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Abstract. When agents learn to communicate via self-play the re-
sult is typically brittle communication strategies that only work with
agents encountered during training. To alleviate this and train agents
that can communicate with agents outside of their training commu-
nities we introduce two training-time interventions that apply to the
messages sent between agents. These methods are: (1) message mu-
tation, where messages are randomly changed; and (2) channel per-
mutation, where random permutations are applied to the message
space. These proposals are tested using a simple two-player sequen-
tial referential game in which the agents are given the opportunity to
establish communicative conventions within a single episode. After
training multiple sets of agents we analyse the performance of these
agents when they are matched with a ‘stranger’ from another train-
ing run, i.e. their zero-shot communication performance. We find that
both message mutation and channel permutation positively influence
performance, and we discuss their effects.

1 Introduction

Given an environment in which multiple learning agents are re-
warded for completing tasks, communicative behaviour may emerge
as a means to achieve higher rewards. Broadly speaking, the study of
such Emergent Communication (EC) investigates the circumstances
that lead to communication as an instrumental strategy. Adjacent to
EC is the study of Zero-shot Coordination (ZSC) in multi-agent pop-
ulations, where agents are trained to work with previously unseen
players [15, 23, 17, 40, 6]. This overlaps with the study of agents
that can form novel teams, known as Ad Hoc Teamwork (AHT) [36],
where it is not assumed that agents are trained in the same way.

At the conjunction of the EC and ZSC there are two important
forms of zero-shot performance: communicating in novel settings
with a known set of agents [5, 8, 35], and communicating with novel
agents [16, 2, 3, 17], i.e. ‘strangers’. In this paper, we will focus
on the latter and refer to this problem as Zero-shot Communication
learning, which can intuitively be thought of as ‘learning to commu-
nicate with strangers’. Prior related work in AHT has looked at simi-
lar problems, notably, Sarratt and Jhala [34] applied AHT methodol-
ogy to communication problems where a shared communication sys-
tem is not given. On the other hand, research has also been conducted
looking at situations involving ad hoc teams composed of agents with
a prior shared communication protocol [30, 1, 27].

We start with the observation that to communicate effectively with
strangers, a set of shared communicative conventions needs to be es-
tablished (or perhaps, existing conventions may be enhanced with
context). We will refer to such conventions as communication pro-
tocols. When two agents that have not previously met agree upon a

communication protocol within an episode we call this intra-episodic
communication protocol establishment. Conversely, a protocol that
is agreed upon between episodes is an inter-episodically established
protocol, or just a fixed protocol. Our goal is to train agents that can
intra-episodically establish a communication protocol with a stranger
and use this protocol to cooperate on a shared task.

A survey of the relevant literature demonstrates that when two
agents are trained together, the agents typically converge on an inter-
episodically fixed communication protocol [10, 31, 26]. In other
words, the parameters of each agent’s policy store the protocol itself,
rather than implement the general skills of generating and interpret-
ing a protocol. Depending on the use case, this may be acceptable.
However, in a zero-shot communication setting, we should not ex-
pect effective cooperation unless the agents happen to learn the same
fixed protocols by chance. When the space of possible protocols is
large, this may be highly unlikely.

This leads to the hypothesis that such fixed protocols can be pre-
vented by randomising across the space of protocols that agents are
exposed to during training. Our first proposal is message mutation,
where, alongside a specific set of training signals, agents should learn
intra-episodic communication learning capabilities when their fixed
protocol is randomly tampered with during an episode. Our second
proposal is channel permutation, where for each episode a random
permutation map over the communication symbols is defined, and
each time a symbol is sent through the communication channel it is
transformed according to this mapping. We demonstrate that after
training in either of these schemes the agents indeed have enhanced
zero-shot communication performance.

To study this we introduce a simple environment in which agents
only have communicative actions. This allows us to isolate the effect
of randomisation on the ability to establish a communication protocol
with a stranger.

