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Abstract. The Transformer-based model have made significant
strides in semantic matching tasks by capturing connections between
phrase pairs. However, to assess the relevance of sentence pairs, it is
insufficient to just examine the general similarity between the sen-
tences. It is crucial to also consider the tiny subtleties that differ-
entiate them from each other. Regrettably, attention softmax opera-
tions in transformers tend to miss these subtle differences. To this
end, in this work, we propose a novel semantic sentence matching
model named Combined Attention Network based on Transformer
model (Comateformer). In Comateformer model, we design a novel
transformer-based quasi-attention mechanism with compositional
properties. Unlike traditional attention mechanisms that merely ad-
just the weights of input tokens, our proposed method learns how to
combine, subtract, or resize specific vectors when building a repre-
sentation. Moreover, our proposed approach builds on the intuition of
similarity and dissimilarity (negative affinity) when calculating dual
affinity scores. This allows for a more meaningful representation of
relationships between sentences. To evaluate the performance of our
proposed model, we conducted extensive experiments on ten public
real-world datasets and robustness testing. Experimental results show
that our method achieves consistent improvements.

1 Introduction

Semantic sentence matching (SSM) is a core method used in the field
of natural language processing (NLP) with the objective of com-
paring and discerning the semantic correlation between two given
phrases. In paraphrase identification [33], SSM is used to determine
whether two sentences are paraphrase or not. In natural language in-
ference task [2] also known as recognizing textual entailment, SSM
determines whether a hypothesis sentence can reasonably be inferred
from a given premise sentence. In the answer sentence selection task
[47], SSM is employed to assess the relevance between query-answer
pairs and rank all candidate answers. In large language models such
as GPT [36] and LLaMA [42], SSM can be used for parallel corpus
alignment and data denoising. However, the task of establishing the
logical and semantic link between two statements is not straightfor-
ward, mostly because of the challenge posed by the semantic gap
[15].

Across the rich history of semantic sentence matching research,
there have been two main streams of studies for solving this problem.
The first is representation based method which encodes each of the
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Figure 1. The Combined Attention Network Example for Semantic
Sentence Matching.

sentences and obtain their representation vectors in low-dimensional
latent space and then utilize the parameterized matching function for
the final matching scores, which focuses on how to get good sen-
tence representations [38, 47, 52]. Another type of semantic match-
ing model is interaction-based, which directly align the sentences
based on the attention mechanism and aggregate the matching score
to directly make the final decision which focuses on how to align
the word pairs in the sentence pair [3, 23, 40, 22, 48]. Recently
large-scale pre-trained language models such as BERT [7], RoBERTa
[27], are becoming more popular in multiple NLP tasks. Because
of their high efficiency and effectiveness in contextual information
modeling and sentence level encoding, pre-trained models are also
wildly used in semantic matching tasks and achieve significant im-
provement.Recent work attempts to integrate external knowledge
[56, 50, 1] into PLMs. Meanwhile, leveraging external knowledge
to enhance PLMs has been proven to be highly useful for multiple
NLP tasks [18]. Recent work also attempts to enhance the perfor-
mance of BERT by injecting knowledge into it, such as SemBERT
[56], UER-BERT [50], Syntax-BERT [1], DABERT [48] and so on.

Although previous studies have provided some insights, those
models (e.g., BERT, RoBERTa) do not perform well in distinguish-
ing sentence pairs with high literal similarities but different seman-
tics. Figure 1 exemplifies an instance that is afflicted by this issue.
Although the sentence pairs in this figure are semantically different,
they are too similar in literal for those pre-trained language models to
distinguish accurately. One significant factor is that while the model
possesses the capability to assess the level of similarity in overall se-
mantics, it fails to account for the nuanced distinctions present within
individual texts. Because for text pairs with highly similar matching
words, the overall semantic difference is often caused by different
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local differences. Furthermore, an obvious feature of the attention
model is that it can learn relative importance, that is, assign different
weights to input values, and the Softmax operator is its core. Soft-
max makes the weight of core words higher and the weight of non-
core words lower. Sparsegen [35] have proved that equipping with
attention mechanism with more flexible structure, models can gen-
erate more powerful representations. In this paper, we also focus on
enhancing the attention mechanism in transformer-based pre-trained
models to better integrate difference information between sentence
pairs. We hypothesize that paying more attention to the fine-grained
semantic differences, explicitly modeling the difference and affinity
vectors together will further improve the performance of pre-trained
model.

