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Abstract.

Assigning a numerical value to a temporal expression (TE), known
as temporal expression normalization, is a crucial process for tasks
like timeline creation and temporal reasoning. Rule-based and classi-
cal deep-learning normalization systems lack versatility because they
are limited to specific domains and languages, while current Large
Language Models (LLMs) solutions are relatively unexplored.

To overcome the current limitations in adaptability, we suggest uti-
lizing five of the latest generative Large Language Models (LLMs)
- Mistral 7B, Gemma 7B, Gemma 2B, Phi-2, and Llama-3 8B. We
have explored various performance enhancement strategies, includ-
ing using different prompts, contexts, and training techniques like
Neftune. Our proposed models demonstrate the ability to adapt to di-
verse domains (news and biomedical) and multiple languages (Span-
ish, English, Italian, French, Portuguese, Catalan, and Basque) si-
multaneously. These models can handle expressions in various do-
mains and languages, making them more versatile and useful for a
wide range of applications. As a result, our approach offers signif-
icant performance improvements when compared to existing LLM-
based and rule-based solutions for TE normalization and a promising
solution for the challenges of temporal normalization.

1 Introduction

A temporal expression (TE) denotes a linguistic construction or
phrase within a sentence or discourse conveying details regarding
date, time, duration, or sets. Each TE corresponds to a specific value;
for example, “25 August 2001” translates to the value “2001-08-25”.
The process of determining this value is known as TE normalization.
TimeML [29] stands as an ISO standard incorporating the TIMEX3
tag, which outlines the annotation criteria and methodology for TEs.

There are a number of factors that make this a complicated task.
On one hand, fundamental constructions like “today” or “yesterday”
are efficiently handled by current systems. On the other hand, there
exists a wide array of expressions and various methods of expressing
identical concepts, such as “a while”, “some time”, “a moment” or
“a period”. Additionally, certain TEs necessitate anchoring as they
lack adequate information for normalization; for instance, in Next 25
of August”, knowledge of the current month is required to identify
the subsequent August.

TEs, such as “5 hours later", may have varying interpretations; it
could be regarded as denoting a specific time or a duration, depend-
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ing on the annotator’s perspective. Consequently, combining corpora
annotated by different interpreters could result in conflicting infor-
mation.

Context, including instances like the sentence “On the 3rd and 4th
day” which includes two TEs 3rd and 4th day, requires attention.
The model in charge of normalizing these TEs necessitates an under-
standing that 3rd pertains to day. Therefore, systems responsible for
normalizing expressions must grasp context complexities, presenting
a challenge even for sophisticated linguistic models like ChatGPT 1.
Normalizing TEs proves highly beneficial across various tasks re-

quiring temporal sequencing, including generating timelines [26],
text summarization [1], and question answering [6]. Moreover, it
holds pivotal significance in enhancing reasoning abilities, as fur-
nishing systems with temporal awareness is an essential stride to-
ward fostering reasoning capabilities. Understanding the temporal
sequence of events is fundamental for applying both induction and
deduction effectively.

So far, rule-based systems like those referenced in [34, 27] have
been dominant in the field of normalization, offering precise adjust-
ments tailored to specific domains. However, these architectures are
highly susceptible to changes in domain and language, necessitat-
ing labor-intensive manual crafting of new rules for adaptation. Ef-
forts to shift towards machine and deep learning solutions, as men-
tioned in [28, 8], have faced obstacles hindering their progress. These
obstacles include the limited availability of hand-annotated data,
particularly for non-English languages, along with a dearth of re-
search conducted for these languages with low resources. Moreover,
the representation of date-formatted values complicates the adapt-
ability of deep learning architectures. Furthermore, addressing this
task requires significant linguistic ability, as observed, and conven-
tional deep-learning architectures have proven inadequate. Finally,
there has been a minimal exploration of the Large Language Mod-
els (LLMs) approach, and those like [17, 9] require a post-process
for anchoring the TEs. This process is required because these models
work with the operations needed to normalize the TEs, in the case
of “tomorrow”, these models will predict the operation of adding
one day to the reference date, but they won’t perform this operation.
On the other hand, existing research has not extensively explored the
recent generative model’s capabilities.

The goal of this work is to address the issue of the TE normaliza-
tion task’s lack of adaptability to different languages and domains by
utilizing generative LLMs.

