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Abstract. Mean field games (MFGs) are a promising framework for
modeling the behavior of large-population systems. However, solving
MFGs can be challenging due to the coupling of forward population
evolution and backward agent dynamics. Typically, obtaining mean
field Nash equilibria (MFNE) involves an iterative approach where
the forward and backward processes are solved alternately, known
as fixed-point iteration (FPI). This method requires fully observed
population propagation and agent dynamics over the entire spatial
domain, which could be impractical in some real-world scenarios.
To overcome this limitation, this paper introduces a novel online
single-agent model-free learning scheme, which enables a single
agent to learn MFNE using online samples, without prior knowledge
of the state-action space, reward function, or transition dynamics.
Specifically, the agent updates its policy through the value function
(Q), while simultaneously evaluating the mean field state (M), using
the same batch of observations. We develop two variants of this
learning scheme: off-policy and on-policy QM iteration. We prove that
they efficiently approximate FPI, and a sample complexity guarantee
is provided. The efficacy of our methods is confirmed by numerical
experiments.

1 Introduction

Mean field games (MFGs) [18, 19] offer a tractable model to describe
the population impact on individual agents in multi-agent systems with
a large population. This work delves into the increasingly prominent
field of applying reinforcement learning (RL) [33] to learn MFGs.

In an MFG, the influence of other agents is encapsulated by a
population mass which provides a reliable approximation of real
interactions between agents when the number of agents is large. A
widely used method for learning MFGs is fixed-point iteration (FPI),
which iteratively calculates the best response (BR) w.r.t. the current
population, and the induced population distribution (IP) w.r.t. the
current policy [16]. The FPI algorithm can be formally expressed as:

(πk, μk) = (ΓIP ◦ ΓBR)
k(π0, μ0),

where operators ΓBR calculates the best response and ΓIP calculates
the induced population distribution. We defer the full definitions of
these operators to Section 2.

Although it is a prominent scheme for learning MFGs, current
implementations of FPI and its variants face several limitations, es-
pecially in the IP calculation: 1) ΓBR and ΓIP are implemented sep-
arately and executed alternately, impeding parallel computing and
potentially increasing the computational complexity of the entire algo-
rithm. 2) The implementation of ΓIP typically requires the knowledge
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of the transition dynamics of the environment [35, 27, 9, 10], limiting
the use of model-free methods. 3) Despite some proposals of mod-
el-free strategies in existing literature, these methods demand direct
observability of population dynamics [8, 23, 2]. In reality, fulfilling
this requirement generally needs a central server capable of com-
munication across the entire state space, restricting the feasibility of
implementing such methods with a single online agent, i.e., an agent
that interacts with the environment and collects local observations to
learn and act on-the-go.

While these limitations paint part of the picture, we still need to
answer the following question:

Why should we employ a single online agent to learn the equi-
libria of mean field games?
The reasons are multifold:

• In many real-world scenarios, a single online agent is often the
most accessible, and sometimes the only available resource [30].

• Online single-agent model-free methods are more straightforward
to implement, since they do not require prior knowledge of the data
or the model.

• Once a single-agent model-free method is devised, this funda-
mental scheme can accommodate extensions such as multi-agent
collaborative learning and model learning.

Motivated by answers to the “why” question, we ask:
Can a single online agent learn the equilibria of mean field
games efficiently?

Figure 1: Illustration of learning processes of FPI and QMI for speed
control on a ring road. The gradient color map signifies the varying
population density on the ring road, with the dashed line indicating
elements unobserved by the online agent. In FPI, the BR is calculated
by a representative agent and the IP is directly observed. In QMI, a
single online agent observes only local states and resultant rewards
(st, at, rt, st+1, at+1), and uses these observations to estimate both
the BR and IP.

Our work affirmatively answers this question by presenting QM it-
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eration (QMI), an efficient online single-agent model-free method for
learning MFGs. QMI is strongly backed by the following theoretical
premise. In an MFG, as all agents follow the same policy, we know
that any agent’s state is sampled from the population distribution. This
fact reveals that a single agent encapsulates information about the
entire population, suggesting that the induced population distribution
can be learned through a single agent’s state observations. More im-
portantly, these observations are already collected during the phase
where the agent updates its policy using an online RL method, suggest-
ing that a single agent can learn both the BR and IP simultaneously
using the same batch of online observations.

We present the example of speed control on a ring road, as il-
lustrated in Figure 1, to concretize the above ideas and highlight
the improvements of QMI over FPI. In this game, vehicles aim to
maintain some desired speed while avoiding collisions. In FPI, a rep-
resentative agent interacts with the population mass to learn the BR.
Then, a dedicated forward process is needed to calculate the IP, either
by leveraging knowledge of the transition dynamics or directly ob-
serving population dynamics across the entire state space. In contrast,
QMI employs a single online agent with only local state and reward
observations. Unlike FPI’s representative agent, the online agent in
QMI has no population information and thus no interaction with the
population mass. Consequently, it maintains an estimate of the IP, and
derives rewards according to this estimate. Equipped with this esti-
mate, the online agent in QMI, similar to FPI’s representative agent,
can update its policy using local observations by online RL methods.
As a distinctive feature, this agent also uses these local observations to
update its population distribution estimate. Hence, QMI consolidates
the two separate backward and forward processes in FPI into one and
eliminates the need for prior environmental knowledge and global
communication.

