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Abstract. The wide spread of rumors with images and texts on
social media has attracted broad attention in the academy and indus-
try. Existing models focus on utilizing powerful feature extractors to
obtain multi-modal features and introducing various external knowl-
edge. However, the intrinsic semantic similarity of different modal-
ities is either simply ignored in most models or far from adequate
in others. The insufficiency of semantic similarity information sup-
presses the potential of rumor detection models severely. To address
this issue, we propose a novel model termed the Semantic Similar-
ity driven Multi-modal model (SemSim) for rumor detection, which
deeply captures the semantic similarity through more comprehensive
fusion between different modalities and designs a new classification
method consequently. Specifically, the proposed SemSim first inte-
grates the raw image and raw text into a virtual image, which fuses
information at a new view, i.e., via the diffusion process inside sta-
ble diffusion models. Then SemSim captures the semantic similarity
score between virtual image and raw image as the intrinsic informa-
tion to drive SemSim. Besides, co-attention mechanism is employed
to further perceive consistency and enhance interaction between the
raw text-image pair. The fused representations via co-attention are
utilized to evaluate the multi-modal feature score. In the end, Sem-
Sim balances the above two scores for final classification. Experi-
ments on two typical real-world datasets show that SemSim can ef-
fectively detect rumors and outperform state-of-the-art methods.

1 Introduction

With the widespread utilization of social media platforms such as
Twitter and Weibo, there has been a notable increase in the number
of confusing rumors crafted by unscrupulous companies or individ-
uals [26, 33, 41]. Deceptive rumors with vivid images and manip-
ulative texts aim to distort and falsify facts, which may mislead the
public [14, 31], posing a threat to the reliability and security of social
media. Consequently, the effective detection of rumors from multi-
media platforms has become critically important.

Figure 1 illustrates two instances of multi-modal rumors sourced
from Twitter. In Figure 1(a), the moon appears unusually large, rais-
ing doubts about its authenticity. The accompanying text seems to
describe super moon but provides a clue that "this cannot be real".
On the other hand, in Figure 1(b), the text draws attention to a five
headed snake, while the image merely shows sand arranged in the
shape of a five-headed snake. From the rumor detection standpoint,
the clue in the text and the anomaly in the image should be valued
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Figure 1: Two instances of multi-modal rumors with images and text
from Twitter.

in Figure 1(a), whereas the inherent semantic inconsistency between
the image and text should be captured in Figure 1(b). To mislead the
public, rumors usually contain exaggerated text or attention-diverting
fake images that lead to dissimilarity. Similarly, previous works have
pointed out that multi-modal consistency information is beneficial
for rumor detection [20, 26, 43, 35]. The above analysis motivates
the idea to detect rumors from both information within each modal-
ity and semantic similarity between different modalities.

In recent years, the task of rumor detection has gained significant
attention. Early deep neural network (DNN)-based models simply
relied on textual information for rumor detection [15, 38, 16]. The
reliance on textual cues alone limits the ability of these models to
perceive visual information. To tackle this issue, various multi-modal
models have been proposed for rumor detection. Wang ef al. [32] ex-
ploit both visual and textual features and design an event discrimina-
tor for better rumor detection. Khattar et al. [10] introduce a VAE-
based method to utilize both text and image information. While these
models focus on incorporating auxiliary tasks, their performance is
still unsatisfactory due to the lack of emphasis on the semantic sim-
ilarity between textual and visual modalities and insufficient fea-
ture extraction. To address the need for extracting robust representa-
tions within each modality, various powerful models have been em-
ployed [6, 21, 37, 3]. Some researches leverage pre-trained models
such as BERT [3] and XLNet [36] to obtain strong textual represen-
tations [24, 3, 21]. Some employ ResNet [7] and ViT [5] to obtain
powerful visual representations [26, 13].

Others have also discovered that using graph neural networks like
GCN [12] to capture social graph information can be advantageous
for rumor detection [39]. Subsequently, various forms of external
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knowledge have been introduced to expand the horizon of the mod-
els, such as social context information [4, 42], user preference in-
formation [6] and historical information [23, 33]. However, in the
real world, obtaining such external knowledge is often impractical
due to limitations in data privacy and security. Even if the aforemen-
tioned information was available, the collection process would re-
quire extremely substantial manpower and material resources, which
is usually unaffordable and limits the real-time capability of models
severely. This challenge arises because these models rely on external
knowledge rather than intrinsic information.

