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Abstract. Stable marriage of a two-sided market with unit demand
is a classic problem that arises in many real-world scenarios. In ad-
dition, a unique stable marriage in this market simplifies a host of
downstream desiderata. In this paper, we explore a new set of suffi-
cient conditions for unique stable matching (USM) under this setup.
Unlike other approaches that also address this question using the
structure of preference profiles, we use an algorithmic viewpoint and
investigate if this question can be answered using the lens of the de-
ferred acceptance (DA) algorithm without actually running the algo-
rithm. Our results yield a set of sufficient conditions for USM (viz.,
MaxProp and MaxRou) and show that these are disjoint from the pre-
viously known sufficiency conditions like sequential preference and
no crossing. We provide a characterization of MaxProp that makes it
efficiently verifiable (without using DA), and shows the gap between
MaxProp and the entire USM class.

1 Introduction

The stable marriage problem considers a two-sided market where
agents of each side (e.g., men) are assumed to have a linear pref-
erence over the other side (e.g., women) and matches are one-to-
one, i.e., each agent has a single demand. Stability asks for a pair-
ing between these agents such that there does not exist any pair of a
man and a woman who would like to abandon the current matching
and mutually prefer a marriage among themselves. Gale and Shap-
ley [10] proved that such a stable matching always exists and is ob-
tained via a computationally simple algorithm called deferred accep-
tance (DA). However, there could be multiple stable matchings and it
raises questions on which one to pick. The stable matching problem
is very well studied in the literature and several useful results exist
related to DA and its variants. For instance, the questions regarding
the maximum [21] or average number of stable matchings [30], com-
plexity of counting stable marriages [18], matching with incomplete
lists [20], indifferences [26], heterogeneous jobs and workers [7], and
many more, have already been investigated. See Iwama and Miyazaki
[19], Manlove [25] for a comprehensive survey on the stable match-
ing problem and Roth [34] for a survey of DA-type algorithms.

In this context, uniqueness of stable matching [8, 6] has a very
important place. First, since the actual pairings of men and women
are a stable matching based on their reported preferences, a norma-
tive goal is to ensure that it is indeed their actual preferences, i.e.,
the stable matching algorithm is strategyproof. However, it is known
that DA is not strategyproof for a non-proposer [11] unless there is
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a unique stable matching. Though a unique stable matching is not
sufficient for strategyproofness [33] except in the incomplete infor-
mation setup [9], it is a property from which further structures of
strategyproofness can be obtained. We define the class of preference
profiles where the set of stable matchings is a singleton as unique
stable matching (USM) in this paper.

The second reason why USM is desirable is the anti-symmetry of
the preferences of men and women over the stable matchings. It is
known that between two different stable matchings μ1 and μ2, if μ1

is at least as preferred as μ2 by all men, then μ2 must be at least
as preferred as μ1 by all women, i.e., men and women have exactly
opposite preferences over the stable matchings [12]. Hence, finding
a stable matching that is unbiased to any side of the market is often
challenging. A considerable amount of research effort has been put
to find a fair compromise between the two extremes (see, e.g., Klaus
and Klijn [23], Tziavelis et al. [37], Brilliantova and Hosseini [4]).
However, the question of bias also does not appear in the USM class
since there is exactly one stable matching.

Finally, unique stable matchings have appeared in many real-world
matching markets, e.g., in the US National Resident Matching Pro-
gram [35], Boston school choice [29], online dating [16], and the
Indian marriage market [3].

In this paper, we aim to understand the internal structure of the
USM class using a DA algorithmic lens.

1.1 Our contributions

The main contributions of this paper are as follows (illustrated graph-
ically in Figure 1).

• We view the USM problem using the number of proposals and
rounds in the classic Gale-Shapley DA algorithm, and intro-
duce two new conditions, men-proposing max-proposals or m-
MaxProp and men-proposing max-rounds or m-MaxRou (simi-
larly w-MaxProp and w-MaxRou for the women-proposing ver-
sions), defined w.r.t. men (women)-proposing DA. These prop-
erties identify those preference profiles where a men (women)-
proposing DA algorithm takes maximum possible number of pro-
posals or rounds respectively. We show the mutual relationship of
these two properties in Theorem 2 when the number of men (or
women) |M |(= |W |) = n � 3. We show that each of these
conditions is sufficient for USM (Theorem 3).

• We characterize the class MaxProp in Theorem 4 and show that
these conditions are efficiently verifiable (Theorem 6) without re-
quiring any appeal to DA.

• Prominent existing sufficient conditions for USM, the sequen-
tial preference condition (SPC [8]) and the no crossing condition
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Figure 1: The above two figures illustrate the sub-structures of the USM class for n � 3 and n = 2 respectively. For n = 3, however, the gap
between MaxProp and MaxRou is empty as they are equivalent. (This gap is non-empty for n � 4.) The dashed lines and the shaded regions
denote the new sub-structures of USM that are contributions of this paper. We also characterize the class MaxProp and provide the complexity
of verification. In Figure 1b, the fact USM = SPC was known from Eeckhout [8]. We provide a more direct proof of this fact.