2 Preliminaries

2.1 Communication Protocols

The term “communication protocol” is used broadly and generally
refers to “any agreed upon set of behaviours that facilitate communi-
cation”. For our purposes, we define a communication protocol p as
a mapping from a set of subjects X to a set of communication sym-
bols Σ, i.e. p : X → Σ. We will refer to elements of Σ as symbols or
messages, and in this work, we are concerned with when X is a set
of agent observations. In other words, we are concerned with situa-
tions where agents communicate observed information, rather than
intentions or goals.
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2.2 Domain Randomisation

Domain randomisation is a training-time technique for improving the
zero-shot performance of a learning system when it is transported to
a new domain [38, 29, 16], which becomes relevant when the agent
can not be directly trained in the target environment. By randomising
certain features of the training environment we apply pressure on a
learning agent to find strategies that can adapt to changes in these
features. As we are interested in zero-shot communication learning,
our proposals involve introducing specific forms of randomisation
into the communication channel that can achieve such results for the
domain of possible communication protocols.

2.3 Decentralised POMDPs

Decentralised Partially Observable Markov Decision Processes
(Dec-POMDPs) are an extension of partially observable Markov de-
cision processes to a multi-agent setting [33, 25]. For N agents, a
Dec-POMDP is defined by the following components. Firstly, a set of
environment states S and a probability distribution over initial states
ρ : S → [0, 1]. For each agent i there is: a set of actions Ai, a set of
observations Oi, a function for extracting agent-dependent observa-
tions ωi : S → Oi, and a reward function ri : S×A1×· · ·×AN →
R. Finally, the environment dynamics are defined by a stochastic
transition function T : S ×A1 × · · · ×AN → Δ(S), where at time
t with state st and agent actions a1, . . . , aN , the next state st+1 is
sampled from the distribution: st+1 ∼ T (st, a1, . . . , aN ). For finite
Dec-POMDPs, we also select one or more states ST ⊆ S as terminal
states. An episode of a Dec-POMDP is defined as the state and action
history from the initial state to a terminal state. The function gener-
ating each agent’s actions is called their policy, πi : Oi → Ai. In
this work we consider cooperative games where each agent receives
the same reward.

2.4 Emergent Communication

Emergent communication research studies agents that learn to utilise
dedicated communication channels to solve a given task [19, 13, 39].
Explicit communication can be implemented in Dec-POMDPs by
connecting the action and observation spaces of agents. These are
referred to as Dec-POMDP-Comms [11, 12, 33]. Often, the action
space Ai can be expressed as a Cartesian product of environment
actions Ae

i and communicative actions Σ, i.e. Ai = Ae
i × Σ. Al-

ternatively, if Ae
i = Ae

i ∪ Σ, then agents must choose whether
to communicate or not. For a more extensive overview of work in
multi-agent reinforcement learning and communication, see the sur-
vey conducted by Zhu et al. [41].

An important consideration for our work was raised by Lowe et al.
[26] in their discussion of the pitfalls of measuring the presence of
emergent communication. They identified two behaviours that need
to be present for communication: positive signalling and positive
listening. Positive signalling is when a message is correlated with
some observation or intended action, and positive listening is when
an agent changes their behaviour in response to receiving such sig-
nals. The authors showed that there are circumstances under which
positive signalling is learned, but positive listening is not.

Definition 1 (Positive Signalling [26]). Given a sequence of mes-
sages m sent, observations o made, and actions a taken by an agent
throughout a trajectory of length T , the agent is positive signalling
if m is statistically dependent on a and/or o.

o1

o1

S

T

C C

o2

T

S

o2

o3

T

C

o3

S

of

T

C

S S

ŷf
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Figure 1: Diagram of the information flows through an episode
where |OE | = 3. S represents the student’s policy, T represents the
teacher’s policy, and C represents the communication channel. Each
ot is the input observation at time t, and of is the final input that is
hidden from the student. The output ŷ at the final timestep is the stu-
dent’s prediction of of . The lateral connections between S-boxes and
T-boxes show the information flow through the agents’ latent states.