Some researchers have focused on exploring intrinsic information,
primarily based on semantic similarity between different modali-
ties [43, 10, 41]. And some achieve good performance without ex-
ternal knowledge [20, 26]. However, there is still room for improve-
ment. These methods can be mainly categorized into four types:

e Co-attention mechanism-based methods. Most of recent models
employ cross-modal co-attention mechanism to enhance interac-
tion between different modalities [42, 9, 21, 20, 26]. While these
methods effectively improve multi-modal features, the capture of
semantic similarity is implicit and insufficient.

e Projection-based methods. Some methods [42, 34] project features
of different modalities into a shared feature space through a linear
layer with shared weights to capture similarity. However, these
methods are limited due to the inherent inconsistency across dif-
ferent modalities [20]. Features extracted from various modalities
often exhibit different distributions, and directly using these fea-
tures may hinder similarity capture since they are not aligned.

e Image caption-based methods. Zhou ez al. [43] use image caption
to convert visual information into textual information to calcu-
late similarity within a unified modality. However, this conversion
process weakens the original visual information because its im-
age2sentence model [29] is poor, leading to an inadequate capture
of similarity. Zhang et al. [41] employ a large language model and
reinforcement learning methods to get text-guided image captions,
which is effective yet rather complex. Besides, the method focuses
on image semantic enhancement, not similarity calculation.

o Image generation-based methods. Chakraborty et al. [2] and Li et
al. [13] generate new images only based on the raw text to enrich
data. While these methods have achieved good performance, it is
possible to generate noise-like images due to semantically com-
plex text. The absence of raw image misses general outline of the
event and magnifies unimportant details such as color or size, re-
sulting in limited similarity information. Moreover, raw text does
not integrate with raw image until the diffusion process is over,
missing a good fusion opportunity to capture the similarity.

In summary, the existing models face two primary challenges: (1)
heavy reliance on external knowledge such as historical information
and social context information; (2) insufficient methods for capturing
intrinsic semantic similarity.

In this work, we aim to tackle the aforementioned challenges
by proposing a novel model termed the Semantic Similarity driven
multi-modal model (SemSim) for rumor detection. Specifically, we
abandon external knowledge and deeply capture the semantic sim-
ilarity through more comprehensive fusion. We first fuse raw text-
image pair into a virtual image via the diffusion process, a new per-
spective for powerful fusion, and avoid the inherent inconsistency
across modalities via virtual and raw images. In computer vision,
recent research has found the potential of Stable Diffusion [22] to
obtain consistency [8]. If raw image and text are semantically in-
consistent like most rumors, the virtual image will differ from raw

image thanks to Stable Diffusion, converting semantic dissimilarity
between raw image and raw text into dissimilarity between raw and
virtual images. Unfortunately, this is ignored by existing rumor de-
tection models. To quantify the semantic text-image similarity, we
calculate similarity scores between representations of raw image and
virtual image, which serve as intrinsic information driving SemSim.

To further enhance the model, we extract features from the input
image and text separately, and employ co-attention to improve repre-
sentations and further perceive similarity. Based on improved repre-
sentations, multi-modal feature scores are evaluated. Finally, we bal-
ance the semantic similarity score and multi-modal feature score for
classification. Though some confusing rumors may have decent sim-
ilarity scores, low multi-modal feature scores allow for correct detec-
tion. As a result, rumors whose images and text are similar such as
Figure 1(a) or inconsistent such as Figure 1(b) can both be detected
under the balance of the two scores.

The main contributions of our work are as follows:

e We propose a novel approach for rumor detection that emphasizes
the capture and utilization of semantic similarity information be-
tween visual and textual modalities. Our method prioritizes the
intrinsic relationship and alignment between different modalities
while extracting multi-modal features in a unified frame.

e We utilize a new method to integrate information between differ-
ent modalities for capturing similarity more comprehensively.

e We design a new classification method and a new loss function to
take advantage of similarity information and achieve alignment.

e Extensive experiments conducted on typical real-world datasets
demonstrate that our method is highly effective in identifying ru-
mors and outperforms state-of-the-art rumor detection models.

2 Related Work

Early rumor detection methods [1, 30] only utilize basic textual in-
formation including upper and lower case characters, punctuation,
and emotional keywords. These methods are too labor-intensive to
be widely used. Hence, Ma et al. [15] first employ the neural net-
works, i.e., different types of recurrent neural networks to automati-
cally detect rumors based on textual information. Yu et al. [38] utilize
convolutional neural network to extract textual features for classifica-
tion. Ma et al. [16] combine the rumor detection task and the stance
classification task to better detect rumors. Ma et al. [17] introduce an
additional adversarial training process to enhance the model robust-
ness. Tian et al. [27] utilize a novel signed attention mechanism to
improve representations for rumor detection. Nan ez al. [19] train the
model in a multi-stage process to improve the cross-domain gener-
alization capability. Sheng et al. [23] propose a model that benefits
from perception of the environment. However, these models do not
exploit visual features that might be beneficial.