(NCC [6]), are disjoint from the new sufficient conditions pro-
posed in this paper for n � 3 (Theorem 7). Hence, our results
make the internal sub-structure of the USM class outside NCC and
SPC clearer. In particular, the men and women proposing versions
of the MaxProp class turn out to be disjoint as well (Theorem 8).

• For n = 2, we show that the classes m-MaxProp and m-MaxRou
(similarly w-MaxProp and w-MaxRou) coincide, and so do SPC
and NCC. Also, m-MaxProp and w-MaxProp are contained within
SPC for n = 2. We also provide a direct proof of the fact that for
n = 2, USM and SPC are equivalent, a result originally proved
by Eeckhout [8]. However, we also point out an inconsistency in
the claim of SPC being necessary for USM for n = 3 [8] through
Example 3. Interestingly, for n = 2, the classes m-MaxProp and
w-MaxProp have an overlap. Due to space limitations, we prove
these results in the full version of this paper [13].

1.2 Related works

Several works have focused on finding sufficient conditions for
USM, the two most well-known of these being the sequential prefer-
ence condition [8] and the no crossing condition [6]. Others include
the co-ranking condition [24], the acyclicity condition [32], the uni-
versality condition [17], oriented preferences [31], aligned prefer-
ences [27], uniqueness consistency [22], α-reducibility [1], and it-
erative α-reducibility [28]. These results provide structural insight
into the types of preference profiles that lead to uniqueness in stable
matchings. Refer to Section 3 for a detailed discussion on previously
known sufficient conditions for USM.

It is noteworthy that nearly all of the sufficient conditions listed
above are either restrictions or generalizations of the sequential pref-
erence condition (SPC) or the no crossing condition (NCC). In con-
trast, our work unveils two sufficient conditions that have no overlap
at all with SPC or NCC, as we prove later.

Finding a necessary condition has also been investigated, and there
are two prominent approaches. The first one uses the idea of α-
reducibility, proposed originally by Alcalde [1]. A marriage problem
satisfies α-reducibility if every sub-population of men and women
has a fixed pair (a pair of man and woman who prefer each other
the most). Clark [6] shows that this condition is both necessary and
sufficient for the existence of a unique stable matching in every sub-

population of men and women. If USM is considered only for the
full population, α-reducibility is sufficient but not necessary.

A different approach to this problem uses the idea of acyclic-
ity, originally proposed by Chung [5]. Acyclicity implies that if the
agents point to their most preferred partners, then the resulting di-
rected graph should not have any directed cycle. While Romero-
Medina and Triossi [32] show that it is a sufficient condition for
USM, the necessity condition using this method is explored recently
by Gutin et al. [15]. Gutin et al. [15] use the acyclicity on a reduced
graph that they define as the normal form. The idea of normal form
is used for submatching markets by Irving and Leather [18], and
Balinski and Ratier [2]. Gutin et al. [15] claim that the difficulty in
finding a necessary condition for USM in these approaches was that
the acyclicity property was being used on the complete preference
profile, while the entire preference profile may not be relevant for a
unique stable matching. Using the idea of normal form, they prune
the preferences where an agent can never match with certain partners
in any stable matching. This acyclicity on a normal form turns out to
be necessary and sufficient for USM [15].

Our approach differs considerably from those discussed above, in
the way our conditions are defined. Instead of looking at the USM
class through the preference structures of the players, we view it us-
ing the DA algorithm and its execution over a profile. Our results
consider the maximum number of proposals made by the agents and
the number of rounds in DA, and provide the extra structures that
yield a clearer view of the space between the currently known suffi-
cient conditions and the USM class (Figure 1). It shows that certain
properties of an algorithm can also help clarify the structure of USM,
without even running that algorithm.

2 Preliminaries

Consider a two-sided unit-demand matching market, where the two
sides are represented, WLOG, by men and women respectively. The
agents of each side are expressed as two equi-cardinal finite sets,
denoted by M and W , |M | = |W | = n, respectively. The sets
share no common agents, i.e., M ∩ W = ∅. All men have strict
preferences over all women and vice versa. Individual preferences,
denoted �i for agent i, are assumed to be complete, transitive, and
anti-symmetric. The notation mi �wk mj denotes wk ∈ W prefers
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mi ∈ M over mj ∈ M , and similarly, wi �mk wj denotes mk ∈
M prefers wi ∈ W over wj ∈ W . The preference profile is denoted
by �:= {�i: i ∈ M ∪W}. The set of all complete, transitive, and
anti-symmetric preference profiles in this setup is denoted by P . A
matching and several other definitions in this setting follow Gale and
Shapley [10].

Definition 1 (Matching). A matching in � is a mapping μ from M ∪
W to itself such that for every man m ∈ M,μ(m) ∈ W , for every
woman w ∈ W,μ(w) ∈ M , and for every m,w ∈ M∪W , μ(m) =
w if and only if μ(w) = m.

