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Abstract. Table summarization is a crucial task aimed at condens-
ing information from tabular data into concise and comprehensible
textual summaries. However, existing approaches often fall short of
adequately meeting users’ information and quality requirements and
tend to overlook the complexities of real-world queries. In this paper,
we propose a novel method to address these limitations by introducing
query-focused multi-table summarization. Our approach, which com-
prises a table serialization module, a summarization controller, and
a large language model (LLM), utilizes textual queries and multiple
tables to generate query-dependent table summaries tailored to users’
information needs. To facilitate research in this area, we present a
comprehensive dataset specifically tailored for this task, consisting
of 4, 909 query-summary pairs, each associated with multiple tables.
Through extensive experiments using our curated dataset, we demon-
strate the effectiveness of our proposed method compared to baseline
approaches. Our findings offer insights into the challenges of com-
plex table reasoning for precise summarization, contributing to the
advancement of research in query-focused multi-table summarization.

1 Introduction

Table summarization involves the distillation of information from tab-
ular data into a succinct format, typically a clear and human-readable
description or textual table summary. This process aims to capture the
key insights or trends encapsulated within the table, allowing for eas-
ier comprehension and interpretation by humans [2, 17, 23, 25, 36].
Traditional methods of table summarization take a single table as
input and produce a fixed textual summary [12, 43]. However, the
fixed nature of table summaries generated by these traditional ap-
proaches often falls short of meeting users’ information and quality
requirements adequately. The quality of a summary plays a pivotal
role in its utility. For instance, in business contexts, table summaries
often play a critical role in shaping future business strategies, with
their quality directly influencing the judgments of decision-makers.
Poor-quality summaries may fail to capture essential aspects, lead-
ing to a misrepresentation of the data and conveying an inaccurate
perspective.

To enhance the effectiveness of conventional table summariza-
tion, Zhao et al. [51] proposes to leverage textual queries as a start-
ing point to generate query-dependent table summaries aligned with
users’ information needs. Their approach accepts a single table and
a user-specified textual query as inputs, generating a description or
statement tailored to the query’s focus as output. However, in Zhao
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Figure 1: An example of query-focused multi-table summarization.
Summarization models should combine the information from the two
tables to produce a summary tailored to the query.

et al. [51], the authors presume that fulfilling the information require-
ments of a given query depends solely on data from a single table.
This assumption overlooks the complexity of real-world scenarios,
which frequently demand information from multiple data sources.
Consequently, the intricate nature of real-world queries highlights the
necessity for integrating information from multiple tables to address
them effectively.

Let’s consider a practical scenario depicted in Figure 1 to under-
stand how humans address complex real-world queries. For instance,
the query “What are the names of the teachers who teach courses
and how many courses do they teach?” entails two distinct infor-
mation requirements – teachers’ names and their course teaching
details. While the Teacher table in Figure 1 provides the teachers’
names, relying solely on this table is insufficient to generate a com-
plete query-focused table summary. To completely address the query,
we require data from another table, such as the Course Arrange
table in Figure 1, which contains information about course arrange-
ments for teachers listed in the Teacher table. By performing table
join (i.e., multi-table reasoning) and count (i.e., arithmetic reasoning)
operations, we can determine the number of courses taught by each
teacher. Thus, addressing such a common real-world complex query
involves employing multi-table reasoning and arithmetic reasoning.
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This practical and challenging scenario remains largely unexplored,
underscoring the necessity for further exploration and advancement
in this domain.

Motivated by the above observation of how humans handle such
a scenario and aiming to bridge this research gap, we propose a new
method designed to tackle the aforementioned practical and challeng-
ing situation: query-focused multi-table summarization. Our proposed
approach involves taking multiple tables and a user-defined query as
inputs, aiming to generate a query-relevant textual summary based
on the inputs. The proposed approach primarily comprises a table
serialization module, a summarization controller, and a large language
model (LLM). The flowchart illustrating our proposed method is pro-
vided in Figure 2 to aid comprehension. Additionally, in light of the
absence of an existing dataset for our introduced task, and to validate
the effectiveness of our proposed query-focused multi-table summa-
rization method, we create a query-focused multi-table summariza-
tion (QFMTS) dataset. This dataset comprises 4, 909 query-summary
pairs, each pair associated with multiple tables. For further details
about our proposed dataset, please refer to Section 4.