To address this issue, various multi-modal models have been pro-
posed to utilize textual and visual information. Jin er al. [9] first
utilize cross-modal co-attention for multi-modal rumor detection. In
this work, authors extract visual and textual features, respectively.
Then the co-attention mechanism is employed to get enhanced fea-
tures for final detection. Since then, co-attention has been popular.
Wang et al. [32] design an event discriminator as an auxiliary task
to better detect rumors. Some researches utilize BERT-based mod-
els to get strong representations [24, 37, 21]. Sun et al. [26] com-
bine BERT, ViT, and graph convolution to further improve represen-
tations, which is effective but consumes too much memory. Some
researches find using graph neural networks to capture social graph
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information is beneficial [39]. After that, various kinds of external
knowledge, such as user preference and historical information are
introduced to enhance the models [23, 4, 33]. Unfortunately, these
models strongly rely on external knowledge. Sometimes they are not
practical because the external knowledge is unavailable or hard to
get. Such reliance also limits the real-time capability. As for usage of
intrinsic information, as analyzed in Section 1, it is insufficient.

To sum up, existing models suffer from two major issues: (1) the
strong reliance on external knowledge rather than intrinsic informa-
tion; (2) insufficient methods to capture intrinsic semantic similarity.
And this work addresses these problems effectively.

3 Methodology

Let P = {p1,p2, ..., pn} be a set of multimedia posts on social media,
where each post p; = {¢;, v; } includes text ¢; and image v; and has a
corresponding ground-truth label y € {0, 1}, where y = 1 indicates
rumor, and 0 indicates non-rumor. The rumor detection task can be
formulated as a binary classification task, whose goal is to learn a
function F'(¢;,v;) that best approximates the true label y; for each
post p;.

For each post, we first employ stable diffusion model [22] to gen-
erate a virtual image v} based on t; and v; to have a rich fused visual
information. Then the cosine similarity between representations of
v; and v; is calculated to measure their semantic similarity for better
performance. In this way, we change the goal of rumor detection to
learning a function F'(¢;, v;, v}) that best approximates the true label
y; for each post p;. In the following, we present our method in detail.

3.1 Model Overview

In this work, we propose a Semantic Similarity driven Multi-modal
model (SemSim) for rumor detection, whose architecture is shown
in Figure 2. SemSim consists of three modules for exploiting multi-
modal features and capturing semantic similarity between different
modalities. (1) The multi-modal feature extraction module, which
consists of textual and visual feature extractors (marked in green and
blue, respectively). (2) The multi-modal information fusion module,
which consists of two submodules (marked in orange). The Stable
Diffusion submodule generates a virtual image based on the raw
image and the prompt obtained by preprocessing the raw text. The
Co-attention submodule promotes the interaction between different
modalities to enhance the multi-modal features. (3) The multi-modal
rumor detection module, which calculates the semantic similarity
score and multi-modal feature score, and weights the above two
scores for final classification (marked in yellow). Details of these
modules are provided in the following subsections.

3.2 Multi-modal Feature Extraction
3.2.1 Textual Representation

We employ Text-CNN to extract the textual features for each post.
For each post p;, assume its text ¢; is first padded or truncated to
have n tokens, i.e. t; = {w1, w2, ..., wy }, where w; denotes the j-th
word in the text. Next, we feed the pre-trained word vectors to get the
initial word embeddings e'i = {e¥1,e¥2,...;e""} € R™"*%, where
d is the embedding dimension. Then a feature map is obtained by a
convolution layer, represented as:

ro={rf, e, rr R

; M

where 77 represents the result of the convolution operation on
eViitk—1 = {eWi e%it1 . e"itk—1} and k represents the kernel
size. Then, the max pooling operation is applied over the obtained
feature map r; for dimension reduction, i.e., #; = max (r;). There-
fore, a filter can output a value 7;, and we use a total of d filters
with varying convolutional kernel sizes to obtain the semantic fea-
tures from different views. Finally, we concatenate the results from
all the filters to form the overall textual representation % € R%.

3.2.2 Visual Representation

For each post p;, the pre-trained model ResNet50 [7] with an addi-
tional fully connected layer is utilized to capture the visual features
of the raw image v; and the generated virtual image v;. The following
is the procedure to get representation v’. for v;. First, we extract the
hidden features from the second last layer of ResNet50, denoted as
v} . Then, the intermediate representation v}, is fed into a fully con-
nected layer with an activation function for dimension projection.
The output 0% € R% is in the same dimension of text feature ¢%.:

o o (W, * v+ by), ?2)

where W, and b,, are trainable matrices in the fully connected layer
and o(+) denotes the ReLU activation function. The approach to ex-
tract v}, for image v} is similar to the above procedure. We also ex-
tract the hidden features of ResNet50 to pass to the fully connected
layer for obtaining the final representation v}, € R%.