In this paper, we propose a novel approach named Comateformer,
designed exclusively for semantic matching tasks. It replaces vanilla
attention in the transformer with combined attention, which works
similarly to vanilla attention, but with several key fundamental dif-
ferences. First, instead of learning relative importance (a weighted
sum), combinatorial attention learns combinations of tokens that de-
cide whether to add, subtract, or scale inputs. In other words, our
method removes softmax operation because it deviates from the orig-
inal motivation of attention, so we refer to our method as combined
attention. Second, we introduce a quadratically scaled attention ma-
trix, ultimately learning a multiplicative combination of similarity
and dissimilarity. We hypothesize that a more flexible design can lead
to more expressive and robust models, leading to better performance.
To achieve this, we propose two modules to implement the above de-
scription. The first is the dual-affinity module, which introduces a
negative affinity matrix N in addition to the original affinity matrix
E, and the affinity matrix E is obtained by labeling the attention
formula, that is, eij = ai · bj . In contrast to E, the negative affinity
matrix N learns a dissimilarity metric (nij = ai - bj) for modeling the
differences between word pairs. Subsequently, we introduce a com-
bination mechanism that combines tanh(E) and sigmoid(N) to
form a quasi-attention matrix M . In this case, the first term tanh(E)
controls the addition and subtraction of vectors, while the auxiliary
Affinity N can be interpreted as a gating mechanism that scales un-
necessary features when needed. We conduct a series of experiments
on 10 datasets and the experimental results show that the method
achieves consistent improvements.

The main contributions of this paper are as follows.

• First, we conduct a comprehensive study of the subtle differences
between sentence pairs and propose a new method named Co-
mateformer for semantic matching tasks, which has two distinct
kinds of functions to represent the interaction between phrase
pairs from various viewpoints,and the softmax function was elim-
inated from the attention mechanism, resulting in an increased re-
ceptive field and enhanced capacity to catch tiny differences.

• Secondly, we explicitly integrate Comateformer into both pre-
trained and non-pre-trained models, and the results showed that
the proposed method can provide greater expressive power, and
it can fully discover the inherent complex relationships between
sentence pairs for effective semantic matching.

• Finally, we carry out a series of experiments on 10 match-
ing datasets and robustness testing datasets. Experimental results
show that Comateformer has achieved consistent improvements,
especially in the robustness test, achieving an average improve-
ment of 5% over BERT. The effectiveness of Comateformer is fur-
ther supported by a case study and an attention distribution analy-
sis, which illustrate the model’s nuanced handling of sentence pair

interactions and its ability to focus on both commonalities and dif-
ferences within the text.

2 Related work

Our work relates to several work in the literature: Semantic Sentence
Matching, Robustness test. We will discuss each of these as follows.

2.1 Semantic Sentence Matching

SSM is a focal point within the field of NLP, witnessing significant
advancements over the years. It mainly fell into two categories: tradi-
tional neural network based methods and pre-trained language model
based methods.