To accomplish this goal we will conduct training and explore the

1 https://chat.openai.com/
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adaptability capabilities of five different generative LLMs: Mistral
7B [14], Gemma 7B and 2B [36], Phi-2 2 and Llama-3 8B 3. These
models will be trained to generate TEs values using two renowned
TE corpora—E3C [22] and Timebank [32]. We aim to enhance the
models’ performance through diverse prompts, contexts, and train-
ing techniques like Neftune [13]. Finally, we will demonstrate how
our proposed models simultaneously adapt to two different domains:
news and biomedical and to multiple languages: Spanish, English,
Italian, French, Portuguese, Catalan and Basque, surpassing the per-
formance of current TE normalization LLM-based and rule-based
solutions in all the mentioned languages and domains. Additionally,
this approach overcomes the need for a post-process anchoring sys-
tem present in the current LLM and rule-based solutions, greatly sim-
plifying the inference pipeline while minimally impacting its perfor-
mance. The final models are publicly available in 4.

2 Related Work

The TimeML ISO standard [29], stands as the predominant frame-
work for TEs, delineating them through the employment of the
TIMEX3 tag. This tagging mechanism categorizes TEs into four dis-
tinct types: DATE (“12 April”), DURATION (“2 months”), TIME
(“24 hours”), and SET (“each day”, featuring various attributes,
with particular emphasis placed on the value attribute.

TimeML exhibits restrictive criteria for delineating TEs, yet it
adopts a comparatively more lenient approach in delineating their
values, thereby leaving it more open to interpretation.

TEs pose three distinct challenges: detection, classification, and
normalization. Detection involves identifying the TE within the text,
whereas classification pertains to categorizing it as a date, time, du-
ration, or set. The combination of detection and classification is often
denoted as extraction. Normalization, on the other hand, is the task of
obtaining the value of the TE. These challenges can be addressed on
their own or in some combination with rule-based systems, machine
learning or deep learning techniques.

Rule-based systems like [34, 27, 23]employ regular expressions
for both extraction and normalization. This approach facilitates the
selective annotation of expressions, specifying their types and val-
ues following the standards of annotation. Consequently, meticulous
transfer of the annotation requirements is achievable with precision.
However, it is worth noting that the construction of rules within rule-
based systems demands significant manual crafting, rendering them
less adaptable to varying linguistic structures, domain contexts and
languages. This matter has been addressed, particularly concerning
low-resource languages [33, 23], but a costly adaptation period is
still required.

Various approaches leveraging machine learning have been ex-
plored to resolve the adaptability inherent problem in rule-based
systems. While some methodologies, such as those outlined in
[28, 18, 8] advocate for integrating machine learning techniques to
address extraction and normalization, they are proven to exhibit sim-
ilar performance to rule-based systems when evaluated against estab-
lished test datasets and they do not show significantly higher adapt-
ability. A notable limitation lies in the insufficient diversity and vol-
ume of training data available for these methodologies.

2 https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-
power-of-small-language-models/

3 https://ai.meta.com/blog/meta-llama-3/
4 https://huggingface.co/asdc/[model_name]-multilingual-temporal-
expression-normalization. With [model_name]: gemma-8B, gemma-2B,
mistral-7B and Llama-3-8B

For deep learning systems, results have improved considerably
over time. Works with more classical approaches such as those pre-
sented in [15, 16] exhibit similar performance to rule systems in
terms of extraction while systems based on LLMs such as [35]
present higher performance and versatility, as they require less train-
ing data to obtain sufficient performance.

The investigation into normalization has not received as much
attention as detection and classification, especially for languages
other than English. This imbalance can be attributed to the inherent
complexity of normalization tasks within deep learning frameworks,
which often present a narrower array of viable solutions. However,
recent developments in LLMs have created novel avenues for explo-
ration, as evidenced by the findings presented in [17]. In this work,
the authors advocate for the utilization of an XLM-based model em-
ploying a fill-mask objective for token prediction, with each token
being a part of the TE value. The outcomes underscore the potential
efficacy of LLMs, particularly concerning low-resource languages,
where they exhibit superior performance compared to HeidelTime.

