates semantic, phonological, and glyph features,
which also includes Chinese Wubi segmentation of Chinese char-
acters. Furthermore, it employs a soft-mask strategy to identify
potential erroneous tokens and leverages transformer layers for
making predictions.

• We develop the CSEC datasets and tailor CSC systems for
CSEC tasks. In our experiments for CSC, the model is trained
on SIGHAN training data and Wang271k data and tested on
SIGHAN test data. Additionally, we use our own CSEC dataset
for CSEC and thoroughly evaluate our model against other base-
line models. The experimental results demonstrate that our model
is comparable to the state-of-the-art model in CSC and excels in
CSEC tasks.

2 Related Work

Spelling error correction aims to correct wrong tokens in the text.
Early works such as Hanspeller [25] are mainly rule-based. Se-
quence Labeling [8] regards CSC as a sequence tagging problem and
proposes the BiLSTM-CRF method to predict the best tag sequence.
With the great success of pre-trained language models, BERT [7]
has been used for CSC. FASPell [11] uses a BERT-based denoising
autoencoder and a decoder to build up confusion set and combines
phonological and graphical similarity to choose the correct charac-
ter, Soft-Masked BERT [26] improves the detection ability of BERT
model. GECTor [14] uses BERT-based models to predict the token
transformation tag in English Error Correction (EEC). StructBERT
[20] has been observed to produce satisfactory results in CSC [29].

In recent years, ReaLiSe [22] integrates semantic, phonetic, and
visual modal selectively to deal with CSC. SCOPE [12] adds a char-
acter phonetic prediction module to better correct phonetic errors.
PhVEC [10] proposes a non-autoregressive ASR correction method
using pinyin tokens to extend the source sentence for variable-length
correction. [9] adds acoustic information and uses MoE for modal
alignment in EEC.

Although current models have achieved great success in the CSC
task, previous studies have not sufficiently addressed glyph errors,
character splitting, or employed multimodal soft masking techniques.
We believe those features related to character splitting play a crucial
role in addressing CSEC and improving the performance of CSC.
Furthermore, the utilization of multimodal masking can enhance pre-
cision.

3 Methodology

3.1 Definitions

Existing Definition of CSC Given an input sentence X =
[x1, ..., xn] consisting of n characters, the objective is to generate
a corresponding output Y = [y1, ..., yn].

Definition of CSEC Given an input sentence X = [x1, ..., xm]
comprising of m characters, there may exist one or more continu-
ous sequence of characters, xi, ..., xi+l, to form a token yi if merged
together. Thus, the objective is to detect and correct these splitting er-
rors, thereby restoring the original information in the output sentence
Y = [y1, ..., yi, ..., yn], where n ≤ m.

3.2 The SoMu Model

As shown in Figure 1, our model can be divided into a feature fusion
module, a detection module, and a correction module.

3.2.1 Feature Fusion Module

For the part of multi-feature integration and confusion, we follow the
work in ReaLiSe [22], which incorporates semantic, graphic, and
phonetic information, Chinese BERT model [5] is used to obtain the
semantic embedding Es, a CNN encoder to obtain graphic embed-
ding Eg , a uni-directional GRU network [3] and transformer blocks
to obtain phonetic embedding Ep. The embedding for each feature
is represented by a matrix of dimension R

N×D , where N represents
the maximum length and D represents the hidden size.

Wubi Embedding The Wubi feature is incorporated into our sys-
tem as it offers more efficient encoding of splitting information. The
Wubi input method utilizes the QWERTY keyboard, with each key
on the keyboard corresponding to different Chinese radicals1. Conse-
quently, these codes represent sequential structural information, with
a maximum length of 4 for each Chinese character. Moreover, the
Wubi representation includes a Chinese splitting method that aligns
with our CSEC. For instance, the Wubi code for the character “中”
(middle) is “KH”, where “K” represents the radical “口” (mouth) and
“H” represents the stroke “丨” (vertical bar) in Chinese. The PyWubi
library2 is employed for generating the Wubi codes of characters.