Traditional Neural Network based methods. Early approaches
to SSM were predominantly reliant on traditional methods such as
syntactic features, transformations, and relation extraction [39, 46].
These methods, while effective for specific tasks, were inherently
limited in their scope and generalizability. With the advent of large-
scale annotated datasets [2, 57] and the proliferation of deep learning
algorithms, neural network models have made great progress in SSM.
The incorporation of attention mechanisms marked a pivotal shift, of-
fering richer information for sentence matching by elucidating align-
ment and dependency relationships between sentences [6, 5, 11].
These mechanisms endowed models with the ability to capture
nuanced semantic similarities beyond the lexical surface. Concur-
rently, joint methods that leveraged cross-features through attention
mechanisms were introduced to address the limitations of sentence-
encoding methods, enhancing performance by capturing word- or
phrase-level alignments [49, 10]. The architectural advancements, in-
cluding the use of residual connections, facilitated the stable increase
of network depth, preserving information from lower layers [13].
[25, 37] emphasis on the sequential information and the semantic
interdependence of sequences. [51, 29] used distinct convolutional
filters to capture the local context. By supplying alignment and de-
pendence relationships between two sentences, the well-established
attention processes provided greater information for sentence match-
ing. This was accomplished by giving the information. [4] used an
attention method to extract the salient components inside sentences,
record the semantic connections, and appropriately align the pieces
of two phrases. [28, 31] employed a stacked multi-layer Bi-LSTM
with Alignment Factorization to quantify the various levels of fea-
tures between two texts. Convolutional Neural Network (CNN) focus
on the local context extraction with different kernels, and Recurrent
Neural Networks (RNN) are mainly utilized to capture the sequential
information and semantic dependency. [54] utilized a multi-layer en-
coding technique and fusion block based on a CNN structure to con-
struct a rapid and highly effective phrase matching model. [8, 9] uti-
lized GNN to leverage the structural information of input sentences
in order to achieve full sentence connection modeling.

Pre-trained Language Model based methods. Recently, the pre-
trained language models, most notably BERT [7], revolutionized
SSM by providing powerful sentence representations through self-
supervised learning on vast corpora. This paradigm shift allowed
for transfer learning across various NLP tasks, significantly accel-
erating research progress. One way to enhance the performance of
pre-trained models is by modifying the input encoding and utilizing
self-supervised pre-trained tasks. XLNet [55] utilized a recently de-
veloped PLM task to reduce the disparity between pre-trained tasks
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Figure 2. Difference between Softmax attention, Linear attention and Combined attention. Softmax attention computes the similarity between all Q-K pairs.
Linear attention applies mapping function Φ(·) to Q and K respectively. Our Combined Attention models both global affinity and local difference information,

thus achieving dual perception of affinity and non-affinity, with higher fine-grained differentiation advantages.

and subsequent tasks. Moreover, there are other noteworthy advance-
ments in this field, including RoBERTa [27] and CharBERT [32].
[22, 3] utilizes cross-features as an attention module to express
the word-level or phrase-level alignments for performance improve-
ments, and aggregates these integrated information to acquire sim-
ilarity. DenseNet [53] belongs to the joint approaches which uti-
lizes densely-connected recurrent and co-attentive information to en-
hance representation. Meanwhile, there is a trend to utilize explicit
NLP knowledge to improve sentence representation [30]. For exam-
ple, [43, 26] used the syntactic dependencies to enhance the sen-
tence representations. The NLP knowledge-enhanced matching mod-
els have also adapted to the interaction-based models. For example,
MIX [20] utilizes POS and named-entity tags as prior features. Sem-
BERT [56] concatenates semantic role annotation to enhance BERT.
UERBERT [50] chooses to inject synonym knowledge. SyntaxBERT
[1] integrates the syntax tree into transformer-based models.

The above work has achieved significant advancements in sen-
tence semantic matching, which has motivated us to maximize the
utilization of sophisticated neural networks and pre-trained tech-
niques for sentence semantic modeling. However, these models pos-
sess the capability to assess the level of similarity in overall seman-
tics, it fails to account for the nuanced distinctions present within
individual texts. Because for text pairs with highly similar matching
words, the overall semantic difference is often caused by different
local differences.

2.2 Robustness Test

Although neural network models have achieved human-like or even
superior results in multiple tasks, they still face the insufficient
robustness problem in real application scenarios [12]. Tiny literal
changes may cause misjudgments. Especially in some cases where
fine-grained semantic needs to be discriminated. Besides, most of
the current work utilizes one single metric to evaluate their model,
may overestimate model capability and lack a fine-grained assess-
ment of model robustness. Therefore, recent work starts to focus on
robustness research from multiple perspectives. TextFlint incorpo-
rates multiple transformations to provide comprehensive robustness
analysis. [21] provide an overall benchmark for current work on ad-
versarial attacks. And [24] propose a more comprehensive evaluation
system and add more detailed output analysis indicators.