For its part, the sequence-to-sequence or generative architecture
has barely been explored for normalization. Mainly because TimeML
is an annotation scheme, which, although it leaves some freedom of
interpretation for annotators, presents many formatting constraints.
Aligning a generative model with these constraints is not a trivial
task as shown in [9]. They propose the use of a T5 model [31] for
predicting the sequence of operations that are required to normalize
a TE. This sequence of operations has to be resolved in a further step
in order to obtain the final value. However, the latest generation of
pre-trained generative instruction models such as Mistral [14], Phi-
2 or Gemma [36] have proven to have high information retention
and processing capabilities, facilitating the alignment of the model
with the requirements of the annotation scheme. These models can be
adapted to various non-generative tasks such as hate speech detection
[5] and have proven great adaptability to multiple languages [24, 11,
10].

There are several ways to align the behavior of pre-trained mod-
els to various tasks, domains or languages. The one that requires
the least computational effort is prompting. This technique makes
use of the model’s context window, in which any information can
be indicated with natural language, explanation or guide that may
be useful to solve a task. There are several techniques to guide the
model through the context like Directional Stimulus Prompting [19],
Chain of Thought [39], Tree of Thoughts [42, 21], Retrieval Aug-
mented Generation 5, GraphPrompt [20] or Self-Consistency [38].
Other methods for aligning the model behavior require additional
training, which is computationally more expensive, but may have a
greater impact on the model’s behavior, like Fine-Tuning, NefTune
[13], Reinforcement Learning from Human Feedback [4] or Direct
Policy Optimization [30].

Although there is a wide range of possibilities in terms of aligning,
there is no general agreement on which techniques are best for each
case, and a thorough analysis is necessary to decide which method-
ology is best to apply.

All in all, current systems lack sufficient adaptability to different
domains and languages, which hampers their applicability. But the
advent of the current generation of LLMs such as Mistral, Llama-3 or
Gemma, together with different prompting and training techniques,
offers a potential solution to the current limitations since they have
not yet been studied.

5 https://ai.meta.com/blog/retrieval-augmented-generation-streamlining-the-
creation-of-intelligent-natural-language-processing-models/
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3 Proposed Approach

In this section, we will describe the backgrounds, motivations and
justification of each technical and theoretical component. Also, we
will describe all the experimentation and the followed methodology.

3.1 Prompt template and context for normalization

One of the key parts of fine-tuning a generative model is the chat
template. We have opted to keep it minimal, giving a direct and brief
explanation of the task commissioned and the information needed to
normalize a TE.

A TE is composed of four parts: the string, the type, the value
and the reference date as can be seen in figure 1. It is necessary to
know three of them to predict the fourth. For example, for the TE
“Yesterday”, type DATE and reference date 2001-08-25, the value
can be calculated by subtracting one from the reference date. For the
same TE, if the type is unknown, it can be predicted by looking at the
format of the value and the string. The string can also be predicted but
with a much smaller confidence interval, since for the above example,
the string can be either “Yesterday” or “24th of August”. The same
applies to predicting the reference date.

Sometimes the reference date is not available, and cases like the
example above cannot be fully normalized. Such cases are assigned
a generic value XXXX-XX-XX (year-month-day) for dates and XXXX-
XX-XX-XXTXX (year-month-dayThour) for times. It may be the case
that only part of the value is known, as for the expression “August
this year”. If the reference date is unknown, the expression shall be
assigned the value XXXX-08-XXXX. The corpora used to take this
feature into account, which makes it easier to adjust the behavior of
the model. In other cases, reference information can be found in the
context of the expression. For example, in the sentence “The patient
will visit on days 3 and 4” there are two expressions “days 3” and
“4”. If one tries to normalize the expression “4” without taking into
account the context, it is impossible to know what it is referring to.

Type

Date

Duration

String

Yesterday

8 p.m.

Two days

Ref. Date

20-04-1990

03-12-2021

25-08-2001

Value

19-04-1990

03-12-
2021T20:00

P2D

Time

Figure 1. The Figure shows three examples of the four components of a
TE.

With all this in mind, we have constructed a prompt that con-
tains all the information necessary to normalize a time expression,
as shown in Figure 2. Along with all the necessary parts for normal-
ization, we have included a short description of the task, so that the
model can better adapt to the instructions, both for training and for
inference.