In our comprehensive experiments, we assess the effectiveness of
the proposed query-focused multi-table summarization method using
our devised QFMTS dataset. The experimental findings demonstrate
the superiority of our approach over baseline methods, shedding
light on the challenges encountered by existing models in performing
complex table reasoning to produce precise table summaries. To the
best of our knowledge, we are the first to address the task of query-
focused multi-table summarization.

Our primary contributions can be summarized as follows:

• Introduction of Query-Focused Multi-Table Summarization:

We introduce a novel method tailored for query-focused multi-table
summarization, aiming to overcome limitations present in current
approaches that predominantly target single-table summarization.
Our proposed method comprises a table serialization module, a
summarization controller, and a large language model (LLM), of-
fering a structured framework to tackle the complexities inherent
in the task of query-focused multi-table summarization.

• Development of a Comprehensive Dataset: We develop a
QFMTS dataset specifically tailored for the query-focused multi-
table summarization task. The QFMTS dataset consists of 4, 909
query-summary pairs, each intricately linked with multiple tables.
It will serve as a valuable resource for researchers in this field,
facilitating the exploration and validation of proposed methods in
the future.

• Extensive Experiments: We conduct comprehensive experimental
validation of our proposed query-focused multi-table summariza-
tion method using the introduced QFMTS dataset. Our experimen-
tal results demonstrate its effectiveness over baseline methods and
provide insights into the challenges encountered in complex table
reasoning for precise summarization.

2 Related Work

Table Summarization Table summarization involves generating
a concise and informative summary from a given table. To address
this task, prior studies [12, 25, 43] have primarily focused on sum-
marizing the entire table without explicitly addressing users’ specific
information needs. However, in real-world applications, users fre-
quently seek targeted information from table segments, underscoring
the importance of generating personalized table summaries. Although
Zhao et al. [51] introduced the initial human-annotated dataset for

Figure 2: Overview of the proposed approach. Our approach integrates
a table serialization module with a summarization controller. Initially,
a set of tables is transformed into textual representations through the
table serialization module. Subsequently, the summarization controller
directs an LLM to perform table reasoning and produce a summary
specifically tailored to a given query.

query-focused table summarization, their study restricted to single-
table scenarios, lacking consideration of multi-table reasoning such
as operations involving table join and union. In contrast. our work
presents two primary distinctions: first, we leverage LLMs to assist in
the data annotation; second, our proposed method addresses complex
queries that necessitate the integration of information across multiple
table contexts.

Query-Focused Text Summarization Query-focused text summa-
rization aims to generate textual summaries based on a specific query
and a collection of relevant documents. This research field has been
extensively investigated with textual inputs [4, 45, 46, 47, 48, 49].
Traditional studies have faced challenges due to the scarcity of large-
scale datasets, often resorting to distant supervision signals from
adjacent fields such as generic summarization [39, 40]. Additionally,
recent efforts have been directed towards creating synthetic large-scale
datasets [15, 16, 26]. Despite these advancements, the application
of query-focused summarization to tabular data remains relatively
unexplored [51], especially in scenarios where queries span multiple
tables. This study seeks to bridge this gap by exploring the efficacy of
query-focused summarization in multi-table contexts.

3 Methodology

This section formulates the task of query-focused multi-table summa-
rization and details our proposed approach. As illustrated in Figure 2,
our approach comprises two primary components: a table serialization
module and a summarization controller.

Task Formulation Query-focused multi-table summarization, de-
noted as QFMTS, involves generating a coherent and informative
summary aimed at addressing a user query across multiple tables.
Specifically, given a natural language query q and a set of input tables
T = t1, . . . , tk, a query-focused multi-table summarization model
systematically engages in table-based reasoning across the contents
of T related to q, aiming to produce a textual summary s that effec-
tively resolves the user query while maintaining factual accuracy and
comprehensiveness.
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Figure 3: Two distinct approaches of the summarization controller:
(1) Direct Summarization (2) Reason-then-Summarize. The former
tackles the proposed task in an end-to-end manner. In contrast, the
latter tackles the task across two independent phases.

Table Serialization Given that our approach is based on LLMs
which process only textual data, it necessitates a table serialization to
transform input tabular data into a textual format suitable for process-
ing. In this work, we utilize a technique known as table linearization,
which is widely used in table-to-text generation tasks [23, 24, 29, 32].
This technique transforms a table into a textual, sequential format
using designated sentinel words. Specifically, a table identified by its
name, name, consisting of m rows and n columns, is linearized as
follows:

<table_name>: name col: h1 | . . . | hn

row 1: c1,1 | . . . | c1,n . . . row m: cm,1 | . . . | rm,n.

where hj and ci,j stand for the j-th column header and i-th row and
j-th column cell, respectively.