Contributions. Our primary contributions include:

• We propose an online single-agent model-free scheme for learning
MFGs, termed as QM iteration (QMI). At each step of QMI, the
agent updates its BR and IP estimates simultaneously using an
online observation. More practical than FPI, QMI is applicable
when no prior knowledge of the transition dynamics or the state
space is available. We develop two variants of QMI, contingent on
whether the agent selects actions following a fixed behavior policy,
or adaptively updates its behavior policy within an outer iteration
(Algorithm 1). An overview of the distinct features exhibited by
the two variants is provided in Table 1.

• We prove that QMI efficiently approximates FPI and, therefore en-
joys a similar convergence guarantee. The resemblance between the
learning dynamics of QMI and FPI is illustrated in Figure 2. We pro-
vide sample complexity guarantees for our methods (Theorem 1).
Our methods are the first provably efficient online single-agent
model-free methods for learning MFGs. We validate our findings
through numerical experiments on various MFGs (Section 6).

Related work. Huang et al. [18] introduced mean field games and
suggested a forward-backward FPI scheme to solve them. To address
the instability of FPI in discrete-time [11], researchers have proposed
various stabilization techniques, including fictitious play [7, 26], on-
line mirror descent [25, 22], and entropy regularization [11, 17, 2].
Yang et al. [35], Chen et al. [9] formulated MFGs as a population
MDP, avoiding solving the forward-backward process in FPI, while
requiring the knowledge of the entire state space and transition dy-
namics to update the state of the population.

A comprehensive survey on the application of RL in learning MFGs
is presented by Laurière et al. [21], Cui et al. [12]. Existing work

exclusively focuses on obtaining BRs in FPI using RL methods, in-
cluding Q-learning [16, 27, 11], policy gradient [13], and actor critic
[24, 32, 10]. For the population evolution (IP), most existing methods
require either knowledge of the transition dynamics or direct observ-
ability. Recently, Angiuli et al. [3, 4] proposed an asynchronous
Q-learning method for MFGs, removing the IP observability assump-
tion, and proved its asymptotic convergence when population estimate
updates occurs much slower than Q-value function updates (βt � αt).
Zaman et al. [36] extended this two-timescale model-free approach
with model learning and proved its non-asymptotic convergence. In
contrast, our methods employ the same timescale for population and
policy estimates (βt � αt), substantially distinguishing our method-
ology.

2 Preliminaries

2.1 Mean Field Games

We consider an infinite-horizon discounted Markov decision process
(MDP) denoted by M = (S,A, r, P, γ), where S and A are the finite
state and action spaces respectively, with their cardinality denoted by
S := |S| and A := |A|, r is the reward function, γ ∈ (0, 1) is the
discount factor, and P is the transition kernel such that P (s′ | s, a)
represents the probability that an agent transitions to state s′ when
it takes action a at state s. A policy (also referenced as a strategy
or response) π maps a state to a distribution on the action space,
guiding the action choices of an agent. When the policy π is fixed,
we use Pπ to denote the transition kernel and write Pπ(s, s

′) :=∑
a∈A P (s′ | s, a)π(a | s).
In MFGs, agents are considered indistinguishable with individually

negligible influence. Thus, an MFG encapsulates the impact of all
agents on a given one through the concept of population. In this
work, we consider reward functions that depend on the population
distribution over the state space μ ∈ Δ(S) := {distributions on S}.
Specifically, a reward function r : S ×A×Δ(S) → [0, R] signals a
reward at each state-action pair based on the population distribution.

In MFGs, agents are rational and aim to maximize their expected
cumulative reward. Our goal is to find an optimal policy—one that
cannot be improved given that other agents’ policies are fixed. We uti-
lize a value-based approach to calculate policies. A Q-value function
returns the expected cumulative reward starting from a state following
the current policy π and population distribution μ:

Qπ,μ(s, a) = Eπ

[ ∞∑
t=0

γtr (st, at, μ)

∣∣∣∣∣ s0=s, a0=a

]
, (1)

where the expectation is taken w.r.t. the transition kernel Pπ . Given a
value function, we can choose the action accordingly, e.g., greedily
select the action that maximizes the value function or use an ε-greedy
selection. For broader adaptability, we presume access to a policy
operator Γπ that yields a policy based on a value function. Thus,
the optimal policy can be characterized through a value function,
translating our goal into discovering an optimal value function. We
are now ready to present the optimality conditions.