Then, suppose the Wubi code for the i-th character is ki =
(ki,1, ..., ki,|ki|) ,where |ki| is the length of Wubi code of i-th char-
acter, the Wubi embedding of the i-th character xi is defined by

h̃w
i,j = GRU(h̃w

i,j−1, E(ki,j)) (1)

where h̃w
i,j represents the hidden states of j-th position at character

xi, and E(ki,j) is the embedding of Wubi code letter ki,j , we use
the last hidden state of the character, namely h̃w

i,|ki| as the character
level Wubi representation of xi.

Finally, the Wubi embedding for the input sentence is denoted as
Ew ∈ R

N×D

Feature Fusion The gating factor for semantic, graphic, phonetic
and wubi features are denoted as gs,gg ,gp and gw, and they will be
calculated by the concatenation of embeddings.

We first start by calculating the overall representation of a sentence
by averaging the semantic embedding in Eq. (2), then calculate selec-
tive gate weights in Eq. (3), and finally apply a selective gate feature
fusion method to integrate semantic, phonetic, graphical, and Wubi

1 https://en.wikipedia.org/wiki/Wubi_method
2 https://pypi.org/project/pywubi/
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Figure 1: The architecture of our model, our model can be divided into three stages: (i) Selective feature fusion, (ii) Detection module (blue
dashed border), and (iii) Correction module (green dashed border).

features in Eq. (4). The gate will control how much information from
each feature will be fused into the final representation.
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+ b{s,p,g,w}) (3)

ẽi = gsi ·Es
i + ggi ·Eg

i + gpi ·Ep
i + gwi ·Ew

i (4)

where W {s,g,p,w} ∈ R
N×D, b{s,g,p,w} ∈ R

N are all learnable pa-
rameters, s, p, g, w respectively denotes semantic, phonetics, graph-
ical and wubi features. σ is the sigmoid function, and [·] denotes the
concatenation of vectors. ẽi is the fused representation at i-th posi-
tion. Then the fused vectors are packed into Ef = [ẽ1, ..., ẽN ].

3.2.2 Detection and Correction Module

We use a soft masking strategy at the detection module to help our
model focus on the wrong tokens. A bidirectional GRU network is
firstly utilized to detect the correctness of tokens, using the semantic
embedding Es = {es1, ..., esN} ∈ R

N×D as the input. The hidden
states of GRU can be expressed as

hi = [
→
hi,

←
hi] = GRU(Es, esi ) (5)

where i indicates the position and
→
hi,

←
hi incidates left to right and

right to left hidden states.
Then, the GRU hidden states go through a feedforward neuron

network to obtain the correct probabilities.

pdi = σ(W dhi + bd) (6)

where W d, bd are learnable parameters. pdi denotes the correct prob-
ability of the ith token.

Finally, we apply a soft-mask strategy to the gate-connected fused
hidden embedding.

Ec,0
i = pdi ∗Ef

i (7)

The detection loss is defined as:

Ld = −
n∑

i=1

(pdi logp
d
i + (1− pdi )log(1− pdi )) (8)

For the correction module, We start by feeding the embedding
Ec,0 from Eq. (7) to transformer blocks [18]

Ec,l
i = Transformerl(E

c,l−1
i ), l ∈ [1, Lc] (9)

where l denotes the layer of the transformer network, and Lc is the
number of transformer layers. Ec,l

i denotes the hidden state of i-th
position at lth layer.

Then, the residual connection is employed to add the original fused
embedding Ef and transformer output Ec,Lc

Eo = Ec,Lc +Ef (10)

We use the output hidden state to predict the token through a feed-
forward neuron network to obtain the correction probability.

pci = σ(W cE
o
i + bc) (11)

where pci ∈ R
|V |, |V | denotes the vocab size. W c and bc are learn-

able parameters of FFN. Then, we obtain the probability of ith output
token being corrected as jth token in the vocabulary.