3.1 Summarization Controller

Given a query and the corresponding linearized tables, our proposed
summarization controller efficiently generates a comprehensive sum-
mary. This is achieved by integrating an LLM, such as GPT-3.5 [31],
with a carefully designed prompting-based method. In this work,
we explore two distinct methods: direct summarization and reason-
then-summarize, which are depicted in Figure 3. See Appendix C for
detailed prompts in the supplementary material [50].

Direct Summarization Direct summarization (DirectSumm) en-
ables the LLM to jointly perform table reasoning and summarization
in an end-to-end manner. We first present the linearized structure of
table formats as outlined in Section 3, aiming to improve the LLM’s
understanding of tabular data. Given the query and linearized tables,
we then prompt the LLM to perform table reasoning across multi-
ple tables to identify query-relevant facts implicitly. i.e., these facts
are not explicitly generated by the LLM. It is worth noting that the
facts include numerals and entities that address the information needs
of the query. Furthermore, we adopt chain-of-thought (CoT) style
prompting methods [14, 38] using the directive “Let’s think step by
step”. This enhances the LLM’s reasoning ability. Lastly, we instruct
the LLM to synthesize the query with the identified query-relevant
facts into a comprehensive summary, while adhering to constraints
such as summary length.

Reason-then-Summarize Inspired by the established retrieve-then-
generate paradigm [11, 19], we introduce a novel approach termed
reason-then-summarize (Reason-then-Summ). This approach tackles
the proposed task in sequential phases. The first phase exclusively
focuses on enabling the LLM to perform table reasoning across mul-
tiple tables based on the query and linearized tables. As a result,
the LLM identifies and extracts query-relevant facts from the tables.
In the second phase, we prompt the LLM to synthesize a compre-
hensive summary based on the query and the previously extracted
query-relevant facts.

4 Dataset Construction

In order to validate the effectiveness of our proposed method, we
create a novel dataset specifically tailored for this query-focused multi-
table summarization task. This section details the dataset construction
process, including data annotation and quality verification.

Source Data We build our dataset on top of the Spider dataset [41].
The Spider dataset, originally designed for semantic parsing and text-
to-SQL tasks, comprises 10, 181 natural language queries. These
queries are paired with complex SQL queries and one or more tables
from various relational databases. In this work, we construct input
queries and tables from original textual queries and their correspond-
ing tables to develop our dataset. We utilize SQL queries for data
annotation, as detailed in the following subsection. Additionally, our
analysis shows that over 50% of queries in the original dataset corre-
sponded to only a single table. This high proportion of single-table
inputs raises concerns about the dataset’s efficacy to provide sufficient
challenges for multi-table scenarios. To address this, we selectively
down-sampled these single-table examples to allow multi-table exam-
ples to predominate in the dataset. Since the test set from the original
dataset is not publicly available, we randomly allocated 10% of the
original training set to serve as our validation set, with the remaining
90% forming the new training set. The original validation set was re-
purposed as our test set. This results in 3, 871 training, 430 validation,
and 608 test examples, forming the basis for our dataset.

4.1 Data Annotation

LLMs as Data Annotators The objective of data annotation is to
produce high-quality, comprehensive, and accurate summaries tailored
to the associated input queries. Prior research in the field of query-
focused summarization from single tables, such as QTSUMM [51],
has predominantly depended on human experts to annotate summaries
based on an input query and an input table. This reliance is primarily
due to the complex table reasoning, making summary annotation
a challenging task. However, manual annotations are not only time-
consuming but also costly. Recent studies [7, 10, 42, 52] have revealed
that LLMs can match the annotation quality of crowd-sourced workers
while being significantly more cost-effective and efficient. Motivated
by these findings, we have employed LLMs as data annotators for our
summary annotation, namely LLMAnno. Although LLMAnno does not
yet match the table reasoning capabilities of human experts, we have
designed a simplified table-to-text annotation task avoiding complex
table reasoning. Specifically, for each textual query in our dataset,
we follow Pal et al. [33] to first extract the output table by executing
the corresponding SQL query over the associated rational database.
It is worth noting that the execution table contains query-relevant
facts/entities required to construct a summary. Subsequently, rather
than relying on input tables, we use the execution table as the basis
for our annotation. We also have identified that relying solely on
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Dataset