Definition 1 (Mean field Nash equilibrium). A value function-
population distribution pair (Q,M) is a mean field Nash equilibrium
(MFNE) if it satisfies

Q = TQ,MQ and M = PQM, (2)

where TQ,M is the Bellman operator:

TQ,MQ(s, a) = EQ[r(s, a,M) + γQ(s′, a′)], (3)
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where EQ denotes the expectation over a, a′ ∼ Γπ(Q) and s′ ∼
P (· | s, a); and PQ is the transition operator:

PQM(s′) =
∑

s∈S PQ(s, s
′)M(s), (4)

where we write PQ := PΓπ(Q), as the policy is determined by the
value function given a fixed policy operator.

In Definition 1, Q ∈ R
S×A denotes a generic value function table,

which is not necessarily an actual value function defined per (1).
Similarly, M ∈ Δ(S), where Δ(S) is the probability simplex over S ,
represents a generic population distribution which is not necessarily
an actual policy-induced population distribution. Analogous to the
Q-value function, we refer to this generic population distribution as
the M-value function. We use subscripts, e.g., QM and μQ, to indicate
actual BRs and IPs w.r.t. specific population distributions and value
functions.

2.2 Fixed-Point Iteration for MFG

Fixed-point iteration (FPI), a classic method for learning MFGs, com-
prises two steps: evaluating the best response (BR) and the induced
population distribution (IP). Fixing a population distribution M , the
game reduces to a standard RL problem, which has a unique optimal
value function [5], i.e., the BR w.r.t. the population distribution M . If
the transition kernel PQ yields a steady state distribution, this distribu-
tion is referred to as the IP w.r.t. the value function Q. Decomposing
(2) gives formal definitions of these two operations.

Definition 2 (FPI operators). The BR operator,

ΓBR : Δ(S) → R
S×A, M �→ QM ,

returns the unique solution to the Bellman equation QM =
TQM,MQM for any population distribution M . The IP operator,

ΓIP : RS×A → Δ(S), Q �→ μQ,

returns the unique fixed point of the transition operator PQ defined in
(4) for any value function Q. Then, the FPI operator is the composition
of the above two operators: Γ := ΓIP ◦ ΓBR : Δ(S) → Δ(S).

Notably, the optimality in the BR is determined by the pol-
icy operator Γπ . For example, When Γπ is the greedy selector:
Γ
(max)
π (Q)[a|s]= (a = argmaxa Q(s, a)), (3) becomes the Bell-

man optimality operator:

TMQ(s, a) = E[r(s, a,M) + γmax
a′ Q(s′, a′)],

making BRs deterministic optimal policies. When Γπ is the softmax
function: Γ(softmax)

π (Q)[a | s] = eLQ(s,a)/
∑

a′ e
LQ(s,a′), where L

is the inverse temperature parameter, the optimality corresponds to
the MFG with entropy regularization [11, 17, 2].

To focus on the main ideas, we consider contractive MFGs in this
paper, where FPI is guaranteed to converge to the unique MFNE.
Then, in Section 5, we show that our methods approximate FPI, thus
enjoying a similar convergence guarantee. Without the contraction
condition, stabilization techniques like fictitious play and online mir-
ror descent need to be applied to FPI. We envision that our algorithms
can be extended to incorporate these techniques with our analysis
applying with minimal adjustment.

Assumption 1 (Contractive MFG). The FPI operator is (1−κ)-
contractive (κ ∈ (0, 1]), i.e., for any M1,M2 ∈ Δ(S), it holds that

‖ΓM1 − ΓM2‖2 ≤ (1− κ)‖M1 −M2‖2.1

3 Online Stochastic Updates

Without prior knowledge of the environment or the population, the
online agent maintains two estimates—the Q-value function for the
BR and the M-value function for the IP—which it updates using
online stochastic observations. We first extend temporal difference
(TD) control methods, a classic model-free RL framework covering
Q-learning and SARSA [33], to learn BRs, and then derive an online
stochastic update rule for the IPs in the same vein.

Q-value function update. Guided by the Bellman operator (3), TD
control gives an online stochastic update for the Q-value function:

Q(s, a) ←Q(s, a)− αgQ(s, a, s
′, a′),

with gQ =Q(s, a)− r(s, a,M)− γQ(s′, a′),
(5)

where α is the step size, s′ ∼ P (· | s, a), and a′ ∼ Γπ(Q). If the
policy operator is greedy and the behavior policy is fixed, the above
update rule gives rise to off-policy Q-learning [34]; for general policy
operators, if the behavior policy updates in accordance to the value
function, i.e., Γπ(Q) is the behavior policy and a′ is the actual action,
the above update rule gives rise to on-policy SARSA [29, 31]. We
defer further discussion on these two TD control methods to Sections 4
and 5.