P (yi = j|X) = pci [j] (12)

In this part, we define the correction loss by cross-entropy loss.

Lc = −
n∑

i=1

logP (yi = ŷi|X) (13)

where ŷi is the golden label at ith position. In CSEC, we add
placeholders to ensure the same output length (See 3.3). Then, we
define the overall objective as follows:

L = (1− α)Ld + αLc (14)

where α is a hyper-parameter.
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3.3 Modification on CSEC

To address the errors related to the splitting of Chinese tokens in
CSEC, certain modifications have been made: 1) we exclude pho-
netic and graphic features because they do not indicate splitting in-
formation explicitly. 2) we adjust the model’s output by placing the
original character at the last position among the split characters while
using a placeholder symbol ε for the other positions. For instance,
the sentence “这家餐馆真的土立圾” is corrected as “这家餐馆
真的ε垃圾”. Subsequently, a post-processing module removes the ε
placeholders. All other settings remain unchanged.

3.4 Pretraining Wubi Encoder

To leverage the Wubi encoder, we devise a sentence transformation
task to predict the corresponding Chinese characters using the Wubi
encoding of a sentence. The Wubi encoder is the same as illustrated
in Figure 1. This task emulates the human typing process, allowing
the Wubi encoder to inherently capture information regarding char-
acter splitting. During the pre-training phase, a linear layer is imple-
mented on the encoder to predict the output of Chinese characters.

For CSEC tasks, we add a weighting parameter w when calculat-
ing detection loss Ld

Ld = −
n∑

i=1

(
pdi log p

d
i + w · (1− pdi ) log(1− pdi )

)
(15)

4 Experiment

4.1 Dataset

CSC Data We collect data from SIGHAN13 [21],
SIGHAN14 [24], and SIGHAN15 [16] dataset and the pseudo
training data created by ASR and OCR confusion method from
Wang271K [19] using confusion sets. We conduct joint training
on the SIGHAN13/14/15 train set and Wang271K and evaluate the
model on the SIGHAN14/15 test set, while the SIGHAN13 test set
is excluded since its poor annotation in Chinese modifiers such as
“的地得”.

CSEC Data We curate two datasets, namely CSEC-Social and
CSEC-News, to investigate the splitting of Chinese characters in so-
cial media and standard texts. CSEC-Social is created utilizing mali-
cious comments on COLDataset [6] collected from the Chinese so-
cial network Weibo. CSEC-News is collected from the Sougou News
dataset [27]. Finally, we employ character splitting dictionary 3 to
obtain the split result. This segmentation process is conditional; a
character is identified if all of its splits are recognized by the vocabu-
lary of the pre-trained chinese-bert-wwm model [4]. Each identified
character is subjected to splitting with a probability of 0.1.

Table 2 provides an exhaustive compilation of statistical informa-
tion about the CSC and CSEC datasets.

4.2 Metrics

CSC involves two primary levels of metrics: character level and sen-
tence level. In the case of sentence-level assessment, a sentence is
deemed correct only if all incorrect characters within it are suc-
cessfully corrected. Following previous approaches, we adopted the
sentence-level metrics presented in [22].

3 https://github.com/kfcd/chaizi

Task Name #sent Avg Len #Errors

CSC

Train
SIGHAN14 3,437 49.6 5,122
SIGHAN15 2,338 31.3 3,037
Wang271K 271,329 42.6 381,692

Total 277,804 42.6 390,464

Test
SIGHAN14 1,062 50.0 771
SIGHAN15 1,100 30.6 703

Total 2,162 40.1 1,474

CSEC

Train
News 7,869 30.7 8,344
Social 6,330 28.8 6,401

Total 14,199 29.9 14,745

Dev
News 775 29.3 800
Social 1,669 28.9 1,728

Total 2,444 29.0 2,528

Test
News 1,174 30.9 1,268
Social 1,108 28.6 1,128

Total 2,282 29.8 2,396
Table 2: Statistics of the CSC and CSEC datasets.