Definition 2 (Positive Listening [26]). Given a set of messages Σ,
an agent i, following policy π : Oi × Σ → Ai, is positive listening
to another agent j at time t if j has just sent message mijt ∈ Σ to i
and ‖π(oit,mijt) − π(oit,m∅)‖τ > 0, where ‖ · ‖τ is a distance
in the space of expected trajectories followed by π, and m∅ ∈ Σ is
a special silence message, e.g. a zero-vector.

3 Experimental Setting

In this section, we describe various aspects of our experimental set-
up: the environment, the communication channel, the agents, and our
channel randomisation proposals.

3.1 Environment

To design a minimal environment to test the emergence of intra-
episodic communication learning we identify two key phases that
should be present within each episode: a protocol establishment
phase, and a utilisation phase. During the first phase, the agents must
have the opportunity to work together to associate observations and
symbols. In the second phase, they use this protocol to communi-
cate information. For more complex environments agents could it-
eratively move between these two phases, but we consider a simple
situation with one cycle of this process. In our environment, there are
two roles that an agent can play, which we refer to as the ‘teacher’
and ‘student’ roles. As both agents have the same architecture (de-
scribed in Section 3.3), and as we will end up training agents by
self-play [37] in this environment we will assume that any agent can
play either of these roles.

This work is not focused on learning agents that extract useful fea-
tures from high-dimensional, complex inputs (such as images), so we
opt for a simple set of possible observations to be the subject of our
agents’ communication protocols. We call these the environment ob-
servations, OE . The set OE consists of positive integers expressed
as binary vectors. Specifically, given M desired classes, the environ-
ment observations are constructed as follows:

OE =
{
(x1, . . . , xk) ∈ Z

k
2 : 0 < y ≤ M,

∑k
i 2

ixi = y
}
. (1)

Where k = 	log2 M
. Additionally, we assign classifications to each
member of OE according to the number represented in binary (i.e. y
in Equation 1).
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Figure 1 illustrates the information flow through an episode. Each
episode of the environment consists of |OE |+ 2 timesteps. The first
0 ≤ t < |OE | timesteps comprise the protocol-establishment phase.
During this time, both the teacher and the student make the same
environment observations ot, and the teacher sends st ∈ Σ to the
student, i.e. the teacher may teach the student a communication pro-
tocol p : OE → Σ. In the second phase, the utilisation phase, the
teacher makes an observation that is hidden from the student, and the
teacher must communicate this information to the student. This phase
consists of two steps: one for the teacher to make an observation and
produce a message, and another for the student to receive the mes-
sage and make a prediction. The agents’ performance in this environ-
ment is measured as the mean classification accuracy of the student’s
predictions of the teacher’s observation in the final timestep.

The game that we use can be interpreted as a form of the Lewis
signalling game [22]. Alternatively, it can be viewed as a referential
game where the set of distractors coincides with the total set. Many
works on observing emergent communication in referential games
exist [20, 9, 7].

3.2 Communication Channel

During each episode, agents send messages to one another through
a communication channel. At each timestep agents produce utter-
ances as log-probabilities (logits) over a discrete set of symbols
Σ. These utterances are sent through the communication channel
to produce messages. During training, the utterance logits define a
Gumbel-Softmax distribution [18, 28] that messages are sampled
from. This allows for backpropagating through the communication
channel, a technique used in many emergent communication works
[32, 6, 4, 21]. The Gumbel-Softmax distribution requires setting a
temperature parameter which we fix at 1.0 for all of our experiments
(unless otherwise stated). To further encourage discretisation of the
utterances we also follow [10] and inject noise into the channel (be-
fore sampling messages); we apply additive white Gaussian noise
with a fixed standard deviation of 0.5. During the test evaluations,
messages are constructed by computing the one-hot encoding of the
argmax of the utterance logits.

3.3 Agent Architectures

Each agent’s policy network takes three inputs at each timestep and
produces two outputs. The inputs are: (1) a one-hot encoding of the
agent’s most recently sent message, (2) a one-hot encoding of the
other agent’s most recently sent message, and (3) an environment ob-
servation o ∈ OE . The outputs are: (1) an utterance to send as a mes-
sage through a communication channel, and (2) a probability distri-
bution over the classes of possible observations. The agents produce
these actions according to their policy: an LSTM [14] Recurrent Neu-
ral Network (RNN) parameterised by θi, πθi : R

|Σ|×R|Σ|×OE →
R|Σ| ×R|OE |. We will refer to the hidden state of the LSTM as the
agent’s latent state.