Population estimate. TD control replaces the expectation in the
Bellman operator (3) with a stochastic approximation using online
observations. Likewise, for the M-value function update, we first
rewrite the transition operator using expectation:

PQM(z) =
∑
s′∈S

δs′(z)PQM(s′)

=
∑
s′∈S

∑
s∈S

δs′(z)PQ(s, s
′)M(s)

=EQ,M [δs′(z)],

where δs′ is the indicator probability vector in Δ(S) such that
δs′(z) = (z = s′), and the expectation is taken over s ∼ M
and s′ ∼ PQ(s, ·). Mimicking TD control and stochastic gradient
descent, we remove the expectation and use the observed next succes-
sive state s′ to stochastically approximate PQM . This gives an online
stochastic update for the M-value function:

M ← M − βgM (s′) = M + β(δs′ −M). (6)

where β is the step size. Please refer to [37, Section J] for the full
derivation of this update rule. Similar to TD control, we anticipate
that this update rule drives the M-value function to converge to the
population distribution induced by PQ. Furthermore, selecting a step
size of βt = 1/(t+ 1) simplifies it to a Markov chain Monte Carlo
(MCMC) method, validating its correctness.

For online stochastic updates (5) and (6) and general online learning
methods to yield optimal solutions, the environment must be readily
explorable. Unlike offline methods which rely on pre-collected data,
an online agent learns and acts based on its real-time observations.
Hence, the efficient learning of optimal policy becomes unfeasible if
certain states are inaccessible, leading to potential suboptimal solu-
tions. To avoid this, we impose the following condition on the MDP.

1 We consider L1 and L2 distances for probability measures in this work.
For a finite state space with the trivial metric, the total variation distance
equals the 1-Wasserstein distance [15], with the L1 distance being twice
as large as them. Without loss of generality, we redefine the total variation
distance as twice its standard definition, and use it interchangeably with the
L1 distance.
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Assumption 2 (Ergodic MDP). For any Q ∈ R
S×A, the Markov

chain induced by the transition kernel PQ is ergodic with a uniform
mixing rate. In other words, there exists a steady state distribution μQ

for any policy Γπ(Q), with constants m ≥ 1 and ρ ∈ (0, 1), such
that

sup
s∈S

sup
Q∈RS×A

‖Pπ (St = · |S0 = s)− μQ‖TV ≤ mρt.

For future reference, we define an auxiliary constant σ = n̂ +
mρn̂/(1− ρ), where n̂ =

⌈
logρ m

−1
⌉
. And the probability of visit-

ing a state-action pair under a steady distribution is lower bounded:

inf
(s,a)∈S×A

inf
Q∈RS×A

μQ(s) · Γπ(Q)[a | s] ≥ λmin > 0.

Assumption 2 is a standard assumption for online methods [6, 38,
28].

4 Proposed Methods

4.1 Off-Policy QM Iteration

A significant advantage of our online stochastic formulation of the
update rules, over the iterative BR and IP evaluation typical of FPI
methods, is that it enables simultaneous updates of both the Q-value
and M-value functions using the same batch of observations.

Taking one step in this direction, we first present an algorithm
that simultaneously evaluates both the BR and IP, with the agent’s
behavior policy being fixed within each outer iteration. Since the
behavior policy is not updated along with the Q-value function, we
use off-policy Q-learning to learn the BR, and term this method off-
policy QM iteration. The method is presented in Algorithm 1 with
input option off-policy and the greedy policy operator Γ(max)

π .
Our algorithm showcases marked simplicity. At each time-step,

the online agent observes a state transition and a reward; it then uses
this information to update the Q-value and M-value function tables
using (5) and (6), respectively, which only involves two elementary
operations—scaling and addition. It is noteworthy that in the Q-value
function update, at+1, which follows the fixed behavior policy, is
not used. Instead, a′ ∼ Γ

(max)
π (Qk,t) is used according to (5). The

discrepancy accounts for the naming of “off-policy” Q-learning.
The stationary nature of the transition kernel within each outer iter-

ation directly gives the convergence guarantee of off-policy QMI
and suggests its analogy with FPI (see Section 5). Nevertheless,
fixed transition kernels make off-policy QMI learn BRs and IPs
parallelly. That is, at kth iteration, the BR w.r.t. Mk,0 is approxi-
mated by Qk,T = Qk+1,0, whose corresponding population distri-
bution is then approximated by Mk+1,T = Mk+2,0, rather than
Mk+1,0. Let Qk := Qk,0 and Mk := Mk,0. Then, off-policy
QMI generates two non-interacting parallel policy-population se-
quences: {(Q2k,M2k+1)}K/2

k=0 and {(Q2k+1,M2k)}K/2
k=0 . This ob-

servation also implies that off-policy QMI is at least twice as data-
efficient as FPI; see Figure 2 for an illustration.

To establish the convergence guarantee of off-policy QMI, we
leverage the theoretical results of off-policy Q-learning. However, the
greedy policy operator used is too nonsmooth: a slight difference in
the Q-value function can lead to completely different action choices.
As a result, the induced population distributions can drastically differ
between outer iterations, leading to unstable convergence performance.
Since we do not incorporate stabilization techniques, we make the
following assumption.