The above definition says that each man is matched to exactly one
woman and vice-versa. To define stability of a matching, we need the
definition of blocking pair as given below.

Definition 2 (Blocking Pair). A pair (m,w),m ∈ M,w ∈ W is a
blocking pair of a matching μ in � if m �w μ(w) and w �m μ(m).

Informally, the above definition means that the pair (m,w) both
prefer each other over their currently matched partners. This leads to
the definition of stable matching as follows.

Definition 3 (Stable Matching). A matching μ in � is stable if it does
not have any blocking pair.

Gale and Shapley [10] showed that for any preference profile �, a
stable matching always exists and can be found via the deferred ac-
ceptance (DA) algorithm. The working principle of this algorithm is
the following. The algorithm comes in two versions based on whether
the men or the women are the proposers. In every round of the men-
proposing DA algorithm, each unmatched man proposes to his fa-
vorite woman that has not rejected him already. Each woman, in
that round, receives the proposals and tentatively accepts the most fa-
vorite man that has proposed to her and rejects the rest. The rejected
men go to the next round and repeat this activity. The algorithm stops
when no man remains unmatched. A formal representation is given
in Algorithm 1.

Algorithm 1: (Men-proposing) Deferred Acceptance (DA)
Input: men M = {m1, . . . ,mn}, women W = {w1, . . . , wn},

and preferences �= {�i: i ∈ M ∪W}
Output: a stable matching μ

1 for i ∈ M ∪W do
2 μ(i) ← ∅
3 while ∃m ∈ M such that μ(m) = ∅ do

// This is a round
4 for mi ∈ M such that μ(mi) = ∅ do

// This is a proposal
5 w ← highest woman in �mi to whom mi has not

proposed yet
6 if ∃mj ∈ M such that μ(mj) = w then
7 if mi �w mj then
8 μ(mi) ← w, μ(w) ← mi

9 μ(mj) ← ∅
10 else
11 μ(mi) ← w, μ(w) ← mi

12 return μ

The following two facts about DA will be used frequently through-
out this paper. The proofs are deferred to the full version [13].

Fact 1. In the men-proposing DA algorithm, there exists a woman
w ∈ W who receives exactly one proposal.

Fact 2. In the men-proposing DA algorithm, the maximum possible
number of proposals is n2 − n+1, and the maximum possible num-
ber of rounds is n2 − 2n + 2. Both the bounds are achievable, i.e.,
there exists a preference profile �∈ P where the above numbers are
attained.

Although DA always converges to a stable matching, it is also
known that men-proposing DA and women-proposing DA converge
to men and women optimal stable matchings respectively, which
could be quite different. There is a hierarchy among the stable match-
ings from the men and women points of view as given by the follow-
ing result.

Theorem 1 (Gale and Sotomayor [12]). If for any two distinct stable
matchings μ1 and μ2 in �, if each man finds μ1 at least as preferred
as μ2, then every woman will find μ2 at least as preferred as μ1.

The subclass of P where the set of stable matchings is a singleton
is defined as the unique stable matching (USM) class. In USM, the
men and women proposing DA reach the same stable matching. Be-
cause of the various satisfactory properties exhibited by this class as
discussed in Section 1, there had been various attempts to character-
ize the structures of the preference profiles in USM. In the following
section, we introduce two prominent sufficient conditions for USM.

Remark. There are certain necessity results of USM as well, us-
ing ideas like α-reducibility [6] and acyclicity using a normal form
of the preferences [15]. However, in this paper, our objective is to
view it from a DA algorithmic perspective and we discuss how our
results can be applicable without running DA and even in domains
with partial preferences (Section 5).

3 Current State-of-the-art Sufficient Conditions

Although there have been various sufficient conditions proposed for
USM [32, 14, 31, e.g.], the sequential preference condition (SPC,
[8]) and no crossing condition (NCC, [6]) provide a deeper structural
view of the preference profiles of the agents that gives rise to USM.

Definition 4 (Sequential Preference Condition). A preference pro-
file � satisfies sequential preference condition (SPC) if there exists
an ordering of men, m1,m2, . . . ,mn, and women, w1, w2, . . . , wn,
such that

1. man mi prefers wi over wi+1, wi+2, . . . , wn, and
2. woman wi prefers mi over mi+1,mi+2, . . . ,mn.

Eeckhout [8] showed that SPC is sufficient for uniqueness of stable
matching. It is, however, not necessary for n � 3 as we show in the
example below.

Example 1 (USM but not SPC). Consider the following preference
profile.

m1 : w2 � w1 � w3

m2 : w1 � w2 � w3

m3 : w1 � w2 � w3

;
w1 : m1 � m2 � m3

w2 : m2 � m3 � m1

w3 : m3 � m2 � m1

This does not satisfy SPC, since SPC needs at least one pair of
man and woman that rank each other at the top. However, the men-
proposing DA yields the matching where mi is matched with wi,
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i = 1, 2, 3, which is the men-optimal matching. However, in this
case, it is women-optimal as well since each woman gets her top
preference. By Theorem 1, this profile has an unique stable match-
ing, i.e., it belongs to USM.