3 Method

3.1 Task Definition

In a formal manner, it is possible to describe each instance of sen-
tence pairings as a triple (Q, P, y). Here, Q represents a phrase of
length N, denoted as (q1, ..., qN ), P represents another sentence of
length M, denoted as (p1, ..., pM ), and y ∈ Y is the label representing
the relation between Q and P. In the job of identifying paraphrases,
Q and P represent two sentences. The variable y is used to denote the
outcome, where Y can take the values of either 0 or 1. Specifically, y
= 1 indicates that Q and P are paraphrases of each other, whereas y =
0 indicates that they are not paraphrases. In the context of a natural
language inference task, the premise sentence is denoted as Q, the
hypothesis sentence as P, and the variable y represents the possible
outcomes of the task, namely inference, contradiction, or neutral. In-
ference refers to the situation where P can be logically deduced from
Q, contradiction indicates that P cannot be a valid condition for Q,
and neutral signifies that P and Q are unrelated to each other.

A comparison between Comateformer and classical attention is
included in Figure 1. It consists of two parts under the combined at-
tention framework. First, we model the interaction of sentence pairs
from different perspectives using two different types of functions.
Next, we removed the softmax operation in attention, and gave the
attention a wider receptive field and a more subtle difference capture
ability. Two sentences are input as A ∈ RNa×d and B ∈ RNb×d,
Where Na, Nb is the length of sequences A and B. They are padded
to the same length N by default. And d is the dimension of the input
vector, and returns a combination with the same dimension express.
Note that the input is generic as it can be applied to interactive at-
tention for dual sequences and self-attention for single sequences. In
the case of single-sequence attention, the variables A and B typically
denote identical sequences.

3.2 Dual Affinity Module

In this module, we design two different functions, affinity function
and difference function, to compare the affinity and difference of vec-
tors between two sentences. First, we compute the pairwise affinities
between each word in A and B via the dot product:

Eij = α× FE(ai)FE(bj). (1)
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Figure 3. The overall architecture of incorporating Comateformer to transformer Model.

This function computes the pairwise similarity between any two
elements in A and B. In this procedure, FE(.) represents a parame-
terized function, such as a standard linear/nonlinear function. Addi-
tionally, α represents a scaling constant and a non-negative hyperpa-
rameter, which can be thought of as a temperature setting that adjusts
saturation. Next, as a measure pairwise of negativity (i.e., dissimilar-
ity) between each word in A and B, we perform the following calcu-
lation:

Nij = β × ||FN (ai)− FN (bj)||. (2)

In this function, we introduce a parameterized function FN (.) and
a scaling constant β, while preserving the L1-Norm l1. It is note-
worthy to mention that in practice we can make parameters shared
between FE(.) and FN (.). Meanwhile, the affinity matrix N has the
same dimensions as the affinity matrix E. Our argument posits that
capturing features of different properties (e.g. subtractive composi-
tionality) in attention models is crucial for semantic matching tasks.
The fundamental concept underlying negative distance involves uti-
lizing negative affinity values as a gating mechanism to represent
negative qualities, a capability that is absent in the original attention
method.

3.3 Compositional Attention Module

In the typical vanilla attention, softmax is the core component, which
is applied to the matrix E to normalize it. Hence, multiplying the
normalization matrix of E with the original input sequence yields
a vanilla attention pooled representation (aligned representation),
where each element in sentence A pools all relevant information for
all elements in sentence B. The combined attention we propose is
completely different from vanilla attention. First, it has no softmax
operation. Specifically, we use the following equations for attention
modeling:

M = tanh(E)� sigmoid(N), (3)

where M is the final attention matrix in the combined attention
mechanism, which is an element-wise multiplication between two
matrices.

Normalization of matrix N. Since N is constructed from negative
L1 distances, it is clear that sigmoid(N) ∈ [0, 0.5]. Therefore, to en-
sure that sigmoid(N) lies in the range [0, 1], we center the matrix N
so that its mean is zero:

N = N − Mean(N). (4)

Intuitively, by scaling the matrix N , we preserve the ability to
scale up and down the median of the tanh(E) matrix, since sig-
moid(N) has a saturation region between 0 and 1, so it behaves more
like a gating mechanism. At the same time we also try the second
form of scaling, as an alternative to centering:

M = tanh(E)� (2 ∗ sigmoid(N)). (5)

Empirically, we have found that this approach is also very effec-
tive.