Statistics Reasoning

# Example # Table per Example # Words in Summary Numeric Multi-Table

ROTOWIRE [17] 4,953 1.0 337.1 � �

SciGen [28] 1,338 1.0 116.0 � �

NumericNLG [36] 1,355 1.0 94.2 � �

QTSUMM [51] 7,111 1.0 68.0 � �

QFMTS 4, 909 1.83 58.5 � �

Table 1: Comparisons between our dataset and existing table-to-text generation datasets. Our dataset is the only one tailored for query-focused
multi-table summarization, supporting both numeric and multi-table reasoning.

the output table frequently results in summaries that lack essential
contextual information. Our observations indicate that this missing
context can effectively be retrieved directly from the input query. For
instance, consider the example output table below:

semester_name semester_id
summer 2010 2

It lacks contextual information to confirm that the Summer 2010
semester has the most registered students in response to the corre-
sponding query “What is the semester in which most students regis-
tered? Show both the name and the ID.”. To address this, we have
incorporated the given query as a supplementary input for summary
annotation. This strategy enhances the overall comprehensiveness
and relevance of the annotated summaries. In this work, we employ
gpt-3.5-turbo-0613 as LLMAnno via the public OpenAI API.

Instruction Design The effectiveness of the instruction prompt is
crucial in determining the quality of annotated summaries. To this end,
we carefully design the instruction to ensure the summary quality, in
which the structure of the instruction is shown in Prompt 4.1. The
prompt comprises three components: a comprehensive annotation
guideline, few-shot demonstrations, and input data. The annotation
guideline outlines the expected discourse structure and the summary’s
length requirements. We have found that a more precise guideline
significantly improves generation quality. To provide further clarity
to LLMAnno, we manually write summaries for a few examples as
few-shot demonstrations (we use 5-shot in our experiments). Lastly,
we include both the input query and the execution table directly in the
prompt, specifically requesting LLMAnno to write a summary based
on these inputs. Similarly, we leverage table serialization as described
in Section 3 to obtain the linearized execution table.

Prompt 4.1: Summary Annotation

Instruction: A comprehensive annotation guideline.

Demonstrations:
Few-shot human-written demonstrations.

Query: {Input query}
Table: {Linearized execution table}

4.2 Dataset Analysis

Our dataset comprises a total of 4, 909 examples, segmented into
3, 871 training examples, 430 validation examples, and 608 test ex-
amples. The dataset is composed of 32.8% single-table examples,
52.6% double-table examples, and 14.6% examples that incorporate
three or more tables. Notably, more than 67% of the examples include
at least two tables, highlighting the dataset’s efficacy in facilitating

research in multi-table scenarios. We present a comparative analy-
sis of our dataset against existing table-to-text generation datasets
in Table 1. Our dataset averages approximately two input tables per
example, in contrast to the prevailing datasets which predominantly
focus on single-table scenarios. The summaries from our dataset are
sufficiently informative, with an average length of 58.5 words, align-
ing closely with the norms of existing datasets. Additionally, our
dataset is characterized by a rich variety of operations. It includes
basic numeric operations such as sum and average, and extends to
more complex multi-table operations like join and union, which are
absent in the QTSUMM dataset, as it is tailored exclusively towards
single-table contexts.

4.3 Quality Verification and Control

To assess the quality of annotated summaries effectively, we develop a
comprehensive evaluation encompassing both automated and manual
evaluations. We define three primary desiderata for quality verifica-
tion:
• Faithfulness: Each statement within the summary must be factually

consistent with the facts presented in the execution table.
• Completeness: The summary should address all information needs

in the user query, representing all facts from the execution table.
• Fluency: The summary needs to be articulate, clear, and easily

understandable for human readers.
In our experiments, we utilize standard sequence similarity metrics
to evaluate completeness. Given the lack of definitive metrics for
faithfulness and fluency, we rely on human evaluations to assess these
aspects. The results are presented in Table 2.

Split
Automated Evaluation Human Evaluation†

Completeness∗ (%) Faithfulness Fluency
Training 91.45 0.98 4.73
Validation 91.75 0.98 4.81
Test 90.75 0.96 4.68
Total 91.48 0.97 4.74

Table 2: Quality evaluation of our dataset. ∗represents that the
completeness is quantified using average ROUGE-L recall scores.
†represents that we randomly sample 100 examples from the training,
validation, and test set to measure faithfulness (0-1) and fluency (1-5),
respectively.