3.2 Temporal expression anchoring

TEs often lack complete information regarding their temporal value.
For example, the expression “25th August” does not specify the year,

Figure 2. Prompt template used for training and inference with context
phrase.

necessitating supplementary data known as a reference date. This ref-
erence date may be implicit, as seen in phrases like “the patient was
admitted on 25 August...the following day...”, where “the following
day” refers to the 26th of August. However, in many cases, textual
context lacks implicit temporal information, with the document cre-
ation time (DCT) being the sole reference date. For instance, if the
document was created on 3rd December 2021, the phrase “the fol-
lowing day” would be interpreted as referring to 4th December 2021.

Normalization systems typically integrate an anchoring mecha-
nism, such as in [27, 34] or the systems proposed at [17, 9], where
they extract an incomplete TE value solely from the TE text, termed
as the context intermediate representation (CIR). For instance, for
“25th of August”, the CIR could be “XXXX-08-25”. Subsequently,
this value is anchored to the reference date, whether it be the DCT
or another TE. Moreover, the anchoring mechanism must be capa-
ble of performing date operations, such as the addition or subtraction
of days, weeks, months, years, hours, seasons, etc. These anchor-
ing mechanisms are often costly to develop and are specific to each
normalization system and how operations are defined, making them
poorly reusable.

Works such as [40, 25] have shown that the previous generation of
LLMs (BERT family and T5) struggle to performmathematical arith-
metic operations. They need to be fine-tuned and adjusted in order
to obtain proper behavior on addition and subtraction, while [17, 9]
have shown that these LLMs need an anchoring system to properly
solve the TE normalization adequately. However, recent generative
LLMs have proven to have better abilities to perform basic mathe-
matical arithmetic operations as shown in [3, 41].

On the other hand, there are TEs that need access to a calendar in
order to be normalized. For example, the TE “the next week” needs
an auxiliary calendar to know to which week corresponds the refer-
ence date, or the expression “the next Monday” requires a calendar
to know when the current Monday is.

After conducting some preliminary training and testing, we have
found that the chosen LLMs are generally capable of solving these
kinds of expressions, for which previous LLMs would require an
auxiliary system. For instance, the models accurately solve “the next
Friday”, “Sunday” or “the past summer”. This suggests that these
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models have seen and memorized the calendar in their pre-training
process. However, they are not infallible, and we have noticed some
errors such as “this weekend” or “first week of the month”, although
they are in the minority compared to the successes on the test sets.
Therefore we have dispensed with an anchoring system.

3.3 Multilingual adaptability

While recent generative LLMs like Mistral, Phi-2 or Gemma are
trained primarily in English, they show amazing multilingual capa-
bilities. As studied in [24], where they evaluate a great variety of
recent LLMs on a silver standard benchmark for basic open-ended
question answering with 27.4k test questions through 137 languages,
finding that exclusively English trained models answered faithfully
to other languages questions. On [11], the authors explore the poten-
tial and limitations of GPT-3 across three tasks: extractive Question-
Answering, text summarization, and natural language generation in
five distinct languages: German, Spanish, Russian, Turkish and Cata-
lan. The findings reveal that GPT-3 demonstrates utility beyond En-
glish, proving effective even for languages with limited training data.
As shown in [10], monolingual models can undergo adaptation to
other languages by leveraging the source language. The source lan-
guage enriches the syntactic and semantic understanding of the target
language.

Hence, the multilingual adaptability capacity inherent in recent
LLMs has the potential to mitigate the deficiency in adaptability
observed in existing TE normalization solutions. Adapting to these
models does not necessitate an in-depth examination of language
features and TE structures, unlike rule-based systems, making adapt-
ability significantly more straightforward.

3.4 Corpora

For training and testing our models we have used two well-known
public multilingual corpora: European Clinical Case corpus (E3C) 6

from the biomedical domain, specifically built from clinical narra-
tives, and Timebank (TB) 7 from the news domain. These corpora
have manually annotated TEs each one with its corresponding value
together with other TimeML entities such as events and temporal re-
lations. Table 1 shows the distribution of TEs in both corpora. As can
be seen, some languages overlap in both corpora.