For CSEC, most of the input and output sentences are not of equal
length because they involve the combination of split tokens. There-
fore, to address variable-length evaluation, we use ChERRANT [29]
as our evaluation criterion. ChERRANT extracts the editing distance
between original and corrected sentences and calculates the Leven-
shtein distance of the predicted edits.

4.3 Baselines

We compare SoMu with the following baselines for CSC.

• HanSpeller++ [25] uses traditional statistical methods, including
candidate generation, re-ranking and global selection, to correct
the error.

• BERT [7, 26] fine-tunes the BERT language model using CSC
dataset.

• FASPell [11] uses a denoising autoencoder and a decoder to gen-
erate predicted tokens.

• SpellGCN [2] incorporates phonological and visual similarity
knowledge using a graph convolutional network.

• SM BERT [26] incorporates a soft-masked BERT model for the
detection and correction of error characters.

• ReaLiSe [22] constructs a multimodal method and mixes seman-
tic, graphical, and phonetical information.

• ECOPO [13] adds a plug-in module to guide the model to avoid
predicting common characters in an error-driven way.

• SCOPE [12] adaptively integrates both CSC and Chinese Pho-
netic Predicting tasks, focusing on phonetic features.

• Multidimensional Multimodal Integration (MMI) [23] which
combines phonetic and structural forms of Chinese characters,
then integrates with semantic information4.

Since both SCOPE and ECOPO are plug-in modules, we record their
performance on the baseline Realize.

For CSEC, the baselines are listed as follows:

• Seq2Seq [29] regards error correction as an autoregressive unidi-
rectional language generation.

• GECTor [14] regards the correction problem as label tagging.

4 In the article, the authors do not indicate the name of their model, here we
use MMI to denote the model proposed by [23]
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Meanwhile, we also use ReaLiSe [22] and SCOPE [9] for compari-
son.

In our research, we also opt for Large Language Models (LLMs)
for both CSC and CSEC tasks. We specifically choose OpenAI Chat-
GPT and other open-sourced language models. The task prompts can
be found in Appendix A. We test those models on a 5-shot scenario.

• GPT-3.5, GPT-4 and GPT-4o from the ChatGPT series. We have
selected models accessible through OpenAI’s public APIs56. GPT-
3.5 model benefits from extensive training on a broad dataset us-
ing GPT-3 with Reinforcement Learning from Human Feedback.
While GPT-4 has more training data and model parameters, and
GPT-4o demonstrated better ability on text, audio and vision.

• Baichuan2-13B-Chat Given our focus on Chinese scenarios, we
also incorporate LLMs that are prominent and extensively utilized
within the Chinese community, we include Baichuan2-13B-Chat7

in our experiment.
• Qwen2 Qwen2 is the new model series of large language mod-

els from the Qwen team. We include Qwen2-7B-Instruct 8 in our
experiment.

4.4 Implementation Details

We use Pytorch to implement the SoMu model. We initialize the se-
mantic encoder using Chinese-BERT-wwm [4] and further pre-train
the graphic encoder, phonetic encoder, and Wubi encoder. In the cor-
rection module, we set Lc = 6. For CSC, our model is trained in two
stages: in the first stage, we train our model on SIGHAN/Wang271k
joint training data for ten epochs, we choose the batch size to be 16,
use AdamW optimizer (β1 = 0.9, β2 = 0.999), and set the learn-
ing rate to 5 × 10−5. In the second stage, we fine-tune our model
using only SIGHAN training data, and the learning rate is set to
6 × 10−5. For CSEC, we only conduct the first stage training using
the CSEC dataset and set w = 10. All experiments are performed on
two GeForce RTX 3090s.