Later, Clark [6] defined the following refinement that implies SPC.

Definition 5 (No Crossing Condition). A preference profile �
satisfies no crossing condition (NCC) if there exists an ordering
(m1,m2, . . . ,mn) of M and an ordering (w1, w2, . . . , wn) of W ,
such that if i < j and k < l, then

1. wl �mi wk ⇒ wl �mj wk, and
2. mj �wk mi ⇒ mj �wl mi.

This condition implies that if the men and women are lined up in
that given order and any pair of men (or women) are asked to point
to his (or her) favorite partner among a pair of potential partners,
their pointers cannot cross each other. Though NCC implies SPC,
the converse is not true for n � 3 [6]. These sufficient conditions for
n � 3 are shown on the LHS of Figure 1a. SPC and NCC, however,
become identical with USM for n = 2 as we discuss later.

Following the discovery of SPC and NCC, various other sufficient
conditions for USM have been proposed, the majority of them being
either restrictions or generalizations of the former two conditions.
For instance, the co-ranking condition of Legros and Newman [24]
and the universality condition of Holzman and Samet [17] are both
contained within NCC, while the uniqueness consistency condition
of Karpov [22] relaxes SPC, and the oriented preferences of Reny
[31] and aligned preferences of Niederle and Yariv [27] general-
ize SPC to many-to-one markets. Even the α-reducibility condition
of Alcalde [1] lies between NCC and SPC, and its iterative version
from Park [28] coincides with SPC itself.

Since the SPC and NCC conditions clearly take center stage in
the current state-of-the-art in sufficient conditions for USM, we limit
the comparison of our new conditions to only these two. Example 1
shows that there exists unexplored space in USM∩SPC. We provide
additional structure to that space in this paper.

4 Our Results

This paper considers the USM problem from the DA perspective.
We first define two new conditions that we prove to be sufficient
for USM. The definitions deal with the number of proposals women
get in men-proposing DA and the number of rounds involved. In the
rest of the paper, WLOG, we use men-proposing DA whenever we
consider DA. However, analogous definitions and results hold for
a symmetrically opposite women-proposing version as well. Fact 2
prompts us to define the following two classes of preferences.

4.1 MaxProposals and MaxRounds

These two classes of preferences are defined as follows.

Definition 6 (MaxProp and MaxRou). A preference profile � satis-
fies

1. MaxProp, if the proposers make n2 −n+1 proposals in DA, and
2. MaxRou, if the proposing process in DA happens for n2−2n+2

rounds.

Note that, the above two classes are critically dependent on the
proposing side. We will denote the classes where the maximum num-
ber of proposals (and rounds) are coming from the men-proposing

DA as m-MaxProp (and m-MaxRou) respectively. The women-
proposing versions of the classes will be denoted as w-MaxProp
and w-MaxRou respectively. In the rest of the paper, WLOG, we
will imply the men-proposing versions of MaxProp and MaxRou re-
spectively when we refer to them and prove their properties. The re-
sults for the women-proposing versions are identical and are skipped.
However, in Section 6.2, we show that the classes m-MaxProp and
w-MaxProp are disjoint for n � 3. Interestingly, these two classes
partially overlap for n = 2, and we discuss it in Section 6.3. Our
first result shows the relationship between the classes MaxProp and
MaxRou.

Theorem 2. If a preference profile � satisfies MaxRou, then � also
satisfies MaxProp.

Proof. WLOG, assume men-proposing DA in this case. Suppose a
preference profile � satisfies MaxRou. This implies that if we run
the men-proposing DA algorithm, it would take n2 − 2n+ 2 rounds
to terminate. We make the following observations directly from the
algorithm.

• The first round involves n proposals as nobody is matched yet,
i.e., each man makes a proposal.

• Each round (except the last one) must see at least one man getting
rejected, else the termination criterion of the algorithm is met, and
thus, every round (except the first one) has at least one proposal.

Hence, the total number of proposals in � is � n+ n2 − 2n+ 1 =
n2 − n + 1. By Fact 2, we know that the number of proposals is
at most n2 − n + 1. Hence, the number of proposals in � must be
= n2 − n+ 1. Therefore � satisfies MaxProp.

The converse of the above theorem is not true for n � 4 as the
following example shows. For n = 3, MaxProp implies MaxRou
and we prove this in the full version [13].