Language Training Test Total

Timebank

English 1053 156 1209
French 205 81 286
Italian 522 126 648
Spanish 1093 198 1291
Catalan 1295 125 1420
Portuguese 1082 145 1227

E3C

English 153 174 327
French 118 157 275
Italian 110 177 287
Spanish 146 200 346
Basque 222 404 626

Table 1. TE distribution in E3C and Timebank corpora based on each
language

For its part, Figure 3 shows the distribution by type of TE on both
corpora. As can be seen, the frequencies are inverted. In Timebank

6 https://github.com/hltfbk/E3C-Corpus
7 https://github.com/AntonFagerberg/Temporal-Information-
Extraction/tree/master/tempeval2-data

the type DATE is more frequent than the DURATION type and the
type TIME is more frequent than the SET type. However, in E3C, this
pattern is reverted. The reason for this difference could be the distinct
domains of both corpora. In clinical narratives, DATES and TIMES
may be less frequent because specific timestamps are often not given
when describing the patient’s clinical condition. Instead, the dura-
tions of treatments, recoveries, and each process are provided.

On the other hand, Figure 3 shows the distribution by type of TE
through all languages. As can be seen, although the frequencies of the
types are inverted when looking just at the domain, since the Time-
bank corpus is denser than E3C the DATE type is the most frequent
in all languages, followed by the DURATION type. While TIME and
SET are the minority. It should be noted that Basque is only present
in the E3C corpus and it can be seen that DURATIONS are more fre-
quent than DATES, as well as SETS are more frequent than TIMES.
The opposite is true for Catalan and Portuguese, which are only avail-
able in the Timebank corpus.
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Figure 3. Distribution of TE type by corpora (left) and distribution of TE
type by language through both corpora (right)

3.5 Experiments

A series of experiments have been set up to maximize the per-
formance of the models, exploring their multi-domain and multi-
language capabilities. Experimentation with 4 models has been con-
sidered: Mistral 7B, Gemma 7B, Gemma 2B and Phi-2.

1. First, we compare the domain adaptability of the models, testing
whether the corpora complement or interfere with each other. We
will do so by comparing the performance of the models on E3C
and Timebank test sets after training them on separate corpora ver-
sus training them on both corpora. Showing how the models adapt
to multiple domains simultaneously. The motivation behind this
experiment is that as shown in [35], the performance of the model
on a domain reaches its maximum when it is trained exclusively
for that domain. When training on two domains, performance in-
creases considerably in the domain that was not considered in the
original training while it decreases in the domain that was trained
on.

2. Second, we apply a well-known technique called Neftune [13].
This technique involves fine-tuning by introducing noise to the
embedding vectors during training, thereby enhancing the overall
performance of the model. As demonstrated by the authors, this
straightforward yet impactful augmentation method has shown
significant improvements in language model performance. The
authors propose a tunable parameter α for adjusting the intro-
duced noise into the embedding vectors. Their experimentation
has shown three possible values for α, 5, 10 and 15, on which we
will base our experiments. In this way, we will try to improve the
baseline performance of the models and see if this technique can
be useful for this purpose.
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Both of these experiments have been done with the training data
from all languages. This way we can evaluate and focus from the
beginning on the multilingual capacities of the models.

3. In both of the exposed experiments, we don’t give the models any
context further from the TE itself, using the prompt shown in Fig-
ure 4. This approach allows us to more effectively isolate the im-
pact of each experiment, as the introduction of a context may con-
fuse the model’s attention. However, as detailed in Section 3.1,
incorporating the contextual phrase of the TE may prove essen-
tial for normalizing the value. Hence, we conduct an experiment
where the contextual phrase is introduced both at the beginning
and at the end of the prompt, as shown in Figure 2. The intu-
ition behind this is that introducing the context phrase beforehand
would enable the model to grasp the context prior to encounter-
ing the TE. Conversely, introducing the context phrase afterward
would guide the model in identifying the TE’s placement within
the context and prompt it to allocate greater attention accordingly.

4. Finally, we propose an experiment where we train each model in
multiple languages. The aim is to explore the multilingual capa-
bilities of the models for the normalization of TEs, so we propose
a comparison between training the models in a single language
versus training them in all languages together, accumulating the
techniques that have worked best in the previous experiments. The
models will be evaluated on the languages in which they have been
trained.

Figure 4. Prompt template used for the first two experiments without
context phrase.

Throughout the experiments, the performance of our proposed
models will be compared with various state-of-the-art solutions such
as HeidelTime [34], SuTime [2], UWTime [18], CogCompN [28],
ARTime [8], DNPTime [9] and the model proposed at [17], denoted
as XLM_Bosch, due to the absence of a designated name by the au-
thors.

Regarding the preprocessing of the training corpora, the text has
been split into sentences, choosing only those with at least one TE to
minimize the dataset’s size. We have trained for 1200 steps for the
unique language experiments a 5400 for the multi-language experi-
ments.