Temperature. We introduced the hyperparameters α, β that con-
trol the size of E and N in the previous sections. Intuitively, these
hyperparameters control and affect the temperature of the tanh and
sigmoid functions. In other words, high values of α, β will enforce
hard-form combined pooling. In this task we set α = 1 and β = 1.

Finally, we apply the Compositional Attention Matrix M to the
input sequences A and B with the following formula:

Â = M ×B and B̂ = MT ×A. (6)

And the two sentences are update as Â ∈ RNa×d and B̂ ∈
RNb×d. Taking Â as an example, each element Ai in A traverses sen-
tence B and determines whether it contains the token in sentence B
by adding (+1), subtracting (-1) or deleting (×0). Similarly, each ele-
ment in sentence B traverses sentence A and decides to add, subtract,
or delete a token from A. Intuitively, which can capture both affin-
ity and dissimilarity features, facilitating rich and expressive repre-
sentations, unlike typical attention pooling methods that operate on
sequences.

3.4 Incorporating Comateformer to Transformer

As shown in Figure 3, which shows the location of Comateformer in-
tegrated in the transformer and the schematic diagram of the spe-
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Figure 4. Performance of each BERT layer on TextFlint transformed
dataset.

cific modules of Comateformer. The original Transformers [44] em-
ploy a self-attention mechanism, which can be interpreted as cross-
attention on the same sequence. Our Comateformer replaces the
original attention module with de-softmaxed Dual Affinity Module,
that is, the original Transformer internal attention equation A =

softmax(QKT√
dk

) ∗ V is now changed to:

A = tanh(
QKT

√
dk

)� sigmoid(
G(QK)√

dk
) ∗V, (7)

where G(.) is the negation of outer L1 distance between all rows
of Q against all rows of K. We either apply centering to (G(QK)√

dk
∗V )

or 2 * sigmoid(G(QK)√
dk

) ∗ V to ensure the value is in [0, 1]. Finally,

both affinity matrices are learned by transforming Q, K, V only once.

3.5 Incorporating Comateformer to PLMs

How to integrate the modified Comateformer with the pre-trained
model is also challenging. Injecting additional structure may destroy
the representation ability of the pre-trained model. How to gently in-
ject Comateformer into pre-trained models remains a difficult prob-
lem. [16] proves that the bottom layer of PLMs pays more atten-
tion to words and syntactic information, and the higher layers pay
more attention to semantic information. Based on this conclusion,
we disassembled the BERT main layer and verified the lack of dif-
ferential information in different layers of BERT. By solving these
problems, we can figure out which layers of BERT are missing dif-
ferential information. Therefore, we use the robustness testing tool
TextFlint as an experimental data set to study the above issues. First,
TextFlint makes slight changes to each sampled example so that the
sentence pairs have subtle differences. Second, we freeze the param-
eters of the BERT model (except the softmax classification output
head) and adopt pre-trained contextualized word representations for
the TextFlint task. This approach allows us to examine the extent to
which syntax-related knowledge is stored in each layer of BERT and
identify areas lacking this knowledge.

Figure 4 presents the performance of the BERT model layer-by-
layer for difference awareness. We leverage TextFlint to perform syn-
tax structure transformations on the dataset, and the performance re-
sults are averaged over five different runs. A higher score indicates
a stronger proficiency. From the figure, we observe that after freez-
ing the layer parameters of BERT, the sensitivity to difference differs
among the layers, with the middle and upper layers being more sen-
sitive to difference than the lower layers. In summary, building upon
the insights from the layer-by-layer analysis, we have identified a di-
rection: incorporating Comateformer into the lower layers of BERT.
In order to minimize the damage to the original pre-training process,
we replace the multi-head attention in the first to third layers with
Comateformer in the ratio of 50%, 40%, and 30%.

Table 1. The statistics of all 10 datasets.