Example 2 (MaxProp but not MaxRou for n � 4). Consider the
following preference profile involving four men and four women.

m1 : w1 � w2 � w3 � w4

m2 : w3 � w2 � w1 � w4

m3 : w3 � w1 � w2 � w4

m4 : w1 � w2 � w3 � w4

;

w1 : m2 � m3 � m4 � m1

w2 : m3 � m4 � m1 � m2

w3 : m4 � m1 � m2 � m3

w4 : m1 � m2 � m3 � m4

In this example, two men (m1 and m3) get rejected in the first round
of DA. Both these men propose in the next round and it is easy to
check that the number of proposals for this profile is n2−n+1 = 13.
However, MaxRou requires one proposal per round (thereby in-
creases the number of rounds to the maximum). But here we have
two proposals in round 2, which fails MaxRou.

We now state an important lemma which will be used in the fol-
lowing subsections to prove several properties of MaxProp. The re-
sult gives structure to the proposals observed in profiles satisfying
MaxProp.

Lemma 1. WLOG, let wn be the woman who receives exactly one
proposal in men-proposing DA on �. If �∈ MaxProp, then all men
m ∈ M propose to all women in W \ {wn}.

Proof. Since �∈ MaxProp, we have n2 − n + 1 proposals. Since
wn receives exactly one proposal, the other n − 1 women receive
a total of n2 − n proposals. No woman can receive more than n
proposals (since there are n men). Hence, the only way n−1 women
can receive n2−n proposals is if each woman in W\{wn} receives n
proposals. Thus, all m ∈ M must propose to all w ∈ W \{wn}.
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Notice that, if a woman receives proposals from all men, she is
always assigned to her most preferred man according to the men-
proposing DA. Hence, the following corollary is immediate from the
lemma above.

Corollary 1. If �∈ MaxProp, all women except the one who gets
exactly one proposal, get matched with their most preferred men.
Formally, if wn is the woman who gets exactly one proposal, then
for all i ∈ {1, . . . , n − 1}, μ(wi) �wi mj or μ(wi) = mj for all
j ∈ [n].

4.2 MaxProp implies USM

In this section, we prove one of the major results of this paper that
provides a new sufficient condition of USM.

Theorem 3. If a preference profile � satisfies MaxProp, then � is
in USM.

Proof. Suppose a preference profile � satisfies MaxProp. We show
that the (men-optimal) output of men-proposed DA algorithm (say
μ) is also women-optimal. It is also known that the men(women)-
optimal stable match is unique [36]. Then, together with Theorem 1,
μ would be the unique stable matching.

Let wn be the woman who receives exactly one proposal. By
Corollary 1, all other women are matched with their first preferences.

Suppose, there is another stable matching μ′ 
= μ on the same
profile �, which is more preferable than μ for women. Then, for all
i ∈ [n], either μ′(wi) �wi μ(wi) or μ′(wi) = μ(wi), and for some
j ∈ [n], μ′(wj) �wj μ(wj).

However, w1, w2, . . . , wn−1 are already matched to their first
preferences by μ. So, μ′(wi) = μ(wi) for i = 1, . . . , n − 1, and
μ(wn) has to be the only man remaining who has to be matched to
wn even in μ′. Hence, μ = μ′, which is a contradiction. Thus, μ is
women-optimal, and is the unique stable matching.

However, the converse of the previous theorem is not true. The
following example shows that MaxProp is not necessary for USM.
In fact, this example does not satisfy SPC either.

Example 3 (USM but neither MaxProp nor SPC). Consider the fol-
lowing preference profile.

m1 : w1 � w3 � w2

m2 : w2 � w1 � w3

m3 : w1 � w2 � w3

;
w1 : m2 � m1 � m3

w2 : m3 � m1 � m2

w3 : m1 � m2 � m3

Since there is no pair of man and woman (m,w) that prefers each
other the highest, it is not SPC. The men-proposing DA takes 6 pro-
posals, while the maximum number of proposals is 32 − 3 + 1 = 7.
Hence, this profile does not satisfy MaxProp. However, the men-
optimal matching (obtained via men-proposing DA) results in all
women receiving their most preferred men, which is women-optimal
as well. Therefore, this profile belongs to USM.

From Theorems 2 and 3, the following corollary is immediate.

Corollary 2. If a preference profile � satisfies MaxRou, then � is
in USM.

5 A Characterization of MaxProp

In this section, we find the conditions on preference profiles that are
necessary and sufficient for MaxProp. We also show that these cer-
tifications of belonging to MaxProp can be done efficiently without

involving the DA algorithm. We begin with a few structural proper-
ties of MaxProp.

Lemma 2. If a preference profile �∈ P satisfies MaxProp, then
there must be a woman w ∈ W who is the least preferred woman for
each m ∈ M .

Proof. We prove this result via contradiction. WLOG, suppose
woman wn is the woman who receives exactly one proposal (by
Fact 1) when men-proposing DA is run on �. Suppose there is a
man mi who does not have wn as his last preference. Let mi prefer
wn over some woman wj , j 
= n. Then by Lemma 1 (as � satisfies
MaxProp), mi must propose to wj , and since he prefers wn over wj ,
he must propose to wn before wj . But, wn gets exactly one proposal
and never rejects the man that proposes her. So mi cannot propose
to wj after proposing to wn, since it requires wn to reject mi under
DA to make that happen. Hence, we reach a contradiction.