4.5 Main Results

CSC Table 3 and 4 show the performance of our proposed model
together with other baselines. Our model demonstrates superior per-
formance compared to the ReaLiSe baseline on the SIGHAN14/15
benchmarks, achieving a 1% improvement in the F1 score. While
our model does not surpass ECOPO and SCOPE in the SIGHAN14
benchmark, it is noteworthy that ECOPO is model-agnostic, suggest-
ing that a combination with our model could potentially enhance per-
formance. For LLMs, despite the constraints on the format of output,
the performance still falls far short of the small models on the evalua-
tion metrics; demonstrating CSC is still a challenging task for LLMs.
Our model’s high precision score on SIGHAN14 and its accuracy
score on SIGHAN15 are attributable to the efficacy of our soft-mask
module in discerning character correctness.

CSEC Table 5 shows the performance of our model and all base-
lines using ChERRANT. Our model excels in the reconstruction
of split characters within both the CSEC-Social and CSEC-News
datasets. While Seq2Seq has shown promise in Grammatical Error
Correction (GEC) tasks, it performs poorly in error correction with

5 https://chat.openai.com/
6 We used OpenAI APIs, the model for GPT-3.5 is gpt-3.5-turbo-0401, for

GPT-4 is gpt-4-turbo-2024-04-09 and for GPT-4o is gpt-4o.
7 https://github.com/Baichuan2-inc/Baichuan2
8 https://huggingface.co/Qwen/Qwen2-7B-Instruct

SIGHAN14 Detection Level Correction Level
Acc Pre Rec F1 Acc Pre Rec F1

FASpell 70.0 61.0 53.5 57.0 69.3 59.4 52.0 55.4
BERT 73.8 60.2 64.6 62.3 73.0 58.6 62.9 60.7
SpellGCN - 65.1 69.5 67.2 - 63.1 67.2 65.3
ECOPO 79.0 68.8 72.1 70.4 71.5 67.5 71.0 69.2
SCOPE - 69.0 75.0 71.9 - 67.1 72.9 67.9
MMI - 67.1 66.7 66.9 - 66.3 66.0 66.2
GPT3.5 - 25.7 30.0 27.7 - 19.8 11.2 14.3
GPT4 - - - - - 24.1 15.9 19.1
GPT4o - - - - - 38.4 22.4 28.3
Baichuan - 10.1 16.7 12.6 - 8.94 14.8 11.2
Qwen2 - - - - - 10.4 5.60 7.20

ReaLiSe 78.4 67.8 71.5 69.6 77.7 66.3 70.0 68.1
SoMu (Ours) 78.7 68.8 71.6 70.3 78.3 67.8 70.2 69.0

Table 3: The sentence level performance of our model and other base-
lines on SIGHAN14 dataset. Best results are in bold. Underlined re-
sults indicate the model’s performance exceeds the ReaLiSe baseline.

SIGHAN15 Detection Level Correction Level
Acc Pre Rec F1 Acc Pre Rec F1

HanSpeller++ 70.1 80.3 53.3 64.0 69.2 79.7 51.5 62.5
FASpell 74.2 67.6 60.0 63.5 73.7 66.6 59.1 62.6
SM BERT 80.9 73.7 73.2 73.5 77.4 66.7 66.2 66.4
BERT 82.2 72.8 77.8 75.3 81.5 71.5 76.3 73.8
SpellGCN - 74.8 80.7 77.7 - 72.1 77.7 75.9
ECOPO 85.0 77.5 82.6 80.0 84.2 76.1 81.2 78.5
SCOPE - 78.7 84.7 81.6 - 76.8 82.6 79.6
MMI - 76.7 77.1 76.9 - 76.1 76.5 76.3
GPT3.5 - - - - - 31.7 19.8 23.5
GPT4 - - - - - 40.4 25.9 31.6
GPT4o - - - - - 50.2 32.8 40.3
Baichuan - 19.5 33.5 24.6 - 18.6 32.0 23.6
Qwen2 - - - - - 15.4 8.90 11.3

ReaLiSe 84.7 77.3 81.3 79.3 84.0 75.9 79.9 77.8
SoMu (Ours) 85.7 78.3 82.9 80.5 84.7 76.5 81.0 78.9

Table 4: The sentence level performance of our model and other base-
lines on SIGHAN15 dataset. Best results are in bold. Underlined re-
sults indicate the model’s performance exceeds the ReaLiSe baseline.