3.4 Message Mutation

The first of our proposals for improving zero-shot communication is
message mutation. This is a function fm : Σ → Σ defined:

fm(s) =

{
s′ if x < pm

s otherwise

where x ∼ Uniform([0, 1]) and s′ ∼ Uniform(Smut).

(2)

Where pm is the mutation probability and Smut ⊆ Σ is the set of
possible symbols that can be chosen from. We define Smut = {s ∈
Σ : s /∈ H}, where H is the history of sent messages. This avoids
mutations making it impossible for the teacher to produce consistent
communication protocols when Σ is small.

3.5 Channel Permutation

The second of our proposals is channel permutation. When an
episode is played with channel permutation enabled, an arbitrary bi-
jective total function fij : Σ → Σ, is created for every possible
ordered pair of agents i and j. More precisely, we sample from a
uniform distribution over the symmetric group S|Σ|:

fij ∼ Uniform(S|Σ|). (3)

Consequently, whenever agent i sends a symbol s ∈ Σ to agent j,
agent j receives fij(s). We also investigate only permuting a subset
of the symbols, i.e. for a subset size k, we uniformly sample without
replacement a subset Sperm ⊆ Σ, and instead sample the map as
follows:

fij ∼ Uniform
({

f ∈ S|Σ| : f(x) = x ∀x /∈ Sperm

})
. (4)

We refer to this variant as channel subset permutation.

3.6 Difference between Message Mutation and
Channel Permutation

We expect that channel permutation and message mutation will have
somewhat different effects on the teacher, but roughly the same ef-
fect on the student. In both approaches the teacher makes utterances
which may or may not be changed (mutated or permuted) to a differ-
ent message. However, in message mutation, the teacher must react
to changes in their protocol and adapt their behaviour in the final
timestep when it needs to use the protocol. If the teacher wants to
send the same message that the student received, then it needs to
keep track of how the protocol was changed.

On the other hand, in channel permutation, every utterance is con-
sistently permuted, so if in the final timestep, a teacher wants to com-
municate the same message as before, then they just have to make the
same utterance as before. The teacher does not have to be adaptive
and may converge on a specific protocol. The student on the other
hand is met with many different protocols .

From this perspective, it appears that message mutation is strictly
better than channel permutation, in the sense that it encourages more
adaptive behaviour from both agents. However, message mutation
comes with the requirement that the agents are (indirectly) rewarded
for paying attention to the protocols established within the episode.
Permutation does not have this requirement and can be implemented
without explicit reference to a protocol.

4 Measures

Next, we introduce the measures that we use to train and evaluate our
systems of agents. Suppose that at time |OE | (the utilisation phase)
the teacher made observation of of class yf , where yf is a one-hot
encoding of a class label and made utterance uf . At t < |OE | (the
protocol establishment phase) they made observations ot of class yt

and made utterances ut. Suppose further that the student receives
messages mt at each timestep t and outputs ŷf in the final timestep.
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4.1 Error Metrics

Definition 3 (Actual-Class (AC) Error). The AC error is the cate-
gorical cross-entropy (CCE) between the student’s predictions and
the actual class of of :

LAC = CCE(ŷf ,yf ). (5)

Definition 4 (Student-Implied-Class (SIC) Error). The SIC error is
the categorical cross-entropy between the student’s predictions and
the predictions that they ought to have made given the protocol es-
tablished in the episode:

LSIC = CCE(ŷf ,y
∗),

where y∗ =

{
1

|T |
∑

t∈T yt if |T | ≥ 1

Uniform(OE) otherwise

and T = {t < |OE | : mt = mf}.

(6)

In these equations, T is the set of time steps in the protocol estab-
lishment phase in which the final message mf was also sent.

For the SIC error, the implication is that the student should guess
any of the observations seen in the T time steps with equal proba-
bility. As a result, this measure does not penalise the student if the
teacher fails to produce a coherent protocol.