Algorithm 1 QM Iteration

1: Input: initial value functions Q−1,T = Q0 and M−1,T = M0;
initial state s0; option off-policy or on-policy

2: for k = 0, 1, ...,K do

3: Qk,0 = Qk−1,T ,Mk,0 = Mk−1,T

4: πk,0 = Γπ(Qk,0)
5: for t = 0, 1, . . . , T do

6: sample one Markovian observation tuple (st, at, st+1, at+1)
following policy πk,t

7: observe the reward r(st, at,Mk,0)
8: Qk,t+1(st, at)=Qk,t(st, at)−αtgQk,t

9: Mk,t+1 = Mk,t − βtgMk,t(st+1)
10: if off-policy then

11: πk,t+1 = πk,0

12: else if on-policy then

13: πk,t+1 = Γπ

(
mix

(
{Qk,l}t+1

l=0

))
14: end if

15: end for

16: end for

17: return QK,T ,MK,T

Assumption 3 (Lipschitz continuous transition kernels for Q-learn-
ing). For any Q1, Q2 ∈ R

S×A, it holds that

‖PQ1 − PQ2‖TV ≤ L ‖Q1 −Q2‖2 ,

where ‖PQ‖TV := sup‖q‖TV=1

∥∥∑
s∈S q(s)PQ(s, ·)

∥∥
TV

.

(π∗, μ∗)

FPI
π0 μ0

πμ0=π1 μ1=μπ1

πμ1=π2
μ2=μπ2

(Q∗, μ∗)

on-policy QMI

Q0 M0

QM0≈Q1 M1≈μQ1

QM1≈Q2 M2≈μQ2

(Q∗, μ∗)

off-policy QMI

Q0 M0

QM0≈Q1
M1≈μQ0

QM1≈Q2 M2≈μQ1

Figure 2: Illustration of learning processes. Each arrow represents one
iteration in FPI or one outer iteration in QMI, matching the end BR
or IP with the population distribution or value function at the start.
The dashed line in on-policy QMI represents behavior policy updates,
making Mk match the updated BR estimate Qk.

4.2 On-Policy QM Iteration

Still, BR and IP evaluations are executed parallelly in off-policy QMI,
and thus its efficiency boost indirectly attributes to parallel comput-
ing. This naturally raises a question: can we directly approximate
the FPI operator Γ in one outer iteration? The on-policy variant of
QM iteration provides a positive response. This time, we pass to
Algorithm 1 the option on-policy and a general policy operator
satisfying Assumption 4, facilitating dynamic updates of agent’s be-
havior policy within each outer iteration. By syncing the behavior
policy in accordance with the Q-value function, the policy learning
process is governed by on-policy SARSA. Additionally, since the
agent now observes the state transition induced by the updated policy,
the M-value function is updated towards the population distribution
induced by the updated policy. The learning process of on-policy QMI
is illustrated in Figure 2.

On the other hand, constantly changing behavior policies in on-
policy QMI yield nonstationary Markov chains. Such nonstationarity
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renders the convergence guarantee of off-policy QMI not applicable
here and complicates the convergence analysis of on-policy QMI.
Nonetheless, we establish a similar convergence guarantee for on-
policy QMI (Lemma 3). To achieve the sharp logarithmic dependency
on T , we mix the Q-value functions obtained in an outer iteration:
mix

(
{Qk,l}t+1

l=0

)
:=

∑t
l=0(wl/

∑t
l=0 wl)Qk,l, where wl � t, and

use this convex combination to determine the behavior policy.
Theoretical results of on-policy SARSA are used to establish the

convergence guarantee of on-policy QMI. While the instability is-
sue persists as in off-policy QMI, on-policy SARSA’s adaptability
and versatility—facilitated by its use of general policy operators—
outstrip those of Q-learning, thus allowing us to directly impose the
smoothness condition on Γπ .

Assumption 4 (Lipschitz continuous policy operator for SARSA).
For any Q1, Q2 ∈ R

S×A and s ∈ S, it holds that

‖Γπ(Q1)[· | s]− Γπ(Q1)[· | s]‖TV ≤ L‖Q1 −Q2‖2.

Furthermore, the Lipschitz constant satisfies L ≤ λmin(1 −
γ)2/(2Rσ).

Remark 1. Assumption 3 is weaker than Assumption 4 as the latter
implies the former (see [37, Lemma 4]) and requires a small Lipschitz
constant. However, verifying Assumption 3 can be difficult as the
dependence of PQ on Q can be intricate and the model is unknown,
whereas Assumption 4 is more achievable given the flexibility in
choosing policy operators for SARSA. For instance, the softmax func-
tion with an apt temperature parameter satisfies Assumption 4 [14].
Actually, a softmax policy operator imposes entropy regularization
to the greedy selection [14], a common technique used to stabilize
the MFG learning process [11, 17, 2]. Absent such regularization,
Assumption 3 ensures training stability. Other assumptions have been
posited for this purpose, such as a strongly convex Bellman operator
[1]. Notably, Assumption 1 and 3 or 4 are not mutually exclusive; ei-
ther Assumption 3 or 4 with some conditions on the reward function’s
smoothness and Lipschitz constants can imply Assumption 1 [16, 1].