Automated Evaluation We initially assess the completeness of the
annotated summary solely based on the execution table. However, as
delineated in Subsection 4.1, the execution table, by itself, proves
inadequate for a comprehensive evaluation of summary completeness
due to its limited contextual information. Consequently, we extend our
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evaluation by incorporating the query with the table, thereby enabling
a more robust measure of completeness. Specifically, we extract facts,
including numerals and entities, from the execution table. These facts
are then combined with the query to construct a reference sequence.
The completeness of the annotated summary is estimated against this
reference sequence. In this work, we quantify the completeness using
the lexical similarity metric ROUGE-L [20], a standard metric in
table-to-text generation assessments [22, 51]. As our primary focus
lies in assessing the presence of information from the query and the
execution table within the summary, we focus on the recall scores of
ROUGE-L. As shown in Table 2, the ROUGE-L recall scores exceed
90, affirming that the annotated summaries proficiently include not
only the facts from the corresponding execution tables but also the
contextual information from the queries.

Human Evaluation To assess the faithfulness and fluency of anno-
tated summaries, we randomly select 100 examples from each of the
training, validation, and test sets. We engage three annotators, each
proficient in SQL and English, to evaluate the summaries in relation to
the corresponding SQL queries, input tables, and execution tables. An-
notators assign a binary label to assess faithfulness, a common method
in table-to-text generation tasks [3, 51]. Summaries that accurately
represent the execution tables without any hallucinated content are la-
beled as 1, while those that do not are labeled as 0. The annotators are
also provided with the query and input tables to enhance their under-
standing and judgment of the summaries. Following the methodology
described by Zhao et al. [51], we measured fluency using a 5-point
Likert scale, ranging from 1 (least fluent) to 5 (most fluent). The aver-
age score from the three annotators determined the faithfulness and
fluency rating for each summary. Table 2 presents the results: the sum-
maries achieved an average faithfulness score of 0.97 and a fluency
score of 4.74, indicating that over 97% of the summaries are faithful
to the corresponding execution tables and are deemed sufficiently
fluent by the annotators. To measure the inter-annotator agreement,
we employed the Fleiss Kappa scores [8], achieving Kappa scores
of 0.97 for faithfulness and 0.80 for fluency. These scores indicate
almost perfect agreement and substantial agreement, respectively.

Human Post-Correction Despite our quality verification confirm-
ing the high quality of the dataset, we acknowledge the need for further
correction of the validation and test sets to ensure their accuracy, as
they play a critical role in selecting optimal model checkpoints and
measuring model performance, respectively. Additionally, biases may
arise from using output summaries produced by LLMAnno to construct
these sets. This risk is particularly pronounced if the same LLMAnno

is employed as the baseline model, potentially leading to artificially
enhanced performance results. To address these concerns, we have
implemented a rigorous post-correction process on the annotated sum-
maries within both sets. This involves a detailed manual review to
identify and rectify any missing information or hallucinated content
in the summaries, based on the corresponding query and execution
table. Furthermore, we have undertaken to rephrase each summary
in a manner that more closely resembles human expression, thereby
reducing potential biases. See Appendix A for more details in the
supplementary material [50].

5 Experiment

In this section, we outline baseline models selected for performance
comparison. We then provide the implementation details of the base-
line models and our proposed method. Lastly, we describe the evalua-
tion protocols employed in our experiments.

5.1 Baseline Models

In this work, we conduct experiments to evaluate two distinct neu-
ral network architectures: encoder-decoder models and decoder-only
LLMs. Given that encoder-decoder models typically have significantly
fewer parameters than LLMs, we fine-tune these models using our
training dataset to facilitate a fair comparison. In contrast, we utilize
the LLMs as backbone models for our proposed methods without up-
dating their parameters in the experiments. We benchmarked against
the following state-of-the-art models:

BART [18] represents a pre-trained encoder-decoder architecture
known for its efficacy in text generation tasks. We have fine-tuned
two variants of BART, namely bart-base with 139 million param-
eters and bart-large with 406 million parameters [18], which are
referred to as BART-base-FT and BART-large-FT, respectively.

TAPEX [24] is a table-to-text generation model, trained using a large-
scale synthetic dataset that includes executable SQL queries and their
corresponding outputs. In our experiments, we employ the version
that utilizes bart-large as the backbone.