Definition 5 (Teacher-Message (TM) Error). The TM error is the
categorical cross-entropy between the utterance that the teacher
made and the message they should have sent, given the protocol es-
tablished within the episode:

LTM = CCE(uf ,mt), where ot = of . (7)

Definition 6 (Protocol Diversity (PD) Error). Given a matrix P with
|OE | rows and |Σ| columns, where each row i corresponds with the
message sent by the teacher at t = i, we define the Protocol Diversity
(PD) error as:

LPD = max
ci

‖ci‖1 where P =
[
c1, . . . , c|Σ|

]
. (8)

Because of the communication channel, the rows of P are nor-
malised, meaning that LPD is bounded by 1 and |OE |. When this
metric is 1, the protocol being expressed is injective. The higher the
error gets the more ambiguous the protocol is, keeping in mind that
each row of the P matrix is ideally a one-hot vector, but during train-
ing the distribution could be imperfect (see Section 3.2).

4.2 Evaluation Metrics

In this section, we outline five measures that we will use to evalu-
ate agents: (1) Self-play Performance, (2) Zero-shot Performance, (3)
Student Responsiveness, (4) Teacher Responsiveness, and (5) Proto-
col Diversity. The first two of these measure the performance of dif-
ferent agent pairings in the environment. The latter three measures
will be used to provide a more in-depth analysis of the behaviours
learned under different channel randomisation settings.

Definition 7 (Self-play Performance). We measure the cooperative
performance of agents as the classification accuracy of the student’s
prediction of of . In other words, the mean number of times that the
student made the correct prediction. The self-play performance is
the performance when the teacher and student are instantiated with
co-trained weights, i.e. weights from the same training run.

Definition 8 (Zero-shot Performance (ZSP):). For each of our differ-
ent experimental settings, we measure the cooperative performance
of pairs of agents from separate training runs. For a given set of
training hyperparameters, k sets of agents, A1, . . . , Ak, are trained
in self-play without any parameter sharing. We then take every com-
bination of Ai, Aj , j = i and run two sets of 170 games, one set
where Ai is the teacher and Aj is the student, and vice versa. The
final Zero-shot Performance (ZSP) score is the mean performance
across these games. We refer to each novel combination of agents as
a ‘stranger encounter’.

When evaluating agents in self-play, high performance alone can-
not indicate whether they would perform well in the zero-shot set-
ting. In the following, we use the metrics defined in the previ-
ous section to detect whether protocols are being established within
episodes. To start, we note that high performance in the presence of
a high TM error, high SIC error, or high PD error implies that the
agents have converged on a fixed protocol, i.e. the agents are using
an inter-episodically established protocol.

For example, given a fixed injective protocol p, let us consider a
teacher that sends the same message m, such that m /∈ Image(p),
every timestep until the final timestep. In other words, they are not
acting to establish a protocol during the episode. Then, in the final
time step, the teacher observes of and sends the message p(of ). By
construction, this results in a high TM error as there is no correct
message from the protocol establishment phase.

Next, suppose that after receiving this message, the student makes
the correct guess, and thus the team achieves a high final perfor-
mance. If the student were acting according to the messages sent in
the protocol establishment phase, the student would assume uniform
probabilities for each of the possible guesses. Therefore, the student
receives a high SIC error. Additionally, because all of the messages
sent during the protocol establishment phase are the same, the PD
error is also high.

On the other hand, all these error metrics can be low, and the per-
formance metric can be high, and yet there still to be a fixed protocol
p in play. For example, if the teacher and student act in the same man-
ner regardless of the timestep: the teacher always sends mt = p(ot),
and the student always makes the prediction P (p−1(mt)) = 1.