4.3 Comparison of Off- and On-Policy QMI

Table 1: Comparison of off- and on-policy QMI.
Off-Policy On-Policy

Behavior policy within
an outer iteration fixed adaptive

Policy type greedy soft
MFNE original regularized
Sample efficiency
boost mechanism parallel concurrent

Population-dependent
transition kernels � �

Table 1 gives an overview of the differences between off- and on-
policy variants of QMI. By utilizing Q-learning with a greedy policy
operator, off-policy QMI can learn a deterministic optimal policy
of the original MFG. On-policy QMI, on the other hand, utilizes
SARSA with a soft (non-deterministic) policy operator, meaning that
the learned MFNE depends on the policy operator and corresponds to
an implicitly regularized MFG. Nevertheless, on-policy QMI affords
flexibility in choosing a wider range of policy operators, and the
soft policies it acquires exhibit greater robustness [33]. Furthermore,
off-policy QMI boosts the sample efficiency by learning two policy-
population sequences parallelly, while on-policy QMI directly boosts

it by amalgamating the two steps in FPI into one. Last but not least, on-
policy QMI and its convergence guarantee can directly accommodate
transition kernels that are dependent not only on behavior policy but
also on population distribution. However, such a dependence breaks
the parallel procedure in off-policy QMI. See [37, Section M.1] for
more discussion on population-dependent transition kernels.

5 Sample Complexity Analysis

In this section, we establish the sample complexity guarantee for both
the off- and on-policy variants of Algorithm 1, given our assumptions
on MDPs (Assumption 2), MFGs (Assumption 1), and smoothness
(Assumption 3 or Assumption 4). To assist the analysis, we define
the operators presented in Algorithm 1, which correspond to those in
Definition 2.

Definition 3 (QMI operators). For off-policy QMI, the Q- and M-
value function operators,

ΓQ(T ) : Δ(S) → R
S×A, Mk,0 �→ Qk,T and

ΓM (T ) : RS×A → Δ(S), Qk,0 �→ Mk,T ,

return the updated Q- and M-value function after an outer iteration of
Algorithm 1, consisting of T online stochastic updates using Lines 8
and 9. Then, the off-policy QMI operator is the composition of the
above two operators: Γ̂off(T ) := ΓM (T ) ◦ ΓQ(T ).

The on-policy QMI operator,

Γ̂on(T ) : Δ(S) → Δ(S), Mk,0 �→ Mk,T ,

returns the updated M-value function after an outer iteration of Algo-
rithm 1, consisting of T online stochastic updates using Lines 8 and
9, as well as the policy updates using Line 13.

As mentioned in previous sections, the equivalence between off-
policy QMI and FPI comes from the convergence of off-policy Q-
learning and MCMC. Specifically, we have the following two lemmas.

Lemma 1 (Sample complexity of Q-learning [28, Theorem 7]). Sup-
pose Assumptions 2 and 3 hold for the greedy policy operator. With a
step size of αt�1/(λmin(1−γ)t), for any M∈Δ(S), we have

E ‖ΓQ(T )M − ΓBRM‖22 = O

(
SAR2 log T

λ2
min(1− γ)5T

)
,

where MDP components S,A, R, and γ are defined in Section 2.1,
with S and A denote the cardinality of S and A. σ and λmin are
defined in Assumption 2, and L is defined in Assumption 3.

Lemma 2 (Sample complexity of stationary MCMC [20, Theorem
3.1]). Suppose Assumption 2 holds. With a step size of βt � 1/t, for
any Q ∈ R

S×A, we have

E ‖ΓM (T )Q− ΓIPQ‖22 = O

(
SA

(1− ρ)2T

)
.

The preceding lemmas demonstrate that off-policy QMI efficiently
approximates FPI, with the Q-value and M-value updates evaluating
the BR and IP, respectively.

Lemmas 1 and 2 are not applicable to on-policy QMI, where tran-
sition kernels are nonstationary. Nonetheless, we can establish the
following lemma.
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Lemma 3 (Sample complexity of nonstationary MCMC with
SARSA). Suppose Assumptions 2 and 4 hold for the chosen policy
operator. With a step size of αt � 1/(λmin(1− γ)t) and βt � 1/t,
for any M ∈ Δ(S), we have

E

∥∥∥Γ̂on(T )M − ΓM
∥∥∥2

2
= O

(
SAR2L2σ2 log T

λ2
min(1− γ)4T

)
.