OmniTab [13] is based on the same architecture as TAPEX but has
been additionally trained on a synthetic dataset designed for table
question answering tasks. Like TAPEX, our implementation leverages
bart-large as its backbone.

MultiTab [33] is a table-to-text generation model that has been addi-
tionally trained on a synthetic, multi-table question answering dataset.
In our experiments, we utilize bart-base as its backbone, as the
released version exclusively supports this backbone.

Llama-2 [37] includes a set of open-source LLMs that have been pre-
trained across vast datasets. We explore two adaptations of Llama-2.
First, we fine-tune it on our dataset, namely Llama-2-FT. Second, we
utilize llama-2 as the backbone for our approach.

GPT [30, 31] comprises a family of LLMs developed by Ope-
nAI, demonstrating their remarkable text generation capabilities
across numerous tasks. In our experiments, we deploy versions
gpt-3.5-turbo-0613 and gpt-4-0613, applying these mod-
els as the backbones for our approach.

5.2 Implementation Details

Fine-Tuning We fine-tune encoder-decoder models on the train-
ing set using the AdamW optimizer [27]. This is conducted over 32
epochs with a learning rate of 1e−4, batch size of 256, and the maxi-
mum sequence length of 1024. For fine-tuning Llama-2 models, we
adopt the QLoRA algorithm [5] to fine-tune llama-2-chat-7B
due to the computation restrictions. The maximum sequence length is
4096. Input sequences for the fine-tuned models were composed by
concatenating the query with all linearized input tables. For instance,
the final input sequence for an example with k tables is represented
as query [table1] . . . [tablek], where [tablei] is the linearized repre-
sentation of the i-th input table. Model performance is evaluated by
selecting the best checkpoints based on the loss from the validation
set. All experiments are conducted on a single A6000 GPU.

Few-Shot Prompting We prepend 3-shot demonstrations into the
prompts to facilitate in-context learning [1] for our method. We set the
temperature, top-p, and maximum output tokens to 0.1, 0.95 and 400,
respectively. Due to budget constraints, we only report the results of
the Reason-then-Summ method with the backbone of GPT-4.
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Model Backbone
Text-Based Metric Table-Based Metric

SacreBLEU ROUGE-L BERTScore STR-EM PARENT

Fine-tuned
BART-base-FT BART-base 39.74 63.14 62.38 24.63 13.51
BART-large-FT BART-large 43.40 64.84 66.06 33.54 18.66
TAPEX-FT BART-large 43.99 65.12 66.43 38.78 22.16
MultiTab-FT∗ BART-base 44.41 65.68 67.13 42.70 24.83
OmniTab-FT BART-large 45.58 67.19 68.76 44.60 26.46
Llama-2-FT Llama-2-7B 54.06 71.82 73.66 61.71 28.69

Our Prompting-based
DirectSumm Llama-2-7B 12.49 32.63 21.85 45.32 7.45
DirectSumm GPT-3.5 33.58 57.02 60.18 53.93 22.21
Reason-then-Summ Llama-2-7B 16.45 37.13 25.13 48.16 12.17
Reason-then-Summ GPT-3.5 40.84 62.68 64.98 56.24 24.36
Reason-then-Summ GPT-4 42.32 64.36 67.36 66.83 32.37

Table 3: Summarization performance of our approaches with various backbones and fine-tuned models on the test set of our dataset. “FT” stands
for the fine-tuned version of the corresponding model. The best results are highlighted in bold. ∗represents that the released version only
supports the backbone of BART-base.

Model Backbone Faithfulness Fluency

OmniTab-FT BART-large 0.19 4.79
Reason-then-Summ GPT-3.5 0.28 4.72
Reason-then-Summ GPT-4 0.56 4.84

Table 4: Human evaluations of representative models on the test set.
Three expert annotators are recruited to evaluate 100 random exam-
ples for each model. The best results are in bold.

Model
Number of Tables

Single-Table Multi-Table

R-L BSc PA R-L BSc PA

OmniTab-FT (BART-large) 70.73 72.11 37.73 65.67 67.20 21.56
Reason-then-Summ (GPT-3.5) 64.95 67.04 28.92 61.61 64.18 19.29
Reason-then-Summ (GPT-4) 66.03 69.23 38.11 62.58 64.98 29.87

Table 5: Comparisons between single-table and multi-table examples
on the test set. R-L, BSc, and PA stand for ROUGE-L, BERTScore,
and PARENT, respectively.