This tells us that, in the case where two agents have trained with
one another, the error metrics and performance metrics are not suffi-
cient to detect whether or not the teacher and/or the student are pos-
itively listening to the protocol being expressed within the episode,
i.e. whether intra-episodic protocol establishment is happening. To
measure this we need to look at the agents’ responses to counterfac-
tual protocols. This leads to two new protocol responsiveness mea-
sures, one for each of the roles in the environment:

Definition 9 (Student Responsiveness). To measure the student re-
sponsiveness RS , we put an agent in the role of the student and have
it play with a synthetic teacher that generates and uses a random
protocol. More precisely, in each episode, the synthetic teacher sam-
ples a random injective function p from observations OE to messages
Σ, and always Thereby, the student’s behaviour is isolated from the
teacher’s performance. We then measure the Student-Implied Class
(SIC) error to test whether or not the agent correctly reacts to the
random protocol. This value is then mapped to the unit interval such
that high RS implies low SIC error, and vice versa. Formally, RS is
computed:

RS = exp
(
−LSIC

∗)
(9)
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Figure 2: Test performance during training for channel randomisation experiments. Error bands show 95% confidence intervals.

The additional notation over the error metric indicates that we are
measuring the mean of LSIC when playing with the synthetic teacher
across multiple games.

Definition 10 (Teacher Responsiveness). To measure the teacher re-
sponsiveness RT , we put an agent in the role of the teacher for only
the last time step of an episode. For the prior time steps, we use the
same synthetic teacher as in Definition 9, thus we are now measuring
the teacher’s capacity to the protocol established during the episode.
We measure the Teacher-Message (TM) error, and this value is then
mapped to the unit interval such that high RT implies low TM error,
and vice versa. Formally, RT is computed:

RT = exp
(
−LTM

∗)
(10)

The additional notation over the error metric indicates that we are
measuring the mean of LTM when playing with the synthetic teacher
across multiple games.

To further understand what these measures tell us, recall that pos-
itive listening (Definition 2) measures an agent’s sensitivity to the
messages that they receive. For the cases of teacher/student respon-
siveness, instead of asking whether or not an agent is listening to a
particular message, we are asking if an agent is listening to the pro-
tocol expressed within the episode.

Definition 11 (Protocol Diversity). This is a more interpretable vari-
ation on the protocol diversity error metric and is only ever measured
in an environment without message mutation, as message mutation
can obscure seeing whether or not an agent has learned the ability to
create an injective protocol. We compute this measure PD = L−1

PD .
The closer PD is to zero, the worse, the closer it is to one, the better.

5 Experimental Results

For each of our experiments, we use an RMSprop optimiser with a
learning rate of 0.01, a decay factor of 0.9, and a batch size of 32.
Each agent’s policy was an RNN composed of three layers: a dense
layer with 128 hidden units, an LSTM layer with 64 units, and a fi-
nal dense layer with |OE | + |Σ| units. For our experiments, we set
|OE | = 3 and |Σ| = 5. Each training epoch consists of 50 train-
ing steps. Figure 2 shows how the self-play performance improves
throughout training for each of the different experimental settings
that we discuss in this section.

5.1 Baseline

As a baseline, we trained 6 agents with the loss function LAC . Each
agent trained to minimal loss and achieved perfect self-play perfor-
mance. After 30 stranger encounters we computed a zero-shot co-
operative performance of 0.39 ± 0.32. This is close to the expected
value from sampling answers from a uniform distribution, so we can
conclude that these agents have not learned any capacity for zero-
shot communication. Additionally, as expected, we find that a fixed
protocol was established by each agent in self-play.

5.2 Effects of Message Mutation

Message mutation intervenes on the protocol establishment phase,
therefore to be effective it requires that the agents be sensitive to the
protocol expressed in the first |OE | timesteps. However, when opti-
mising LAC , the utilisation phase of the environment is the only time
in which the agents’ behaviours matter. To fix this, we instead opti-
mise a new loss function LMM that judges each agent’s behaviour
according to the protocol formed in the protocol establishment phase:

LMM = LSIC + LTM + LPD (11)

Thus, the teacher is required to create a consistent protocol (by LPD)
and send the message in the utilisation phase corresponding to the
respective observation in the establishment phase. On the other hand,
the student is incentivised to make the appropriate guess given the
answer implied by the protocol and the final message, which may
not be the same as the ground-truth correct answer.