An outer iteration of on-policy QMI corresponds to a nonstation-
ary MCMC. Thus, to prove Lemma 3, we employ a backtracking
procedure, a technique developed in Zou et al. [38] to address nonsta-
tionarity in stochastic approximation methods. The key idea is that
in order to exploit the mixing property of stationary Markov chains
(Assumption 2), we virtually backtrack a period τ , and generate a
virtual trajectory where the agent follows the fixed behavior policy
πt−τ := Γπ(Qt−τ ) after time step t − τ . This virtual trajectory is
stationary after time step t− τ and rapidly converges to the steady dis-
tribution induced by πt−τ , denoted by μt−τ . Next, the convergence
of SARSA confirms that μt−τ converges to the steady distribution
induced by the BR w.r.t. M , denoted by μM := ΓM . Let st and
s̃t be the state at time step t on the actual and virtual trajectories,
respectively. Let πt be the (actual) behavior policy at time step t, with
its induced steady distribution denoted as μt. Then, the proof sketch
for Lemma 3 can be succinctly portrayed as:

︸ ︷︷ ︸
H1,backtrack

st ≈

H2,mix︷ ︸︸ ︷
s̃t

d−→
τ→∞

s ∼ ︸ ︷︷ ︸
H3,progress

μt−τ ≈

H4,SARSA︷ ︸︸ ︷
μt

L2−→
t→∞

μM ,

where the backtracking discrepancy H1 and the distribution progress
H3 are controlled by the virtual period τ ([37, Lemmas 8 and 10]),
while the two convergence rates H2 and H4 are characterized by the
geometric ergodicity of stationary MDPs and the sample complexity
of SARSA ([37, Lemmas 7 and 9]), respectively. In brief, we show that
the agent’s state distribution, and thus its M-value function, rapidly
converges to the IP μM .

Given the above lemmas, we are ready to compose the convergence
guarantee and sample complexity of QMI.

Theorem 1 (Sample complexity of QMI). Suppose Assumptions 1
and 2 hold, and Assumptions 3 and 4 hold for off- and on-policy
QMI, respectively. Let μ∗ be the MFNE population distribution. Then
Algorithm 1 returns an ε-approximate MFNE, that is,

E ‖MK,T − μ∗‖22 = E‖Γ̂(T )KM0 − μ∗‖22 ≤ ε2,

where Γ̂ can be either Γ̂off or Γ̂on, with the number of iterations being
at most

K = O
(
κ−1 log ε−1) , T = C ·O

(
κ−2ε−2 log ε−1) ,

where

C ≤ SAR2L2σ2

λ2
min(1− γ)5

.

Our complexity results match the prior work on learning MFGs [2]
and are consistent with stochastic approximation methods [20, 38, 28].

6 Numerical Experiments

In this section, we present two experiments demonstrating the effec-
tiveness of our methods. We compare our methods with model-based
FPI using two key metrics: the mean squared error (MSE) of the

population distribution and the exploitability of the policy. For a finite
state space with the trivial metric, the total variation distance equals
the 1-Wasserstein distance [15], and is equivalent to the Euclidean
norms. Thus, we consider the L2 MSE between the current M-value
function and the MFNE population distribution:

MSE(M) := ‖Mk − μ∗‖22 =
∑
s∈S

(Mk(s)− μ∗(s))2 .

Perrin et al. [26] defines the exploitability of a policy as follows:

exploitability(π) := max
π′ Es∼μπV (s;π

′, μπ)−Es∼μπV (s;π, μπ),

where V (s;π, μ) is the value function determined by policy π and
population distribution μ. Given a policy operator, the exploitability
quantifies the gap between the current value function Q and the BR
w.r.t. the population distribution induced by Q. We denote this BR by
QμQ , and calculate ‖QμQ −Q‖ as the exploitability in practice.

For model-based FPI, we use value iteration to calculate BRs [33]:

Vt+1(s) = max
a∈A

{
r(s, a, μ) + γ

∑
s′

P (s′ | s, a)Vt(s
′)

}
, (7)

and the induced population distributions are directly calculated using
(4). Model-based FPI assumes full knowledge of the state-action
space, reward function, as well as transition dynamics. During each
iteration of value iteration and population update using (4), all S
values are updated without any random sampling, and we refer to such
an iteration as a sweep. It is expected that in order for online sampling
to replicate the effects of a sweep, the number of samples should be at
least S. Furthermore, since QMI assumes no knowledge of the action
space and the reward function, it may require A samples to achieve
the same effect as the max calculation in (7). The randomness in
sampling can further impact efficiency. Therefore, we introduce a
sample compensation factor η to relate the number of samples to the
number of sweeps. Specifically, let TQMI and TFPI be the number of
inner iterations of QMI (Algorithm 1) and the number of sweeps of
value iteration and population update in FPI respectively; we let

TQMI = ηSTFPI.