3.3 Multi-modal Information Fusion
3.3.1 Stable Diffusion for Information Fusion

Previous rumor detection models mostly fuse information between
different modalities via concatenation or co-attention. We utilize the
diffusion process inside Stable Diffusion, a novel view, to integrate
information between image v; and text ¢;. The approach unifies infor-
mation from textual and visual modality into visual modality, over-
coming the inherent inconsistency across modalities and deeply min-
ing semantic similarity information. Specifically, a new image v, can
be obtained by:

v; = SDs(vi, prompt), 3)

where SD represents the stable diffusion model, prompt means the
guiding description obtained by preprocessing raw content of ¢; to
modify v; to v;, and § € (0,1) denotes the guiding strength of
prompt in generating v;. The parameter § plays an important role
in information fusion. A larger value indicates paying less attention
to v; while a small value pays less attention to the guiding prompt.

The information fusion process inside stable diffusion models can
be divided into the forward process which adds noise and the back-
ward process for denoising, sampling and generating virtual images.
The forward process can be represented as:

noise = SD; (v;, 2), 4

where S D denotes the iterative process to add noise, z indicates the
gradually added noise in Gaussian distribution, and noise is nearly
an isotropic pure noise. During the iterations of gradually transform-
ing from v; to noise, a series of noise is obtained serving as labels.
The potential way of adding noise is learned to facilitate sampling
new images during denoising. The reverse denoising process can be
formalized as:

v; = SDs (noise , prompt) . (5)
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Figure 2: The overall architecture of our SemSim model. For each post, we first generate a virtual image based on the raw image and the
prompt obtained from the raw text. Then we obtain representations of the virtual image, raw image, and raw text through feature extractors. We
use multi-head self-attention to enhance representations of the two images, and calculate their similarity score. Meanwhile, the cross-modal
co-attention mechanism is also used to fuse information and gain stronger representations between the textual and visual modalities of the
input, which are then passed to a Multi-Layer Perceptron (MLP) to get a multi-modal feature score at the logit layer. In the end, the logit score

and semantic similarity score are weighted for the final classification.

This process starts with noises and uses labels containing visual
modality information obtained from the iterative SD;. Gradually,
S D> incorporates the textual information included in prompt and
the visual information included in a series of noise to ultimately gen-
erate new virtual images.

The stable diffusion model’s operation of integrating textual and
visual information can be intuitively explained as: the generated vir-
tual image v} fuses the semantic consistency information of the raw
image v; and text ¢;. If v; and ¢; are semantically inconsistent, vj will
differ from v; to a relatively large extent. The dissimilarity between
v; and v} can be suspicious, which provides a useful clue to SemSim
to detect rumors.

3.3.2  Co-attention Mechanism for Fusion

Based on the multi-head self-attention mechanism, Jin et al. [9] pro-
posed the Co-Attention mechanism, a variant of attention to adapt to
multi-modal situations:

QL =viW K =t.wW" vV} =tiw", (6)
H QKT

MA(Q,K,V) = (|| softmax( WHwe, (8)
=1

h= Vg

where WO WX WV ¢ R 1 are trainable projection matri-
ces, || denotes the concatenation operation, H indicates the number
of heads, di, = d/H is the last dimension of the key matrix K,
We € R¥? is the output linear transformation, and Z¢, is the en-
hanced textual representation with visual information. Similarly, we
can exchange v’ and t& to get Z},, the enhanced visual representa-
tion with textual information. In this way, we fuse textual and visual
representations obtained by feature extractors for better performance.

Finally, we concatenate these two representations to further fuse the
information: ' _ _
ZZ :Z'Lz)t@ZZ'ua (9)

where @ denotes the concatenation and Z° is the final multi-modal
representation for post p;.

3.4 Multi-modal Rumor Detection
3.4.1 Obtaining Similarity Scores

Here we present a method to calculate the semantic similarity score
between features of the raw image and virtual image, i.e., v’ and v}
Each pair of v’ and v?, is passed to the fully connected layer, followed
by multi-head self-attention for enhancing the features.