CSEC-Social CSEC-News
Model Pre Rec F0.5 Pre Rec F0.5

Seq2Seq 15.9 22.8 16.9 27.1 30.5 27.7
GECTor 48.7 77.1 52.6 69.8 82.5 72.0
BERT 55.6 92.1 60.4 90.2 94.5 91.0
SCOPE 56.3 89.6 60.8 91.1 91.6 91.2
GPT3.5 8.30 12.5 8.90 21.2 24.7 21.8
GPT4 18.4 7.80 14.5 54.6 56.3 54.9
GPT4o 35.5 43.1 36.8 56.2 57.5 56.4
Baichuan 13.6 24.9 15.0 27.2 36.5 28.7
ReaLiSe 59.5 94.4 64.2 94.3 93.9 94.2
SoMu (Ours) 60.2 95.1 65.0 96.0 96.1 96.0

Table 5: The performance of our model and all baseline models on
CSEC test sets. Best results are in bold.

hard constraints. GECTor, in particular, underperforms due to its in-
ability to identify incorrect tokens accurately. In contrast, once our
model successfully identifies an error, it demonstrates a high correc-
tion probability of 95% on both datasets. Additionally, we note that
despite SCOPE’s leading position in CSC, it lags significantly behind
our SoMu model in CSEC. This shortfall is attributed to SCOPE’s
lack of explicit glyph integration in its framework.

We observed that LLMs including gpt-3.5-turbo and Baichuan2-
13B-chat often fall short of expectations because they prioritize se-
mantically correct modifications to sentences instead of accurately
restoring original split characters, making unnecessary edits. Addi-
tionally, these models struggle to effectively incorporate glyph in-
formation into their processing, leading to an unsatisfactory perfor-
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mance in correcting the true errors.
We also find that the model performs significantly better in preci-

sion and F0.5 score on CSEC-Social compared to CSEC-News be-
cause CSEC-Social exhibits a higher prevalence of non-standard ex-
pressions compared to CSEC-News, resulting in lower precision for
the model in identifying splitting characters.

4.6 Ablation Study

CSC The results of ablation experiments for CSC are shown in
Table 6. We verify the effectiveness of each part of our model by
conducting the ablation study with the following settings: 1) remove
the phonetic encoder, 2) remove the graphic encoder, 3) remove the
Wubi encoder, and 4) remove the soft-masking strategy.

As shown in Table 6, the removal of phonetic, graphic, Wubi, and
soft mask would decrease the performance, which demonstrates the
effectiveness of our model. This study particularly highlighted that
adding Wubi embedding and soft-mask strategy and removing the
Wubi encoder would lead to a two-level drop in the performance in
detection and correction level, which is a more substantial impact
than the removal of phonetic and graphical information.

Detection Level
Model Acc Pre Rec F1

BERT 78.4 74.6 74.5 74.5
SoMu 85.7 78.3 82.9 80.5
- w/o Phonetic 84.7 76.9 81.7 79.2
- w/o Graphic 85.1 78.5 81.5 80.0
- w/o Wubi 83.9 76.6 80.0 78.3
- w/o Soft Masking 84.9 77.4 81.7 79.5

Correction Level

BERT 76.9 72.3 72.3 72.3
SoMu 84.7 76.5 81.0 78.9
- w/o Phonetic 83.7 75.0 80.0 77.2
- w/o Graphic 84.3 76.9 79.9 78.3
- w/o Wubi 83.0 74.9 78.2 76.5
- w/o Soft Masking 84.0 75.7 79.9 77.7

Table 6: Ablation experiments of SoMu on SIGHAN15 test data with
different settings, we report the detection and correction level score.
The underlined number represents the configuration with the greatest
reduction in performance.