Note that the above lemma claims existence of a woman who is
least preferred by every man if the profile satisfies MaxProp. In the
proof, we have identified that woman as the woman who receives
exactly one proposal in DA.

Lemma 3. Suppose, a preference profile � satisfies MaxProp.
WLOG, wn be the woman who is every man’s last preference in �,
and mn get matched with wn in men-proposing DA. Then for each
i ∈ {1, . . . , n − 1}, wi’s first preference is some mj (j 
= n), and
mj’s penultimate preference is wi.

Proof. From Lemma 2, we know that the woman wn who is every
man’s last preference in � also receives exactly one proposal in men-
proposing DA. By Lemma 1 (as � satisfies MaxProp), each woman
wi ∈ W \{wn} gets proposed by every man in M . This implies that
she finally gets matched with her most preferred man. Since mn gets
matched with wn, wi’s first preference must be some mj (j 
= n).

Again using Lemma 1, mj proposes to all (n− 1) women in W \
{wn}, and he makes his last proposal to the woman who is finally
matched with him, i.e., wi. Since, mj’s least preferred woman is wn,
wi must be mj’s penultimate preference in �.

Using these results, we will now state a set of conditions that are
necessary and sufficient for MaxProp. These conditions also identify
the additional structure needed for a preference profile in USM to
satisfy MaxProp.

Theorem 4. A preference profile � satisfies MaxProp (m-MaxProp,
WLOG) if and only if there exists an ordering m1, . . . ,mn of M and
an ordering w1, . . . , wn of W satisfying the following three condi-
tions:

1. wn is the least preferred woman for each mi ∈ M, i = 1, . . . , n.
2. For each i ∈ {1, . . . , n−1}, wi’s first preference is mi, and mi’s

penultimate preference is wi.
3. For each k ∈ {1, . . . , n− 1}, the second preference of wk is from

{mk+1,mk+2, . . . ,mn}.

Before proving this theorem, we make the following observation
on condition 3.

Observation 1. Let the second preference of any woman w� be de-
noted by s(w�). Define G to be the digraph on vertices {1, 2, . . . , n−
1}, with an edge from i to j if s(wi) = mj . Then, there exists an or-
dering of men and women satisfying condition 3 of Theorem 4 if and
only if G is acyclic.
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The above observation is immediate from the insights that (1) an
ordering of men and women satisfies condition 3 of Theorem 4 if
and only if it gives a topological ordering for G, and (2) a directed
graph has a topological ordering if and only if it is acyclic. We are
now ready to prove Theorem 4.

Proof of Theorem 4. (⇒): Consider a preference profile � that satis-
fies MaxProp. Since � satisfies MaxProp, conditions 1 and 2 of this
theorem follow from Lemmas 2 and 3 respectively. We will prove
condition 3 by showing that the digraph G as defined in Observa-
tion 1 is acyclic. Suppose not. Then, G must have at least one di-
rected cycle C involving at least two vertices. Denote the set of ver-
tices in this cycle as V (C). We will show that there exist two dif-
ferent stable matchings, which contradicts that � satisfies MaxProp
(since MaxProp implies USM by Theorem 3). Construct a matching
μ′ as follows. For each edge i, j ∈ V (C) such that a directed edge
exists from i to j in G, μ′(wi) = mj . For all the remaining women
wi, where i ∈ N \ V (C), μ′(wi) = mi. Note that μ′ is a stable
matching, because of the following reasons.

• None of the women wi, where i ∈ C, can form a blocking pair.
The only better match the woman wi can get is to be matched
with her first preference mi (since she is currently matched to her
second preference and condition 2 says that her top preference
is mi). But that man mi has wi as the penultimate preference
(condition 2) and wn as the last preference (condition 1), and is
currently matched with neither of them under μ′. So, mi does not
find this a profitable deviation.

• None of the remaining women wi, where i ∈ N \ V (C), can
form a blocking pair either, since μ′(wi) = mi, i.e., they have
been matched with their most preferred men (condition 2), with
the exception of wn, who cannot form a blocking pair as she is
every man’s last preference (condition 1).

However, μ(wi) = mi is also a stable matching, as each wi gets
matched with her most preferred man mi (except wn who cannot
form a blocking pair due to condition 1). Clearly, μ 
= μ′, since in
μ′, at least two women between 1, . . . , (n − 1) are matched with
their second most preferred men. Thus, we have found two distinct
stable matchings μ and μ′ for �, which gives us a contradiction to
USM (and therefore MaxProp).

(⇐): Consider a preference profile � satisfying all three conditions
of this theorem. Pick any stable matching μ on �.

First, note that μ(wn) = mn, i.e., wn has to be matched with mn

in every stable matching on �. This is because if wn is matched with
mi ∈ M \ {mn} then (mi, wi) forms a blocking pair: mi’s least
preferred woman is wn (condition 1) and wi’s most preferred man is
mi (condition 2).