Datasets #Train #Dev #Test #Label Metrics

MRPC 3669 409 1380 2 Accuracy/F1
QQP 363871 1501 390965 2 Accuracy/F1
MNLI-m/mm 392703 9816/9833 9797/9848 3 Accuracy
QNLI 104744 40432 5464 2 Accuracy
RTE 2491 5462 3001 2 Accuracy
STS-B 5749 1500 1379 2 Pearson/Spearman corr
SNLI 549367 9842 9824 3 Accuracy
SICK 4439 495 4906 3 Accuracy
Scitail 23596 1304 2126 2 Accuracy
TwitterURL 42200 3000 9324 2 Accuracy

4 Experimental Settings

4.1 Datasets

We conduct the experiments to test the performance of Comate-
former on 10 large-scale publicly available sentence matching bench-
mark datasets. The GLUE benchmark [45] is a widely used bench-
mark test suite in the field of NLP that encompasses various tasks
such as sentence pair similarity detection and textual entailment1.
We have conducted experiments on six sub-datasets of the GLUE
benchmark: MRPC, QQP, STS-B, MNLI, RTE, and QNLI. In addi-
tion to the GLUE benchmark, we also conduct experiments on four
other popular datasets: SNLI [2], SICK [34], TwitterURL [19] and
Scitail [17]. The statistics of all 10 datasets are shown in Table 1.
Furthermore, to evaluate the robustness of the model, we also utilize
the TextFlint [12] tool for robustness testing. TextFlint2 is a multi-
lingual robustness evaluation tool that tests model performance by
making subtle modifications to the input samples.

4.2 Baselines

To evaluate the effectiveness of our proposed Comateformer in SSM,
we mainly introduce BERT [7], SemBERT [56], SyntaxBERT, UER-
BERT [50] and multiple other PLMs [7] for comparison. In addi-
tion, we also select several competitive models without pre-training
as baselines, such as ESIM [3], Transformer [44] , etc [14, 49, 41].
In robustness experiments, we compare the performance of BERT on
the robustness test datasets. For simplicity, the compared models are
not described in detail here.

5 Results and Analysis

5.1 Model Performance

To determine the efficacy of our method, we examine the effective-
ness of aggregating Comateformer in 10 datasets, respectively. Table
2 compares the performance of Comateformer and competing mod-
els across 10 datasets. It is evident that the performance of non-pre-
trained models is considerably inferior to that of pre-trained mod-
els. This is mainly because the pre-trained model has more data
from learning corpus and powerful information extraction ability.
When the backbone model is BERT-base or BERT-large, the aver-
age accuracy after integrating Comateformer is improved by 1.1%
and 0.8%, respectively. The results show the effectiveness of our
Comateformer Model on semantic matching tasks. In addition, our
method outperforms RoBERTa-base by 1.6% and RoBERTa-large
by 0.6%, respectively. which demonstrates that Comateformer can
effectively capture the relationship between sentences from differ-
ent aspects, so that more fine-grained and complex relationships can

1 https://huggingface.co/datasets/glue
2 https://www.textflint.io
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Table 2. The performance comparison of Comateformer with other methods.

Model Pre-train MRPC QQP STS-B MNLI-m/mm QNLI RTE SNLI Sci SICK Twi Avg

BiMPM � 79.6 85.0 - 72.3/72.1 81.4 56.4 - - - - -
CAFE � 82.4 88.0 - 78.7/77.9 81.5 56.8 88.5 83.3 72.3 - -
ESIM � 80.3 88.2 - 75.8/75.6 80.5 - 88.0 70.6 71.8 - -
Transformer � 81.7 84.4 73.6 72.3/71.4 80.3 58.0 84.6 72.9 70.3 68.8 74.4
BiLSTM+ELMo+Attnt � 84.6 86.7 73.3 76.4/76.1 79.8 56.8 89.0 85.8 78.9 81.4 78.9
OpenAI GPT � 82.3 81.3 80.0 82.1/81.4 87.4 56.0 88.4 84.8 79.5 81.9 80.4
UERBERT � 88.3 90.5 85.1 84.2/83.5 90.6 67.1 90.8 92.2 87.8 86.2 86.0
SemBERT � 88.2 90.2 87.3 84.4/84.0 90.9 69.3 90.9 92.5 87.9 86.8 86.5
SyntaxBERT � 89.2 89.6 88.1 84.9/84.6 91.1 68.9 91.0 92.7 88.7 87.3 86.3
DABERT � 89.1 91.3 88.2 84.9/84.7 91.4 69.5 91.3 93.6 88.6 87.5 86.7
BERT-Base � 87.2 89.1 86.8 84.3/83.7 90.4 67.2 90.7 91.8 87.2 84.8 85.8
BERT-Base-Comateformer � 89.3 89.6 87.3 85.2/84.9 91.1 68.9 91.2 92.4 88.0 86.8 86.9