3.6 Methodology

In this Section, we will discuss all the details related to the training
implementation, inference and evaluation.

For optimizing the computational and memory cost of training
these models we have used “low ranking adaptation” LoRA [12, 7]
together with 4 bits quantization with parameters r = 8, alpha =
16, dropout = 0.05, none bias, together with double quantization
in “nf4”. For the decoding algorithm, we have chosen beam search,
since it prioritizes sequences with higher probabilities. As the model
has to predict the sequence of tokens that forms the value, we deem
this option as the most suitable. We have tried to adjust the size of
the input as much as possible, on the one hand, to save memory and
computational costs and on the other hand not to impair the perfor-
mance of the model with useless information. Therefore, a length of
410 tokens has been used as input for training based on the lengths
of the constructed prompts, with padding on the left. We have used
the same hyperparameters throughout all the conducted experiments.
A learning_rate = 2.5e− 5, 5 warmup_steps, batch_size = 1,
seed = 42 and paged adamw 8 bit optimizer.

The prompt used for inference is the same as the ones used for
training, as shown in Figures 2 and 4 without passing the value. The
predictions were generated individually rather than in batches to pre-
vent prompts from interfering with each other.

In previous experimentation, we have tried self-consistency [38] to
improve the quality of the predictions but we found that the use of
temperature = 1 offered an equal performance for TE normaliza-
tion. This may be due to the precision needed to normalize expres-
sions, as the models have no room for improvisation.

We have repeated each experiment three times and taken the mean
value to reduce randomness. For evaluation we have used the wide-
spread metric from Tempeval-3 [37]. We report the accuracy of TE
normalization, which in this case is equivalent to the F1-score. All
the mean values are weighted based on the number of expressions
of each corpus so that the performance of the largest corpus does
not affect the performance of the smaller ones. All the conducted
experiments have been run on a configuration of two NVIDIA RTX
3090 24GB GPUs.

4 Results

In this Section all the results from the experiments proposed in Sec-
tion 3.5 will be presented.

4.1 Domain adaptability

The results of training five models on each corpus separately and
on both corpora are presented in Table 2. It can be observed that
training with both corpora enhances the performance compared to
training with the corpora separately. This improvement is greater for
the Timebank corpus than for the E3C, with a corresponding intra-
model mean improvement of 3 and 1.95 points. This indicates that
Timebank draws more from E3C’s expressions than E3C draws from
Timebank’s expressions. On the other hand, it can be observed that
the Gemma models perform better at E3C but worse at Timebank
than Mistral 7B, while Llama-3 falls in between.

These findings suggest that the new generation of LLMs is more
domain-independent than the RoBERTa model described in [35], as
it can better understand and use a wide variety of expressions.

4.2 Neftune

The data presented in Table 3 demonstrates that the performance of
the Gemmamodels is significantly enhanced with the use of Neftune,
while Llama-3 8B, Mistral 7B and Phi-2 models show a decrease
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E3C Timebank
Merged Separated Merged Separated

Mistral 7B 58.89 57.36 84.53 81.73
Gemma 7B 67.07 65.75 81.67 79.44
Gemma 2B 62.93 60.33 74.49 70.84
Phi-2 56.86 53.82 61.58 57.57
Llama-3 8B 63.83 62.58 83.56 81.27

Table 2. Results on E3C and Timebank comparing the performance of five
models when training over E3C and Timebank merged or separated. The
best results for each row are underlined and the best overall result for each

corpus is marked in bold.

in performance. This suggests that there are some architectural dif-
ferences between these models, which cause the Gemma family to
benefit from Neftune.

It is interesting to note that α = 5 seems to be the best option
for both Gemma models, Llama-3 8B and Phi-2, but in the case of
Mistral 7B, α = 15 seems to be a better option for applying Neftune.

In conclusion, the findings suggest that the use of Neftune could
be beneficial for some models, even for downstream tasks such as TE
normalization. However, it cannot be concluded when to apply it and
which α parameter is better.