1771" = erl * ’Ui, 'EZ = WfCQ *’UZ, (10)
Q' =5 WK =5 Wwr Vi =5 wY, an
Q, =0, W K, =o,W", v =o,w", (12)

R' = MAQ',K',V'),R, = MA(Q}, K}, V), (13)

where W, and Wy, represent weight matrices, and Q°, K* and
V' are query, key and value matrix for the raw image while Q?,,
K! and V! are those for the generated virtual image. M A is the
multi-head self-attention mechanism shown in Eq. 8. R’ and R’ are
enhanced features for raw and virtual image, respectively.

Then, we utilize a modified cosine function [43] to measure the
semantic consistency:

o R' R 1

Sim(R',Ry) = =i + =, (14)
2R - IR 2

where Sim(R', Ri) € [0,1] is the similarity score revealing the

relevance. We regard 1 — Sim(R’, R;,) as the probability that p; is
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a rumor solely from the perspective of semantic similarity. Specifi-
cally, if raw image and raw text do not match at all semantically, the
generated image will be much different from the raw image, leading
to a very low similarity score. On the contrary, if raw image and raw
text are consistent, the similarity score will exceed the borderline of
0.5. This result is consistent with human’s empirical knowledge that
rumors are more likely to have unmatched image and text. Compared
to existing researches that ignore the semantic consistency or sim-
ply project features from different modalities into a high-dimensional
space to measure similarity, our approach of obtaining the similarity
scores is more reasonable and effective.

3.4.2 Detecting Rumors with Similarity Scores

Almost all the previous works on rumor detection directly perform
binary classification task based on the fused features. In contrast, we
propose a new classification method called Classification With Sim-
ilarity (CWS), which takes both multi-modal representations and the
semantic similarity into consideration. We first evaluate the original
classification score of multi-modal features Z*, denoted as:

logit; = MLP(Z"), (15)

where M LP represents a Multilayer Perception consisting of two
fully connected layers with a ReLU function. The output logit; is
in two dimensions, with logit;[1] the initial score as rumor and
logit;[0] the initial score as non-rumor. Then, we mix up the above
multi-modal feature score and similarity score as follows:

logit;[0] = logit:[0] + ¢ * Sim(R', R.), 16)

logiti[1] = logit:[1] + ¢ * (1 — Sim(R", R.)),  (17)

where ¢ is used to balance the two factors. 1 — Sim(R’, R) € [0,1]
denotes the semantic inconsistency score, and logit; is the revised
result with similarity score. Both logit;[1] and 1 — Sim(R?, RY)
are clues to categorize p; as rumor. Then we calculate the predicted
probability g; of p; being a rumor and use the cross-entropy loss
function as:

§: = softmax(logit;)[1], (18)

n

Lclassify = Z _(yl log(’gl) + (1 - yl) IOg(l - gl))7 (19)
i=1
where y; is the ground truth for p;. Besides, we define a new loss
function based on the MSE loss, which is designed for alignment:

N . pi pi
Lsimilarity = E Z (1 - Szm(R ,RU) — yi)Q. (20)

i=1

Here we provide an example to better understand the defined loss
function. Assuming there is a rumor whose label is 1, we pass the
rumor to our model to calculate the similarity score. If Sim(R*, RY)
is very low, it means our model strongly believes that the post is
exactly a rumor. According to Eq. 20, the defined loss for this post is
also low, which rewards our model for clear classification. However,
if Sim(R', R.) is very high, it will become a punishment to our
model, and vice versa. The final loss can be written as:

L= Achlassify + )\sLsimilarityy (21)

where A\, and \; are used to balance the two losses.

Table 1: Statistics of the datasets.

Dataset ~ Non-rumors  False Rumors  Images Comments
PHEME 1428 590 2018 7388
Weibo 1460 1127 2587 4534

3.4.3 Incorporating Adversarial Training

Previous works [42] have shown that, the PGD (Projected Gradient
Descent) method [18], a widely used adversarial training technique,
helps enhance the model’s robustness at the text embedding level
during training. Hence, we also incorporate the PGD Adversarial
Training to enhance the representations. Specifically, at each train-
ing iteration, we calculate the gradient for the textual features and
utilize it to compute the adversarial perturbation that is applied to the
text embedding. Then the gradient is recalculated based on the up-
dated textual features. Such process is repeated for m times, and we
confine the extent of perturbation within a spherical space. Finally,
we accumulate the adversarial gradients with the original gradient,
which is then used for the parameter updates.

4 Experiments

In this Section, we conduct extensive experiments to demonstrate the
effectiveness and practicality of our motivation to deeply capture se-
mantic similarity information for better detecting rumors. We intro-
duce datasets, baselines and implementation details in Section 4.1to
Section 4.3. In Section 4.4 and Section 4.5, we compare our SemSim
with baselines and recently popular large language models. We con-
duct ablation experiments in Section 4.6 to analyze the importance of
different components in SemSim. In Section 4.7 and Section 4.8, we
respectively conduct sensitivity analysis and individual case analysis.