BERT-Large � 88.9 89.3 87.6 86.8/86.3 92.7 70.1 91.0 94.4 91.1 91.5 88.0
BERT-Large-Comateformer � 89.7 90.4 88.1 86.9/86.7 93.3 72.2 91.5 94.7 91.6 92.2 88.8

RoBERTa-Base � 89.3 89.6 87.4 86.3/86.2 92.2 73.6 90.8 92.3 87.9 85.9 87.6
RoBERTa-Base-Comateformer � 89.8 91.1 88.4 87.5/87.4 93.7 82.3 91.2 93.2 89.6 87.7 89.2

RoBERTa-Large � 89.4 89.7 90.2 89.5/89.3 92.7 83.8 91.2 94.3 91.2 91.9 90.3
RoBERTa-Large-Comateformer � 90.3 91.4 90.9 90.1/89.8 94.2 84.4 91.7 94.6 91.2 92.2 90.9

Table 3. Results of ablation experiment of various composition functions.

Model QQP QNLI SNLI

Dev Test Dev Test Dev Test

Comateformer 89.8 89.6 92.2 91.1 92.2 91.1

tanh(Ê)� sigmoid(N) 89.7 89.3 92.4 91.2 92.4 91.2
tanh(E)� sigmoid(N̂) 89.6 89.5 92.3 91.1 92.3 91.1

tanh(E)� tanh(N) 86.5 85.2 87.3 85.8 87.3 85.8
tanh(E)� arctan(N) 85.1 84.6 86.4 84.3 86.4 84.3
sigmoid(E)� tanh(N) 84.8 83.9 85.7 83.8 85.7 83.8
sigmoid(E)� arctan(N) 86.2 85.0 87.4 85.6 87.4 85.6
sigmoid(E)� sigmoid(N) 89.4 87.8 90.7 88.4 90.7 88.4

be exploited. These results demonstrate the advantages of combined
attention modeling in mining semantics. Compared with previous
work, our method shows very competitive performance levels in eval-
uating semantic similarity. In addition, the experimental results fur-
ther verify the effectiveness of our method.

5.2 Ablation study

To assess the individual impact of each component within our
methodology, we have performed ablation experiments on the QQP,
QNLI and SNLI datasets based on BERT. The experimental findings
are shown in Table 3. In this study, we further examine the neces-
sity of centering E and N, and the experimental results on the first
two rows of three datasets. It has been discovered that centering ma-
trix E and N does not help performance in most cases. Furthermore,
it is seen that applying Tanh on matrix E and Sigmoid on ma-
trix N outperforms other configurations for the proposed attention
mechanism. This observation implicitly indicates the efficacy of the
combinatorial attention.

5.3 Robustness test performance

We conducted robustness tests on SNLI dataset. Figure 5 lists the
accuracy of Comateformer and BERT. We can observe that in Swa-
pAnt our model outperforms BERT nearly 6%, which indicates that
Comateformer can better handle semantic contradictions caused by
antonyms. And the model performance drops to 77.2% on SwapNum
transformation, while Comateformer outperforms BERT by nearly
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Figure 5. The robustness experiment on the QQP and QNLI datasets based
BERT.

5% because it requires the model to capture subtle entity differences
for correct linguistic inference. In other transformations, Comate-
former still outperforms the baseline, which reflects its effectiveness.