5.3 QFMTS Evaluation

To assess model performance, we employ automated and human
evaluations. For automated evaluation, we measure the quality of the
generated summary based on the corresponding reference summary
and the execution table, as detailed in Subsection 4.1. For human
evaluation, we focus on evaluating two key aspects: faithfulness and
fluency.

Text-Based Automated Evaluation We first evaluate the quality
of a generated summary w.r.t. the corresponding reference textual
summary by estimating the similarity between them in general aspects,
such as fluency and accuracy. Following Zhao et al. [51], we adopt
two lexical-based metrics, SacreBLEU [34] and ROUGE-L (longest
common sub-sequences) [21], along with a semantic-based metric,
BERTScore [44]. We report the F1 versions for both ROUGE-L and
BERTScore. We use deberta-xlarge-mnli [9] as the backbone
for BERTScore.

Table-Based Automated Evaluation In contrast to text-based eval-
uations, table-based evaluations focus more on specific aspects, such

as completeness and faithfulness of the generated summary. To assess
these aspects, we employ two metrics: String Exact Match (STR-EM)
[35] and PARENT [6]. STR-EM quantifies the proportion of facts
or entities from the execution table that are accurately represented
in the generated summary. PARENT evaluates summary complete-
ness by integrating both the reference summary and the execution
table. PARENT has demonstrated a significant correlation with human
judgments.

Human Evaluation In addition to the automated evaluations, we
conduct human evaluations, specifically targeting faithfulness and
fluency. These evaluations follow the detailed annotation guidelines
specified in Subsection 4.3. For each model, 100 generated sum-
maries were randomly sampled from the test set, and their quality was
assessed by three expert annotators.

6 Results and Analysis

Main Results We present the summarization performance of var-
ious models in Table 3. We observe that our Reason-then-Summ
method markedly outperforms the DirectSumm approach in both
text-based and table-based evaluations. For instance, when we use
GPT-3.5 as the backbone, Reason-then-Summ surpasses DirectSumm
by about 5 points regarding BERTScore (64.98 vs. 60.18). This is
because the Reason-then-Summ method tackles the task into sequen-
tial phases of table reasoning and summarization. This specialized
focus on multi-table reasoning in the initial phase enables the gen-
eration of more query-relevant facts and entities, thus enhancing
the LLM’s reasoning ability. Consequently, the subsequent summa-
rization task benefits from generating more relevant facts, yielding
superior performance compared to the DirectSumm approach, which
jointly addresses table reasoning and summarization tasks. Addi-
tionally, our results indicate that baseline models fine-tuned on our
training dataset largely surpass the DirectSumm methods employing
GPT-3.5 or Llama-2 as the backbone in text-based evaluations. In
comparison, our Reason-then-Summ approach using GPT-3.5 or GPT-
4 as the backbone demonstrates competitive performance alongside
the BART-large-FT and MultiTab-FT. This also indicates the effec-
tiveness of Reason-then-Summ. Furthermore, the Llama-2-FT model
achieves the highest performance. Particularly in text-based evalua-
tion, when compared to the Reason-then-Summ with the backbone
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Llama-2, the fine-tuned Llama-2-FT shows significant improvements,
underscoring our dataset’s efficacy as a robust training resource for
query-focused multi-table summarization scenarios. Conversely, in
table-based evaluations, however, the trend reverses. For instance,
our Reason-then-Summ method employing GPT-4 as the backbone,
largely outperforms the leading Llama-2-FT model. This discrepancy
indicates that while smaller, fine-tuned models may produce plausible
summaries, they lack proficiency in table reasoning across multiple
tables to gather query-relevant facts, thereby leading to inferior perfor-
mance on table-based metrics. In comparison, our Reason-then-Summ
method produces more facts relevant to the queries, demonstrating
superior performance in terms of table reasoning ability.

Human Evaluation Table 4 illustrates the results of sampled human
evaluation on the test set. Despite lower scores on automated text-
based evaluation metrics such as SacreBLEU and ROUGE scores, our
Reason-then-Summ method, which integrates GPT-4, significantly
outperforms the fine-tuned OmniTab-FT in human evaluations, partic-
ularly in terms of faithfulness (0.56 vs. 0.19). This disparity highlights
the superior reasoning ability of our methods over fine-tuned baseline
models. Furthermore, our findings reveal a mismatch between text-
based automated metrics and human evaluations, aligning with the
observations made by Zhao et al. [51]. In contrast, our table-based
metrics demonstrate a strong correlation with human judgments con-
cerning faithfulness. This indicates that table-based evaluations are
complementary to text-based evaluations, enabling a more compre-
hensive evaluation for system performance comparison.