Steps α = 5 α = 10 α = 15 No α

Mistral 7B
800 60.55 62.09 63.43 71.64

1000 63.86 62.75 64.07 71.42
1200 63.64 62.76 64.08 71.42

Gemma 7B
800 73.87 73.87 73.65 73.87
1000 75.03 74.34 74.57 73.65
1200 74.57 74.57 74.34 74.33

Gemma 2B
800 67.52 64.30 64.30 67.29
1000 68.22 64.29 65.63 68.68
1200 68.92 66.08 65.42 68.68

Llama-3 8B
800 71.51 71.87 71.36 72.96
1000 72.24 72.38 72.45 72.96
1200 73.13 72.91 73.06 73.65

PHI-2
800 50.33 39.88 41.85 59.21

1000 52.38 39.49 43.42 58.31
1200 52.16 43.03 44.60 58.51

Table 3. Results comparing the performance over training five different
models on 800, 1000 and 1200 steps with the Neftune parameter

α = 5, 10, 15 and without Neftune. The best results for each row are
underlined and the best model performance is underlined and marked in

bold. The models have been trained on both Timebank and E3C multilingual
training sets. The results are the weighted mean based on the number of TEs

in Timebank and E3C test sets for each language.

Due to the poor results of Phi-2 in comparison to the other models,
it will not be contemplated for the rest of the experiments.

4.3 Context phrase

Table 5 shows a comparison between training both Gemma and Mis-
tral 7Bmodels with the context phrase at the end of the prompt versus
at the beginning. It can be seen how introducing the context phrase at
the beginning offers a 2.92 point mean performance increase across
models.

When looking at the errors we can see that the model properly
solves TEs where the context is necessary. For example the Spanish
sentence “obligan a los obreros a trabajar hasta 12 o 14 horas”
(“force the workers to work up to 12 or 14 hours”) includes two TEs
“12” and “14 hours”. With both the context phrase at the beginning
and the end, the models are capable of normalizing both TEs, relating

“12” with “hours”. This kind of context-dependent TE is properly
solved by passing both the context at the beginning and the end.

The difference in performance between both options comes from
non-context-dependent expressions. The intuition behind this behav-
ior may be explained by the fact that generative models pay more
attention to the end of the prompt. As such, prompting the context
phrase at the end adds too much noise to the prompt. However, when
the context phrase is introduced at the beginning, the model is better
able to understand the context while retaining the rest of the prompt.

It is worth mentioning that with the context phrase at the begin-
ning, Mistral 7B and Gemma 2 B’s performance worsens when com-
pared to not using the context phrase. This can be seen when com-
paring the best performance in Table 3 with the performance of the
first column in Table 5.

Finally, it should be noted that the models have been trained on
the best neftune parameter founded on the previous experiment. That
is α = 5 for Gemma 7B and 2B and no neftune for Mistral 7B and
Llama-3 8B.

4.4 Multilingual adaptation

Table 4 compares the performance of the models trained in a single
language versus models trained in all languages together. The Table
also shows how the models perform when trained in Spanish and
tested on all languages, highlighting how well the models adapt to
unseen languages. Additionally, the Table compares the models with
the current state-of-the-art multilingual normalization solution pro-
posed in [17], which trains an XLM-RoBERTa model on multiple
languages at once.

As can be seen, the best overall model is Gemma 7B, while Mistral
7B outperforms in five of seven languages. It’s worth noticing the
bad performance of Mistral 7B on Basque, with around 20 points
of difference from Gemma 7B and the same peak performance as
Gemma 2B.

On the other hand, training on multiple languages at one time im-
proves the performance over training on each language separately.
Except for Basque, where training only with Basque on Gemma 2B,
Mistral 7B, and Llama-3 8B yields substantial improvements.

Moreover, the models trained only in Spanish adapt well to other
languages, with Gemma 7B being the best-performing model, stay-
ing close to XLM_Bosch. However, Gemma 2B shows the greatest
difference between training only in Spanish versus training with all
languages, indicating that smaller models have a worse adaptation
to unseen languages. Interestingly, the performance of the model is
worse when trained only in Italian than when trained only in Span-
ish, possibly due to a lack of variability or quantity in the training an-
notations. Additionally, Basque shows a greater difference between
training only in Spanish and training with Basque data, demonstrat-
ing that the models are better adapted to similar languages.

Finally, as mentioned earlier, the normalization task has been ex-
tensively studied in English. As a result, most of the currently avail-
able normalization systems are available only in English. We, there-
fore, compare our best English model with other well-known mono-
lingual models in Table 6, where it can be seen how our proposed so-
lution is 4.58 points above the second best system. This shows how
our proposed solution outperforms current normalization systems not
only in multilingual form but also in monolingual form.