CSEC We also conduct the ablation study on CSEC test datasets.
The results are shown in Table 7. The SoMu model is modified ac-
cording to section 3.3. The removal of Wubi information will lead to
a decrease in overall performance. We also find that adding phonetic
features leads to the most drop-in F0.5 score, and adding graphic and
phonetic information leads to a drop in the overall performance. A
possible reason is that phonetic information is unnecessary in CSEC
tasks, adding it may lead to sub-optimal performance.

5 Analysis

5.1 Character Embedding

To understand why SoMu generates meaningful representations, we
study the fused hidden embedding Ef of each character. We select
characters with similar shapes and display two separate t-SNE vi-
sualizations [17]. Figure 2 compares the clustering of data points
using two different models: BERT on the left and SoMu on the right.
SoMu can distinguish the same shape characters much better than
the BERT model. Take the clustering of “于” (at) and “干” (do) as an
example. The t-SNE visualization of SoMu forms more distinctive

CSCD-Social
Model Pre Rec F0.5

ReaLiSe 59.5 94.4 64.2
SoMu ∗ 60.2 95.1 65.0
- w/o Wubi 59.8 94.4 64.5
- w Graphic 59.7 94.2 64.4
- w Phonetic 59.6 94.4 64.3

CSCD-News
Model Pre Rec F0.5

ReaLiSe 94.3 93.9 94.2
SoMu ∗ 96.0 96.1 96.0
- w/o Wubi 95.6 95.4 95.5
- w Graphic 95.6 95.3 95.5
- w Phonetic 94.8 94.1 94.7

Table 7: Ablation experiments of SoMu on CSEC test data with dif-
ferent settings, we report the detection and correction level score.
The underlined number represents the configuration with the great-
est reduction in performance. We denote our modified SoMu model
without phonetic and graphic embedding in *.

clusters than BERT, and the characters with similar shapes form two
clusters.

Figure 2: The t-SNE visualization of paired similar characters using
BERT (left) and our SoMu (right) in the SIGHAN15 test. The paired
similar characters are marked in the same color but in circle ◦ and
triangle �. Best viewed in color.

5.2 Parameter tuning

We try four α values in [0.2, 0.5, 0.8, 1] to balance detection and
correction losses in Eq. (14), then report the character level correc-
tion and detection F1 score before fine-tuning. The result is shown in
Figure 3. Then, α is selected as 0.5 for our experiment based on the
overall performance.

Figure 3: The Character level performance with different α values.
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5.3 Multi-feature integration

We categorize three types of error: similar phonetics (SP), similar
shape (SS), similar shape and phonetics (SSP) by automatically cal-
culating the character similarity using Levenstein distance provided
by FASPell [11]. We use MacBERT9 for comparison. The results are
shown in Table 8. From the table, SoMu outperforms MacBERT in
correcting all three types of tokens. The reason behind this is multi-
feature integration, which allows more information related to phonet-
ics and glyphs to be fused into the overall representation of Chinese
characters. We also analyze the capability of our model to correct
splitting errors, and the result is shown in Table 9. From the table,
our model excels in correcting splitting errors in both news and so-
cial media domains.

SIGHAN14 SIGHAN15
SP SS SSP SP SS SSP

Total 303 20 275 338 22 200
MacBERT 206 20 210 262 19 169
SoMu (Ours) 222 20 218 277 21 186

Table 8: Wrong character correction abilities comparison between
MacBERT and SoMu on SIGHAN14/15 datasets. “Total" indicates
the number of error tokens, and the number of corrected tokens
of MacBERT and SoMu is listed. The bold numbers indicates the
method that could correct the most wrong characters.

Dataset News Social All

Total 1,268 1,128 2,396
SCOPE [9] 1,183 1,062 2,245
Realise [22] 1,220 1,094 2,314
SoMu (Ours) 1,225 1,108 2,333

Table 9: Splitting error correction abilities comparison among
SCOPE, Realise, and SoMu on CSCD datasets. “Total" indicates the
number of split tokens, and the numbers of corrected tokens of dif-
ferent methods are listed. The bold numbers indicate the method that
could correct the most splitting characters.