We will prove that μ(wi) = mi for all i. Suppose not. Let
k be largest such that μ(wk) 
= mk. This implies that for all
i ∈ {k + 1, k + 2, . . . , n}, we have μ(wi) = mi. Therefore,
wk is matched with neither (a) her first nor (b) her second prefer-
ence. This is because, (a) condition 2 says that mk is wk’s most
preferred man, and (b) the second preference of wk i.e. s(wk) is
from {mk+1,mk+2, . . . ,mn} (by condition 3) but they are matched
with {wk+1, wk+2, . . . , wn} respectively (by assumption that k is
the largest). But then, wk can form a blocking pair with m′ := s(wk)
that is her second preference, as m′ has been matched with his least
or penultimate preferences, and would prefer wk over μ(m′), and we
reach a contradiction.

Thus μ(mi) = wi, ∀i ∈ N, is the unique stable matching for �,
and hence the men-proposed DA algorithm must arrive at this match-

ing. According to this algorithm, each man mi starts with proposing
to his most preferred woman and proposes to the next woman in
his preference profile every time he gets rejected, until he reaches
his penultimate woman wi (except for mn, who proposes until he
reaches his last preference wn). Each mi for i ∈ {1, . . . , n−1} pro-
poses (n − 1) times, and mn proposes n times, adding up to a total
of (n−1)(n−1)+n = n2−n+1 proposals. Thus, the preference
profile � satisfies MaxProp.

This concludes both directions of the proof.

Theorem 4 gives the necessary and sufficient conditions of Max-
Prop in the form of three conditions. It is worth asking how critical
each of the conditions is. In the full version [13], we provide three
examples to show that each of these conditions is tight.

Note that if at any intermediate stage of the men-proposing Gale-
Shapley algorithm, k men propose, it can lead to at most k rejections.
Only the men who get rejected in a round may propose in the next
round. Hence, the following observation is immediate.

Observation 2. If there are k men who propose in a particular
round, then at most k men (not necessarily the same men) can pro-
pose in all subsequent rounds.

To characterize the distinction between the preference profiles that
are MaxProp and MaxRou, we provide the following result that char-
acterizes MaxRou using one additional structural property. The proof
is deferred to the full version of this paper [13].

Theorem 5. A preference profile � satisfies MaxRou if and only if
it satisfies the following conditions

1. � satisfies MaxProp (thus, there exists a woman wn who is least
preferred by each man (Lemma 2)), and

2. each woman in W \ {wn} is a top preference of some man.

Now, a naive way to check if a preference profile � satisfies Max-
Prop (MaxRou) is to run the DA algorithm and check if it achieves
the maximum number of proposals (rounds). This would take O(n2)
time. But, using the characterization of MaxProp (MaxRou), i.e.,
Theorem 4 (Theorem 5), we can do much better. Define the follow-
ing decision problems isMaxProp(�) and isMaxRou(�) as the prob-
lems to determine if � satisfies MaxProp and MaxRou respectively.

Theorem 6. For any preference profile �, isMaxProp(�) and
isMaxRou(�) can both be checked in O(n) time.

Proof. First, we consider isMaxProp(�). Clearly, condition 1 and
2 of Theorem 4 can be checked in O(n) time. Now, we know that
whether a directed graph G(V,E) is acyclic can be checked in
O(|V |+ |E|) time. Consider that graph G, defined in Observation 1,
has n − 1 vertices and at most n − 1 edges. Thus, condition 3 can
also be checked in O(n) time. Hence, the first part of this theorem is
proved.

For isMaxRou(�), note that condition 2 of Theorem 5 can also be
checked in O(n) time. Hence, combining this with the first part of
this theorem, we conclude that isMaxRou(�) is checkable in O(n)
time.

Discussions. These results help us understand the MaxProp and
MaxRou conditions (and thereby USM) better.

(i) The structures look only at partial preferences. The result says
we need to know only the top two preferred alternatives of one
side (say women), the bottom two (top one and bottom two,
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for MaxRou) preferred alternatives of the other side (say men),
and be agnostic about the preferences at the other positions.
Therefore, we can apply this result on domains with partial
preferences as long as the preferences at these positions are
known. From a practical viewpoint, depending on the applica-
tions, such profiles may show up in practice.

(ii) From the structure given by Theorem 4 (or Theorem 5), it is
possible to count what fraction of preference profiles satisfy
MaxProp (or MaxRou).

6 Position of MaxProp in the USM space

In this section, we analyze the position of MaxProp (and MaxRou) in
the class of all preference profiles satisfying USM, relative to known
structures in this space.

6.1 MaxProp is disjoint from SPC for n � 3

In this section, we address the relative positions of the SPC and
MaxProp classes within the space of USM. We show that these two
classes are disjoint.

Theorem 7. For n � 3, there does not exist any preference profile
�∈ P that satisfies both SPC and MaxProp.