Single- vs. Multi-Table To enhance our understanding of the chal-
lenges presented in multi-table scenarios, we conducted a performance
comparison between single-table and multi-table inputs from our test
set, as illustrated in Table 5. It is worth noting that approximately
30% of the examples in our dataset are characterized by single-table
inputs. Our analysis reveals that the presence of multiple input tables
significantly deteriorates the performance across all evaluated metrics
for every model tested. This decline in performance is particularly
significant for the smaller OmniTab-FT, whereas it is least noticeable
for our method utilizing GPT-4 as the backbone. For instance, con-
sidering PARENT scores, the decrease observed with OmniTab-FT
is approximately 16 points, moving from 37.73 to 21.56. In contrast,
our Reason-then-Summ shows a more modest decrease of about 8
points, dropping from 38.11 to 29.87. This reduction is nearly half
that observed with OmniTab-FT. These findings suggest that while
multi-table reasoning poses greater challenges compared to single-
table scenarios, increased model capacity can effectively narrow this
performance gap.

Qualitative Analysis To enhance our understanding of the strengths
of our approach and challenges within the task, we conduct a manual
analysis of the summaries generated by Reason-then-Summ with the
backbone of GPT-3.5 on the test set, including success and failure
cases. We observe that our method successfully performs arithmetic
and multi-table operations in some cases. A success case illustrates the
strengths of our approach. For the query “Which employee received
the most awards in evaluations? Give me the employee name.” over
two input tables:

Employee

ID Name Age

1
George
Chuter

23

2 Lee
Mears 29

... ... ...

Evaluation

ID Year
_awarded Bonus

1 2011 3000
2 2015 3200
1 2016 2900
... ... ...

With the reference summary “The recipient of the most awards in
evaluations is George Chuter.”, our method reasons over the 2 tables,
performing complex table operations, such as count and join. Specif-
ically, the method finds two records of awards of George Chuter in
the table Evaluation and aggregates the total number of awards.
After joining the two tables, the method accurately identifies George
Chuter as the person with the most awards, generating “The employee
who received the most awards in evaluations is George Chuter.”

A failure case illustrates the challenges of multi-table scenarios.
Consider the query “What are the names of all European countries
with at least 3 manufacturers?” over three input tables:

Continents

Cont
Id Continent

1 America
2 Europe
3 Asia
4 Africa
5 Australia

Countries

Country
Id

Country
Name

Cont-
inent

2 Germany 2
3 France 2
1 USA 1
8 Korea 3
... ... ...

Car Makers

Id Maker Full Name Country
2 Volkswagen Volkswagen 2
3 bmw BMW 2
... ... ... ...
7 citroen Citroen 3
... ... ... ...
14 opel Opel 2
15 peugeaut Peugeaut 3
16 renault Renault 3
... ... ... ...
22 kia Kia Motors 8

With the reference summary “There are 2 European countries with at
least 3 manufacturers. The names of these countries are France and
Germany.”, in which the correct country names are marked in blue.
The method incorrectly generates “There are 2 European countries
which have at least 3 manufacturers. Their names are France and
Korea.”, in which the incorrect country name is marked in red. Even
though this generated summary exhibits a high degree of fluency, it is
only partially faithful and complete due to the incorrect inclusion of
Korea, a country which is not located in Europe. This case exemplifies
the complexity and challenges of multi-table operations since the
proposed approach struggles to combine information from the three
tables based on the corresponding column headers, Country ID
and Cont Id.

7 Conclusion

In conclusion, this work addresses the shortcomings of current table
summarization techniques through the introduction of an innovative
method for query-focused multi-table summarization. Our proposed
method leverages user queries and analyzes multiple tables to generate
summaries that directly cater to users’ information needs. Addition-
ally, we make a significant contribution to the field by presenting a
comprehensive dataset tailored explicitly for this query-focused multi-
table summarization task, thereby enabling further research. Extensive
evaluations conducted demonstrate the superior performance of our
method compared to existing baselines, underscoring the complexi-
ties associated with accurate summarization in the context of intricate
table reasoning. Overall, our work not only propels advancements
in query-focused multi-table summarization but also offers valuable
insights to guide future exploration and development in this field.
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