5.4 Case Study

CSEC cases are shown in Table 10. SoMu could detect the wrong
splits and recover the sentence by noticing the structure of the splits.
Compared to ReaLiSe, SoMu correctly recovers “车甫” into “辅”
(tutor) and “毛炎” into “毯” (carpet). Moreover, SoMu maintains
the correct sentence in the third example, while ReaLiSe mistakenly
merges “丰子” into “李”. SoMu could avoid such error since the
Wubi codes for “丰子” and “李” are significantly different. While
GPT-3.5 fails to construct some characters since it cannot effectively
embed the information of splitting parts of Chinese characters.

6 Conclusion

In this article, we introduce a hybrid model called SoMu, which com-
bines multi-feature embedding and a soft masking strategy to simul-
taneously address the challenges of CSC and CSEC. Our model in-
corporates Chinese Wubi sequential information alongside other fea-
tures, then identifies problematic characters with soft masking and
ultimately makes predictions using a transformer network. The in-
corporation of the Wubi feature enables our model to concentrate on
the segmentation of Chinese characters, and soft masking allows the

9 https://huggingface.co/shibing624/macbert4csc-base-chinese

Example 1: 家长拒绝车甫导孩子或被计入征信。
Parents who refuse to tutor their children may be recorded
for credit.

ReaLiSe: 家长拒绝捕导孩子或被计入征信。
GPT3.5: 家长拒绝车辆导孩子或被计入征信。
SoMu: 家长拒绝辅导孩子或被计入征信。

Example 2: 周一围木示志性的马尾和帅气大长腿，在红毛炎上十
分瞩目。
Zhou Yiwei’s iconic ponytail and handsome long legs at-
tracted much attention on the red carpet.

ReaLiSe: 周一围标志性的马尾和帅气大长腿，在红毛炎上十分
瞩目。

GPT3.5: 周一围木示志性的马尾和帅气大长腿，在红毯上十分
瞩目。

SoMu: 周一围标志性的马尾和帅气大长腿，在红毯上十分瞩
目。

Example 3: 丰子恺曾指出，小孩子的生活是趣味本位的。
Feng Zikai once pointed out that children’s life is based
on fun.

ReaLiSe: 李恺曾指出，小孩子的生活是趣味本位的。
GPT3.5: 丰子恺曾指出，小孩子的生活是趣味本位的。
SoMu: 丰子恺曾指出，小孩子的生活是趣味本位的。

Table 10: Examples CSEC task for ReaLiSe and SoMu, we mark the
split tokens/wrong edits/correct edits in red/orange/blue. Best viewed
in color.
model to focus on the wrong tokens. Experimental results demon-
strate that our approach performs competitively with the state-of-the-
art model in CSC and surpasses it in CSEC.
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A Task Prompts for LLMs

The prompts for generating knowledge keywords as web search
queries were illustrated in Table 11.

CSC 你是一位著名的语言学家，请你纠正一下句子中汉字拼
写的错误，你需要识别并纠正用户输的句中可能的错
别字并输出正确的句子，纠正时必须保证改动前后句必
须等长，在纠正错别字的同时尽可能减少对原句的改动
（不添加额外标点符号，不添加额外的字，不删除多余
的字）。只输出没有错别字的句，不要添加任何其他解
释或说明。如果句没有错别字，就直接输出和输相同的
句。下面，请纠正:

CSEC 你是一位著名的语言学家，请你纠正一下句子中汉字拆
分错误，你需要识别并纠正用户输的句中可能的拆分
字并输出正确的句子，纠正时必须保证被拆开的汉字得
到还原，在纠正拆分字的同时尽可能减少对原句的改动
（不添加额外标点符号，不添加额外的字，不删除多余
的字）。只输出没有拆分字的句，不要添加任何其他解
释或说明。如果句没有拆分字，就直接输出和输相同的
句。下面，请纠正:

Table 11: Prompts of CSC and CSEC tasks for LLMs
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