A. Sánchez de Castro et al. / Generative LLMs for Multilingual Temporal Expression Normalization3794



Catalan English Italian French Spanish Basque Portugues Mean

Mistral 7B
Together 75.3 72.61 82.18 73.53 88.19 52.48 84.83 74.31
Separate 67.2 68.84 48.52 68.90 86.43 59.9 82.07 68.31
Sp-Zero-Shot 70.04 61.90 79.54 68.10 86.43 29.7 68.97 64.79

Gemma 7B
Together 73.6 69.26 80.20 72.81 85.93 78.22 82.07 77.91

Separate 73.6 67.33 44.89 68.07 86.68 75.99 80 71.03
Sp-Zero-Shot 65.6 60.67 75.91 67.22 86.68 45.05 64.14 66.51

Gemma 2B
Together 64.8 65.58 77.23 69.75 79.90 56.19 75.17 69.55
Separate 55.2 63.05 51.48 63.02 76.46 59.9 71.72 63.48
Sp-Zero-Shot 45.6 47.60 44.75 55.46 76.46 20.79 40.69 47.81

Llama-3 8B
Together 76.8 70.74 82.18 70.58 83.92 71.52 82.76 76.65
Separate 71.2 67.62 47.85 64.29 80.65 74.26 82.07 69.49
Sp-Zero-Shot 71.2 55.24 73.45 65.96 80.65 55.45 55.17 65.66

XLM_Bosch Together 67.2 65.60 76.36 62.87 76.25 55 79.48 68.06

Table 4. Results comparing the performance of models trained in a single language (Separate) versus models trained in all languages together (Together), and
models trained only in Spanish and tested on all languages (Sp-Zero-Shot). These results are compared with the baseline system XLM_Bosch. The best mean

result is marked in bold, and the best results for each language are underlined.

Context phrase end Context phrase beginning
Mistral 7B 71.50 74.31

Gemma 7B 76.07 77.91

Gemma 2B 65.44 69.55

Llama-3 8B 74.83 76.65

Table 5. Results comparing the performance of the three models over
training with the context phrase at the beginning and at the end. The best

results for each row are marked in bold and underlined for each column. The
models have been trained on both Timebank and E3C multilingual training
sets. The results are the weighted mean based on the number of TEs in

Timebank and E3C test sets for each language.

English Timebank
HeidelTime 76.1
SuTime 70.3
UWTime 82.6
CogCompN 83.4
ARTime 75.4
DNPTime-Large 80.4
XLM_Bosch 71.8
Ours Best (Mistral 7B) 87.18

Table 6. Comparison on English Timebank of our best English model
versus other monolingual normalization systems. The best result is marked

in bold and the second one is underlined.

5 Conclusions and Limitations

In this work, we achieve the best results for multilingual TE normal-
ization on two different corpora, E3C and Timebank. To accomplish
this, we have adapted the latest generative LLMs to the normalization
task. We have conducted a series of experiments and proved that this
kind of architecture can be directly used for monolingual, multilin-
gual and multidomain normalization, overcoming the current adapt-
ability limitations of rule-based systems. After analyzing the results,
it can be concluded that no single model is superior in all aspects of
language and domain. To get the best outcome, it is recommended to
use the model that suits the target language and domain. However, if
there is a need to use any of these models for a non-target domain or
language, it is recommended to use Gemma 7B, as it has shown the
best overall performance.

We have considered certain limitations. First, the proposed solu-
tion does not include an anchoring system. This simplifies the nor-
malization system but limits its performance for certain expressions
where a calendar is required, as exposed in Section 3.2. For future
work, we plan to include an anchoring system along with the pro-

posed LLMs to explore the capabilities of this architecture and study
its performance.

Also, we explore the use of the context phrase. However, there
may be certain TEs that need from a longer context to be normal-
ized. From the studied corpora, this is a very rare condition, and
from the results presented in Section 4.3 it can be concluded that
a larger context may worsen the performance. Therefore, we propose
to study how to increase the available context for normalizing TEs
without degrading the performance. We also plan to use a Retrieval
Augmented Generation (RAG) system to retrieve the most relevant
context for the temporal expression. In this way, the context phrase
can be shortened and optimized.

Finally, each experiment was run only three times to minimize ran-
domness while minimizing environmental impact.
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