Please refer to [37, Section H] for additional experiments on differ-
ent sample compensation factors, which suggest that a small sample
compensation factor is sufficient for QMI. In this section, we fix η as
an algorithmic parameter. Please note that we do not claim that our
methods outperform FPI in all scenarios as they are different types of
algorithms designed for different situations.

Speed control on a ring road. We consider a speed control game of
autonomous vehicles on a ring road, i.e., the unit circle S1 ∼= [0, 1), as
illustrated in Figure 1. At location s ∈ S

1, the representative vehicle
selects a speed a, and then moves to the next location following
transition s′ = s + aΔt (mod 1), where Δt is the time interval
between two consecutive decisions. Without loss of generality, we
assume that the speed is bounded by 1, i.e., the speed space is also
[0, 1). Then we discretize both the location space and the speed space
using a granularity of Δs = Δa = 0.02. Thus, both our discretized
state (location) space and action (speed) space can be represented by
S = A = {0, 0.02, . . . , 0.98} ∼= [50]. By the Courant-Friedrichs-
Lewy condition, we choose the time interval to be Δt = 0.02 ≤
Δs/max a. The objective of a vehicle is to maintain some desired
speed while avoiding collisions with other vehicles. Thus, it needs to
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(a) Mean squared error (b) Exploitability (c) Learned population distributions

Figure 3: Performance comparison of FPI, off-policy QMI, and on-policy QMI on ring road speed control. MSE represents the mean squared L2

error between the current M-value function and the MFNE population distribution. Exploitability refers to the disparity between the current
value function and the BR w.r.t. the current population distribution. Learned population distributions are scaled for better visualization.

(a) Mean squared error (b) Exploitability (c) Learned population distribution

Figure 4: Performance comparison of FPI, off-policy QMI, and on-policy QMI on Sioux Falls network routing. Only the population distribution
learned by off-policy QMI is shown in (c); other methodsgive similar population distributions (please refer to [37, Section H.1]).

reduce the speed in areas with high population density. A classic cost
function for this goal is the Lighthill-Whitham-Richards function:

r(LWR)(s, a, μ) = −1

2

((
1− μ(s)

μjam

)
− a

amax

)2

Δs,

where μjam is the jam density, and amax is the maximum speed.
However, in an infinite horizon game, this cost function induces a
trivial MFNE, where the equilibrium policy and population are both
constant across the state space. Therefore, we introduce a stimulus
term b that varies across different locations:

r(s, a, μ) = −1

2

(
b(s) +

1

2

(
1− μ(s)

μjam

)
− a

amax

)2

Δs,

where the factor of one-half before the population distribution term is
included to account for the presence of the new stimulus term. This
new cost function makes the MFNE more complex and corresponds to
real-world situations where vehicles may have distinct desired speeds
at different locations due to environmental variations. Specifically,
we choose the stimulus term as b(s) = 0.2(sin(4πs) + 1), and set
μjam = 3/S and amax = 1. The performance comparison is reported
in Figure 3.

Routing game on a network. We consider a routing game on
the Sioux Falls network, a graph with 24 nodes and 74 directed
edges. We designate node 1 as the starting point and node 20 as the
destination. To construct an infinite-horizon game, we add a restart
edge e75 from the destination back to the starting point. On each edge,
a vehicle selects its next edge to travel to. We consider a deterministic
environment, meaning that the vehicle will follow the chosen edge
without any randomness. Therefore, both the state space and the
action space can be represented by the edge set, i.e., S = A =
{e1, . . . , e75} ∼= [75], where e75 is the restart edge. It is worth noting

that a vehicle can only select from the outgoing edges of its current
location as its next edge.

The objective of a vehicle is to reach the destination as fast as
possible. Due to congestion, a vehicle spends a longer time on an
edge with higher population distribution. Specifically, the cost (time)
on a non-restart edge is r(cong.)(s, a, μ) = −c1μ(s)

2 {s �= e75},
where c1 is a cost constant. To drive the vehicle to the destination, we
impose a reward at the restart edge: r(term.)(s, a, μ) = c2 {s = e75}.
Together, we get the cost function:

r(s, a, μ) = −c1μ(s)
2 {s �= e75}︸ ︷︷ ︸

congestion cost

+ c2 {s = e75}︸ ︷︷ ︸
terminal reward

.

The performance comparison is reported in Figure 4.
All numerical results are averaged over 10 independent runs. They

demonstrate that QMI efficiently approximates FPI and achieves com-
parable performance, validating our fully online model-free approach.
Please refer to [37, Section H] for the full setups of two experiments
and additional results.

7 Conclusion

This study introduces the QM iteration (QMI), a novel online single-
agent model-free learning scheme for mean field games, offering
a practical alternative to traditional fixed-point iteration methods.
QMI provides both theoretically and numerically confirmation of the
statement: a single online agent can efficiently learn the equilibria of
mean field games, without any prior knowledge of the environment.
We anticipate that our methods can provide a benchmark for online
model-free learning in MFGs, and serve as a base scheme for further
extensions, generalizations, and applications.
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