5.4 Case Study

In order to intuitively understand how Comateformer works, we use
the three cases in Table 4 for qualitative analysis. First, although S1
and S2 are literally similar in the first example, they express two com-
pletely different semantics due to the subtle difference the phrases
bring to "eat fruit" and "eat early". The pre-trained language model
BERT can identify semantic differences in case 1 and give correct
predictions with the help of strong contextual representation capa-
bilities. It is worth noting that the similarity of BERT’s predicted
sentence pairs is 46.32%, while that of BERT-Comateformer is only
1.87%. Second, in case 2, the sentence pairs "from 70 to 60" and
"from 60 to 50" express different semantics, but they are primarily
the result of numerical differences. Although BERT identified the
correct label in case 1 by a small margin, in case 2, it was unable to
capture numerically induced differences and gave wrong predictions
because it requires the model to capture subtle numerical differences
for correct language reasoning. Finally, our model made correct pre-
dictions in all of the above cases. Since Comateformer models sen-
tence pairs from multiple perspectives, it can pay attention to the
small differences in sentence pairs, and adaptively aggregate multi-
source information in the alignment module to better identify the se-
mantics within sentence pairs’ differences.
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Table 4. The example sentence pairs of our cases. Red and Blue are difference phrases.

Case BERT BERT-Comateformer

S1: Can eat fruit for dinner lead to weight loss? sim : 46.32% sim : 1.87%
S2: Does ate dinner earlier help with weight loss? label : 0 label : 0

S1: How do girls lose weight from 70 to 60 ? sim : 72.66% sim : 12.06%
S2: How should I lose weight from 60 to 50 ? label : 1 label : 0

S1: What should I learn to be a hardware engineer? sim : 99.26% sim : 18.63%
S2: What should I learn to be a software engineer? label : 1 label : 0

��������	�
� ��
�� ����������	�����
�� ���������	����
��

Figure 6. Distribution of Affinaty Matrix (a), Difference Matrix (b),
Combine Matrix (c)

5.5 Attention Distribution

To visually demonstrate the impact of different attention functions
inside multi-channel attention on the interactive alignment of sen-
tence pairs, we show the weight distribution of three kinds of atten-
tion in Figure 6. We can observe that the word-pair information in
the sentence pairs concerned with different attention functions is in-
consistent. First, in Figure 6(a), Dot attention can pay attention to
the same words and semantically related words in sentence pairs,
but it is heavily influenced by the same words in sentence pairs. It
focuses too much on the shallow features of the same text and ig-
nores the deep semantic association of the different words between
"software" and "hardware". This shows that using Dot attention alone
may lead to wrong predictions. Secondly, in Figure 6(b), it can be
observed that Minus attention explicitly pays attention to the differ-
ence between "software" and "hardware", and its attention weight
is the largest among all word pairs. This is because minus attention
uses element-wise subtraction to compare the differences between
sentence pairs. The greater the difference between word pairs, the
greater their weight. Therefore, it can also be complementary to Dot
attention. Finally, in Figure 6(c), the attention weights in combined
attention focus on the same and different words, which shows that
combined attention can both focus on the same part of the sentence
pair and capture different parts, and this mechanism can capture both
Affinity and dissimilarity of sentence pairs. In summary, different at-
tention focus on different word pairs in sentence pairs. Intuitively,
our method can effectively combine the alignment relationships of
multiple perspectives in sentence pairs to generate vectors that better
describe the matching details of sentence pairs.

6 Conclusion

In this work, we propose a combination attention network based
on transformer model for semantic sentence matching named Co-
mateformer. This model successfully captures the different infor-
mation that is contained in pairs of words and integrates it into
a model that has already been pre-trained. The core of Comate-
former lies in its dual-affinity module and compositional attention
mechanism, which jointly capture the nuanced similarities and dis-
similarities between sentence pairs. This unique capability enables
Comateformer to discern subtle semantic differences that often evade

traditional attention-based models. The qualitative case study and at-
tention distribution analysis provide clear insights into how Comate-
former operates, revealing its ability to adaptively focus on relevant
aspects of sentence pairs to enhance semantic understanding. The re-
sults of our experiments on 10 publicly available datasets as well as a
robustness dataset show that the consistent improvements across var-
ious metrics, especially the remarkable gains in robustness testing,
underscore the effectiveness of our approach. In future work, we will
extend Comateformer to other NLP tasks and develop more sophis-
ticated methods for integrating external knowledge into the model
architecture.
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