4.1 Datasets

We evaluate the proposed SemSim on two typical real-world datasets
for rumor detection: Pheme [44] and Weibo [25]. The Pheme dataset
consists of tweets from the Twitter platform based on five breaking
news. The Weibo dataset is collected from Weibo platform. In this
work, we focus on text, images, and the semantic similarity informa-
tion between them, and some baselines need comments for tweets.
Following [42], we remove tweets that do not have text or image.
And we remove tweets with only retweet information. The detailed
statistics of the two datasets after removing are listed in Table 1.

4.2 Baselines

We consider the following baselines, which have covered the whole
four types of methods mentioned in Section 1. EANN [32] is a GAN-
based model to mine event-invariant features. MVAE [10] learns
shared representations of texts and images using a variational au-
toencoder. QSAN [27] uses signed attention mechanism to enhance
text encoding. SAFE [43] jointly exploits multi-modal features and
similarity of text and images to learn representations. SpotFake [24]
uses BERT and VGG-19 to extract textual and visual features respec-
tively, then concatenates them for classification. HMCAN [21] uses
cross-modal co-attention to fuse features of BERT every four lay-
ers with image features. M3APS [13] generates images only based
on raw text and generates text via image caption to enrich data.
MFAN [42] combines textual, visual, and social graph features in a
multi-modal feature-enhanced attention network to effectively detect
rumors. However, none of them fuse information via the diffusion
process and make full use of semantic similarity as we do.
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Table 2: Comparison results of SemSim and the baselines.

PHEME Weibo
Method ‘ Accuracy Precision Recall F1 score ‘ Accuracy Precision Recall F1 score
EANN 77.13£0.96  71.39+1.07 70.07£2.19  70.44%1.69 | 80.96+2.26  80.19+2.37  79.68+£2.46  79.87%2.40
MVAE 77.624+0.64  73.49+0.81 72.25+£0.90 72.774+0.81 | 71.67+0.89  70.52+0.95 70.21£1.01  70.344+0.98
QSAN 75.13£1.19  69.97+£2.03  65.80£1.72 66.87+1.70 | 71.01£1.81  71.02+£0.95 67.54£3.27 67.58+3.59
SAFE 81.49+0.84 79.88+1.22 79.50+0.81  79.684+0.70 | 84.95+0.85 84.98+0.82 84.95+0.91 84.96+0.86
SpotFake | 84.42+0.95 80.71+0.99 83.72+1.87 82.19+1.46 | 85.13£1.88  85.184+1.97 84.98+2.14  85.08+1.95
HMCAN | 87.44£0.72  85.024+0.71  84.08+0.93  84.494+0.81 | 89.04+£0.97 89.07+1.02 88.42+0.83  88.67+0.95
M3APS 88.01+£0.86  85.994+0.87 84.55+1.01 85.27+0.94 | 88.12+0.77 87.85+0.91 87.63+0.78  87.65+0.87
MFAN 88.62+£0.63  87.014+0.58  85.72+0.97  86.28+£0.65 | 88.75£1.10 88.74+1.49 88.22+1.47 88.24+1.48
SemSim | 89.94+0.89 88.77+0.98 86.56+1.17 87.61+£0.93 | 90.97+0.98 90.92+0.88 89.83+1.36  90.31£0.98

4.3 Implementation Details

Following [42], we split datasets for training, validating, and test-
ing with a ratio of 7:1:2. We use accuracy, precision, recall and
F1 as evaluation metrics. The Adam optimizer [11] with a learn-
ing rate of 2e-3 is employed to optimize trainable parameters. The
batch size is set to 64. We use word vectors in [39] as initial word
embeddings. The number of heads H is set to 8, the scaling factor
¢ = 3, and A and A, are set to 1 and 0.4, respectively. We per-
form five runs throughout all experiments and report the average re-
sults with standard deviation. The version of stable diffusion model
is stable-diffusion-2. The guiding strength ¢ is set to 0.8. The guid-
ing prompt is the core information automatically extracted from raw
text by GPT-3.5, to satisfy constraints of stable diffusion model on
token length, improve the information density of prompts and reduce
random noise from calls for retweeting and other irrelevant tags [13].
The input to GPT begins with “I hope you are a core information ex-
tractor. Please extract the core information of following sentences”.