To investigate the effects of message mutation we trained three
pairs of agents for 11 different evenly spaced values of the mutation
probability pm in the unit interval. For each set of three agents, we
formed 6 stranger encounters and measured zero-shot performance.
In Figure 3a we visualise the zero-shot cooperative performance (in
blue). During training each agent takes both roles in the game with
the mutation probability indicated on the x-axis, but during the zero-
shot evaluation, the mutation probability is set to zero.

In order to make a fair comparison between the performance of
agents trained with and without message mutation, we use the same
evaluation environment without message mutation. In short, during
self-play training, there are 11 different levels of mutation probabil-
ity, but during the zero-shot evaluation, there is no randomisation in
the communication channel.
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(c) Results for channel permutation experiment.
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Figure 3: Analysis of channel randomisation experiments. Error bands denote 95% confidence intervals of mean estimates.

We can see a clear relationship between mutation probability and
zero-shot performance, where the performance peaks at pm = 0.3
(ZSP = 0.98 ± 0.04). When the mutation probability is 0, so when
there is no randomness involved, the zero-shot performance is the
poorest. This is as expected and verifies that the combination of loss
functions is not enough on its own to encourage agents to learn the
necessary skills for zero-shot communication, i.e. positive listening
and signalling of the protocol itself.

Naively, one may assume that as the randomness in the environ-
ment increases, the performance increases, as the agents are force-
fully exposed to more protocols. However, when the randomness is
very large during training, the teacher may never learn to construct a
protocol. This is reflected in the fact that when pm = 1.0, the pro-
tocol diversity measure PD , is low (Table 1). Recall, that when mea-
suring this metric we evaluate the agent in an environment without
any channel randomisation, so, unsurprisingly, the teacher has not
learned skills for this domain. In other words, the teacher does not
have to learn to create diverse protocols when mutation probability
is 1, because the environment will ensure an injective protocol.

We also look at the performance the agents had during self-play
training, which is visualised in orange in Figure 3a. We see that the
performance during training is consistently high, in particular, for
mutation probabilities 0 and 1. Lastly, we visualise a baseline, de-
scribed in Section 5.1. In Figure 3b we see the zero-shot coopera-
tive performance moving in concert with the protocol responsiveness
measures and the protocol diversity measure. The PD starts high and
remains high until around pm = 0.3, after which it starts to drop.
The responsiveness starts low and monotonically increases with mu-
tation probability. The ZSP peaks at the point where PD, RS , and RT

are all high. This supports the argument that intra-episodic protocol
establishment drives zero-shot communication.

RT RS PD ZSP

Baseline 0 0 1 0.39
Permutation (k = 5) 0.00 1.00 1.00 0.96
Mutation (pm = 0.3) 0.85 0.97 1.00 0.98
Mutation (pm = 1.0) 1.00 1.00 0.38 0.49

Table 1: Mean metrics from different experiments

5.3 Effects of Channel Permutation

We trained agents with channel permutation by using the LAC loss
function. To get the agents to reliably converge we found that we
needed to use a temperature annealing schedule on the communica-
tion channel [18]. We used an exponential decay schedule where the
temperature starts at 10, updates once an epoch, and ends at 0.1 at
epoch 200. After which it stays constant at this value. After training
6 agents with permutation over all symbols, we ran 30 stranger en-
counters and found a mean zero-shot test performance of 0.96±0.05.

In Figure 3c we visualise the zero-shot cooperative performance
(in blue) and self-play performance (in orange) across various sub-
set sizes. We do not show results for subset size zero or one as these
are functionally equivalent to no channel randomisation and are thus
represented by the baseline. On the left, at subset size 2, we find that
there is some improvement, but a very high variance. As we move
to the right we see that the variance decreases and the performance
approaches perfect play. But this does not come without any cost;
we find that as the subset size grows so does the number of training
steps needed for the system to converge, as shown in Figure 2b. For-
tunately, this growth is not too dramatic; it takes roughly 130 epochs
to converge with k = 4 and 150 epochs for k = 5. Finally, in Fig-
ure 3d we see that student responsiveness goes up as the permuta-
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tion subset size increases and that the protocol diversity is high for
any level of permutation. However, we also see that teacher respon-
siveness remains at zero, meaning that the teacher does not send the
correct final message, given a random protocol.