Proof. Suppose, there exists a preference profile � that satisfies both
the SPC and MaxProp. By definition of SPC, there exists an ordering
of men and women such that

1. man mi prefers wi over wi+1, wi+2, . . . , wn, and
2. woman wi prefers mi over mi+1,mi+2, . . . ,mn.

Hence, m1 will be proposing to only w1, who will never reject him,
as he is her top preference. Thus, m1 makes only one proposal. Since
MaxProp holds, we know there are a total of n2−n+1 proposals to
be made. Hence, the remaining n − 1 men make n2 − n proposals,
which means each man makes (n2 − n)/(n − 1) = n proposals.
Since in the men-proposed deferred acceptance algorithm, no man
proposes to the same woman twice, each woman has to receive a
proposal from all (n − 1) men, i.e., each woman receives � n − 1
proposals. Thus, there is no woman who receives exactly one pro-
posal, and this contradicts Fact 1. Hence we have the theorem.

Discussions. This result naturally implies that for n � 3, the
classes SPC and MaxRou, NCC and MaxProp, as well as NCC and
MaxRou are mutually disjoint (see Figure 1 for an illustration).

6.2 m-MaxProp and w-MaxProp are disjoint for
n � 3

In this section, we show that the MaxProp classes generated by men-
proposing and women-proposing DA are disjoint when there are at
least three agents on each side of the market.

Theorem 8. For n � 3, there does not exist any preference profile
�∈ P that satisfies both m-MaxProp and w-MaxProp.

Proof. Suppose there exists a preference profile �∈ P satisfying
both m-MaxProp and w-MaxProp. Consider the men-proposing DA
algorithm on �. Since � satisfies m-MaxProp, by Corollary 1, each
w ∈ W \ {wn} is matched with her most preferred man, where wn

is the woman receiving exactly one proposal.

Using Theorem 3, we also know that � satisfies USM, i.e., men-
proposing DA and women-proposing DA arrive at the same match-
ing. Hence, women-proposing DA on � yields a matching in which
each w ∈ W \ {wn} is matched with her most preferred man, by
making only one proposal. The remaining woman wn can make at
most n proposals. Thus, women-proposing DA on � can have at
most 1× (n− 1) + n = 2n− 1 proposals.

Further, � satisfies w-MaxProp, which means women-proposing
DA on � involves n2 − n+ 1 proposals (Fact 2). In order for this to
happen on �, it must hold that n2−n+1 � 2n−1, or n2−3n+2 �
0. However, we know that for n � 3, n2 − 3n + 2 > 0. Hence, we
have a contradiction.

Therefore, for n � 3, there is no �∈ P satisfying both m-
MaxProp and w-MaxProp.

6.3 The curious case of n = 2

When the number of agents in each side is two, the structure of these
spaces looks very different. The classes MaxProp and MaxRou be-
come identical, while SPC and NCC become identical with USM.
Quite surprisingly, MaxProp becomes a subset of SPC. Moreover,
unlike the n � 3 case, here the m-MaxProp and w-MaxProp classes
overlap partially.

Collecting all these results, the space of these conditions is graph-
ically shown in Figure 1b. Our results are derived from the following
theorems. All proofs are deferred to the full version of the paper [13].

Theorem 9 (MaxProp = MaxRou). For n = 2, every preference
profile � satisfying MaxProp also satisfies MaxRou.

Theorem 10 (SPC = NCC). For n = 2, every preference profile �
satisfying SPC also satisfies NCC.

Theorem 11 (SPC = USM). For n = 2, preference profile � satis-
fies SPC if and only if it is in USM.

Theorem 12 (MaxProp ⊂ SPC). For n = 2, every preference profile
� satisfying MaxProp also satisfies SPC.

It is known that for n = 2, SPC also becomes necessary for
USM [8]. In the full version [13], we show a direct proof of this
fact. Note that Eeckhout [8] claims SPC to be necessary for USM
even for n = 3, which is not true. As we show in Example 3, there
are profiles for n = 3 that belong in USM but not SPC.

In the full version [13], we also show the relative structures of
m-MaxProp and w-MaxProp for the n = 2 case, proving that they
overlap partially (unlike the case of n � 3).

7 Conclusions and Future Work

We considered the USM problem from a Gale and Shapley [10] de-
ferred acceptance algorithmic perspective. The properties like Max-
Prop and MaxRou that count the number of proposals and rounds re-
spectively in this algorithm yield novel insights into the structure of
USM. Both the MaxProp and MaxRou properties are computation-
ally easy to verify (Theorem 4) without invoking the DA algorithm.
In addition, these conditions carve out a different and unexplored
sub-space of USM (see Figure 1). The variation of these spaces for
n = 2 and n � 3 is interesting.

As a future plan, we would like to see if any algorithmic property
(of not necessarily DA) can explain the whole of the USM class and
if there exists an efficient (better than DA) algorithm that can identify
USM. We would also like to explore the generalization of our results
to the setting of many-to-one matchings.
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