4.4 Comparisons with the Baselines

We compare the performance of SemSim with up to eight competi-
tors, covering the whole four types of methods mentioned in Sec-
tion 1. In Table 2, we report the comparison results. Our model out-
performs all the baselines in terms of all metrics on both datasets,
demonstrating its effectiveness and superior performance.

Utilizing similarity explicitly improves the performance of SAFE
significantly, compared with MVAE and EANN. However, poor
multi-modal representations make SAFE obviously inferior to Sem-
Sim. Benefiting from fully utilizing multi-modal co-attention ev-
ery four hidden layers, HMCAN enhances multi-modal features and
shows good performance. However, consistency information can be
too implicit, making it inferior to SemSim. Although MFAN and
M3APS are recent advanced models for rumor detection, our pro-
posed SemSim still beats them. M3 APS enriches information via im-
age caption and image generation based on only text. Besides, both
M?3APS and MFAN rely on the social context information such as
retweet or response, which we abandon for real-time capability. Even
in this condition, the fine-grained fusion via the diffusion process and
the full use of semantic similarity between raw text-image pairs em-
power our model to win. To sum up, our SemSim shows the best
detecting performance, because it benefits from capturing and utiliz-
ing semantic consistency more adequately, and obtaining excellent
multi-modal features.

4.5 Further Comparison with LLMs

To further check the effectiveness of SemSim, we conduct a pre-
liminary comparison with recently popular Large Language Models

Table 3: Preliminary comparison results of SemSim with LLMs.

Method Accuracy  Precision  Recall  FI score
chatglm-6b 78.62 74.21 72.83 73.58
PHEME llama-2-13b 79.44 75.62 73.11 74.19
SemSim 89.94 88.77 86.56 87.61
chatglm-6b 83.73 83.17 84.22 83.41
Weibo llama-2-13b 81.10 81.17 80.97 80.12
SemSim 90.97 90.92 89.83 90.31

(LLMs). We compare SemSim with two open source large models,
i.e., chatglm-6b [40] and llama-2-13b [28]. We regret not to use raw
images because the above two large models only focus on text. If we
directly feed the posts into LLMs and ask them to detect rumors, they
will refuse and reply "As an Al language model, I cannot perform
real-time fact-checking or verify the specific post for its truthfulness
or rumor status". To handle this problem, we obtain robust textual
embeddings via the large model and add an MLP as a classifier to
detect rumors. We only train parameters in the classifier while freez-
ing parameters inside LLMs due to resource limitation. Finally, we
evaluate the performance on the test dataset.

As shown in Table 3, our model has achieved significantly better
detection results on both datasets. These LLMs can be fine-tuned
to gain better performance. Due to the limitations of experimental
resources, we only do a preliminary comparison.

4.6 Ablation Study

To further explore the importance of different components in Sem-
Sim, we compare SemSim with its sub-models “-w/o SD”, “-w/o
CWS”, and “-w/o simloss”. They respectively denote the variants
without stable diffusion, the proposed new classification method
CWS, and the new loss function. Stable diffusion is a new strategy
to fuse information for better capturing the semantic similarity while
CWS and simloss are both strategies to utilize the semantic similar-
ity. The comparison results are shown in Table 4.

We can observe all ablation variants perform significantly worse
than complete SemSim on both datasets. Without stable diffusion,
the captured semantic similarity is inadequate, leading to the signifi-
cantly decreased performance. These results offer following insights:
(1) capturing semantic similarity between different modalities is in
great need; (ii) classification with similarity scores is effective; (iii)
the new loss based on similarity helps with alignment.

In order to further verify the effectiveness of semantic similarity
between images and text, we detect rumors only based on similarity
scores. Specifically, this variant only uses components in the upper
two lines in Figure 2, which we define as SemSim- for convenience.
According to Table 5, although we only explore the semantic similar-
ity scores, the performance of SemSim- is still competitive, further
demonstrating that our motivation to deeply mine semantic similarity
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Table 4: Comparison results of the variants of SemSim.

Method Accuracy  Precision  Recall  F1 score
-w/o SD 86.51 85.16 81.27 83.17
-w/o CWS 86.75 85.07 82.09 83.65
PHEME -w/o simloss 88.03 86.12 84.47 85.29
SemSim 89.94 88.77 86.56 87.61
-w/o SD 87.19 86.67 86.95 86.83
Weibo -w/o CWS 87.66 86.72 87.99 87.62
-w/o simloss 88.39 88.01 87.85 87.97
SemSim 90.97 90.92 89.83 90.31

Table 5: Comparison results of SemSim- and the baselines.