5.4 Comparing the Methods

As we can see from comparing 3a and 3c, both channel randomi-
sation methods can dramatically improve the zero-shot cooperative
performance. While both methods can be tuned by a hyperparameter
– mutation probability vs. subset size – we see in the case of mes-
sage mutation that there is a balancing act that needs to be performed
between exposure to new protocols and inhibiting the teacher from
learning how to develop good protocols. Our finding that the opti-
mum mutation probability is around 0.3 cannot be assumed to hold
in other environments. On the other hand, increasing the channel per-
mutation subset size does not introduce any similar trade-off. It also
has the advantage that it does not require specific training signals that
explicitly reference the adherence to the protocol expressed within
the episode, i.e. it does not require manual identification of the pro-
tocol establishment phase.

However, channel permutation is not without its disadvantages.
Firstly, Figure 2 shows that training times were significantly longer
for channel permutation. Additionally, more hyperparameter tweak-
ing was necessary to get the system to reliably converge – although
we did not systematically explore different hyperparameters (learn-
ing rate, temperature annealing schedules, etc.). Finally, under chan-
nel permutation, teachers do not learn to pay attention to the protocol
that they communicate, although this skill was not strictly necessary
for zero-shot communication in our environment. This is shown in
Table 1 where we see that the teacher protocol responsiveness, RT ,
is zero for channel permutation, compared to 0.85 for message mu-
tation (pm = 0.3).

5.5 Talking About Time

We observed that when training agents with the loss function LMM

(and with no channel randomisation, i.e. pm = 0) there was con-
vergence on fixed protocols, as would be expected. However, we
also found that under certain conditions we could get the agents to
consistently converge on temporally-fixed (TF) protocols rather than
observation-fixed (OF) protocols. By this, we mean that the teacher
would always send the same ordered sequence of messages within
each episode, regardless of the ordering of the observations, and they
would adapt their final message appropriately. Intuitively, rather than
messages corresponding to different observations, they would corre-
spond to different time steps.

Figure 4 visualises a TF protocol as a heat map where each cell
shows the proportion of the time that a particular class or timestep
index coincides with each symbol, e.g. we can see that symbol 4 can
be sent alongside any class but is only ever sent on the first timestep.

Whether an OF or TF protocol was learned depended on a single
part of the agent’s architecture. Namely, whether the first layer of the
RNN, before the LSTM cell, had a ReLU activation or no activation.
This seems to be in line with other work that has found that temporal
referencing in emergent communication is sensitive to agent archi-
tectures [24]. Nonetheless, we found that regardless of which strat-
egy emerged in the absence of channel randomisation, when channel
randomisation is applied there is convergence on protocols with ob-
servations as the subject. Furthermore, both the OF and TF agents
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Figure 4: A visualisation of a temporally-fixed protocol

were unable to communicate with strangers when no channel ran-
domisation was applied.

6 Discussion

This paper has explored the problem of zero-shot communication,
where independently trained agents must cooperate via dedicated
communication channels. We have presented two channel randomi-
sation methods that facilitate zero-shot communication. The first of
these methods, message mutation, is easier to train but is sensitive to
the mutation probability hyperparameters, and requires intervening
with the loss function and the communication channel. The second
approach, channel permutation, is simpler to apply, but harder to op-
timise. We introduced a simple environment to test these methods in
which agents may establish new shared communicative conventions
within an episode. Furthermore, the simplicity of this environment
allowed us to precisely measure and analyse the behaviours learned
under different training hyperparameters.

Further work should assess the scalability of these proposals, they
could be transported to more complex domains. There are several as-
pects of the set-up presented in this work that could be subjected to
further empirical scrutiny. For example, to keep training runs short
and stable, the number of possible environment observations and
messages were kept relatively low (|Σ| = 5, |OE | = 3). Finally, in
our environment, agents only interact with one another via the com-
munication channel so situations where this is not the case should
also be explored.
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