Method Accuracy  Precision  Recall  FI score
EANN 77.13 71.39 70.07 70.44
MVAE 77.62 73.49 72.25 72.77
PHEME AN 75.13 6997 6580  66.87
SemSim- 78.86 75.04 73.16 73.52
EANN 80.96 80.19 79.68 79.87
Weibo MVAE 71.67 70.52 70.21 70.34
! QSAN 71.01 71.02 67.54 67.58
SemSim- 82.59 83.72 81.39 82.29

of raw text-image pairs is practical and effective.

4.7  Sensitivity Analysis

We conduct the sensitivity analysis to show the influence of stable
diffusion parameter . The fusion effect of stable diffusion and the
quality of generated images highly rely on J, the guiding strength of
the prompt, which is usually 0.8 in image generation [22]. To figure
out the sensitivity of ¢ in our model, we set it to be 0.75, 0.8, and
0.85, and report the results of SemSim and its variant SemSim- on
both datasets in Figure 3. As § can only affect the generated images to
contribute to the similarity scores without affecting the multi-modal
feature scores, the results of SemSim- reveal the influence of § on
the pure similarity while results of SemSim reveal influence on final
performance. Although each value of ¢ only differs by 0.05, there is
already a considerable gap on both datasets, demonstrating the im-
portance of the fusion process and the quality of generated images.
We set 6 = 0.8 in our model, because both SemSim and SemSim-
achieve the best accuracy on two datasets in this setting.

4.8 Case Study

As shown in Figure 4, some rumors and non-rumors are correctly
classified under the balance of multi-modal feature score and similar-
ity score. We preprocess raw text to obtain guiding prompts to reduce
random noise. Given the prompt and raw image as input, a virtual
image is generated. Specifically, in Figure 4(a), raw image (left) and
text (middle) of the upper post are about "religious leaders". Sem-
Sim captures semantic similarity to generate a similar virtual image
(right) and correctly classifies it as a non-rumor. For the lower ru-
mor, the forged text contains "was shot dead" while the image does
not contain this information. So the scene of memorial ceremony ap-
pears in virtual image. Such inconsistency and forgery are perceived
by SemSim to detect this rumor. In Figure 4(b), image and text are
both about "Scallion Oil Flower Roll" for the upper non-rumor and
there is no suspicious clue. SemSim classifies it as a non-rumor cor-
rectly. For the rumor one, similarity score slightly tends to classify
it as a non-rumor because both image and text seem to be about the
death, while the exaggerated certainty in the text is suspicious, which
is captured by multi-modal feature score. Under the balance of two
scores, SemSim detects the rumor as expected. Though it is wrongly

95 :
Semsim- on PHEME
mmm Semsim on PHEME
Semsim- on Weibo
mmm Semsim on Weibo
90 A
S
o
® 85 A
=
[®]
%]
<<
80 A
75 -
0.75 0.8 0.85
Value of 6

Figure 3: The influence of the hyper-parameter § on our model Sem-
Sim and the variant SemSim-.

Religious leaders at
Lakemba mosque in
Sydney to pray for
hostages #sydneysiege

Twenty-four-year-old Cpl.
Nathan Cirillo was shot
dead today at the War
Memorial in Ottawa.
#cdnpoli #OttawaShooting

Many girls love to eat Scallion Oil
Flower Roll. A flower roll with
simple ingredients is actually
delicate and complex, as each

layer of it must have green onions,

and cach is an independent layer.

The real cause of Leslie Cheung's
death was homicide. The police
have arrested the suspect Zhou
Fengguo and there is very ample

evidence to prove that he is
definitely the murderer.

(b) Non-rumor and rumor in Weibo

Figure 4: Cases in PHEME and Weibo. Chinese text in Weibo is trans-
lated into English. “T” denotes non-rumors while ‘F* for rumors.

classified only from the perspective of similarity, the balance with
feature score allows for detecting the rumor finally.

5 Conclusion

This paper proposed a novel model called SemSim (semantic simi-
larity driven multi-modal model) for rumor detection. SemSim be-
gins by generating a virtual image based on raw image and raw text,
fusing information into visual modality via the diffusion process.
Then the similarity score between raw and virtual images is calcu-
lated as intrinsic information to drive SemSim. Additionally, Sem-
Sim evaluates a multi-modal feature score based on raw text-image
pair. Finally, SemSim combines the semantic similarity score and
multi-modal feature score to make final classification. Evaluations
and comparisons on two typical datasets for rumor detection demon-
strate that our model outperforms the state-of-the-art baselines.

Our SemSim brings a new view to fuse information between dif-
ferent modalities for rumor detection. In the future, how to further
explore this fusion method, i.e., the diffusion process to enhance in-
teraction for better detecting rumors could be a potential direction.
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