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Abstract. Weighted voting games are a well-known and useful
class of succinctly representable simple games that have many real-
world applications, e.g., to model collective decision-making in leg-
islative bodies or shareholder voting. Among the structural control
types being analyzing, one is control by adding players to weighted
voting games, so as to either change or to maintain a player’s power
in the sense of the (probabilistic) Penrose–Banzhaf power index or
the Shapley–Shubik power index. For the problems related to this
control, the best known lower bound is PP-hardness, where PP is
“probabilistic polynomial time,” and the best known upper bound is
the class NPPP, i.e., the class NP with a PP oracle. We optimally
raise this lower bound by showing NPPP-hardness of all these prob-
lems for the Penrose–Banzhaf and the Shapley–Shubik indices, thus
establishing completeness for them in that class. Our proof technique
may turn out to be useful for solving other open problems related to
weighted voting games with such a complexity gap as well.

1 Introduction

Weighted voting games (WVGs) are a central, very popular class of
simple coalitional games with many real-world applications. They
can be used to model and analyze collective decision-making in leg-
islative bodies and in parliamentary voting [28], such as the European
Union or the International Monetary Fund [12], in joint stock com-
panies, etc. For more information, we refer to the books by Chalki-
adakis et al. [5], Taylor and Zwicker [30], and Peleg and Sudhöl-
ter [22] and the book chapters by Chalkiadakis and Wooldridge [4]
and Bullinger et al. [3]. Especially important is the analysis of how
significant players are in WVGs, i.e., what they contribute to form-
ing winning coalitions. Their influence can be measured by so-called
power indices among which some well-known examples are: the
Shapley–Shubik index due to Shapley and Shubik [29], the proba-
bilistic Penrose–Banzhaf index due to Dubey and Shapley [9], and
also the normalized Penrose–Banzhaf index due to Penrose [23] and
Banzhaf [2]. We are concerned with the former two.

Much work has been done on how one can tamper with a given
player’s power in aWVG. For example, the effect of merging or split-
ting players (the latter a.k.a. “false-name manipulation”) was studied
by Aziz et al. [1] and later on by Rey and Rothe [25]. Zuckerman et
al. [35] studied the impact of manipulating the quota in WVGs on the
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power of players. Another way of tampering with the players’ power
was introduced by Rey and Rothe [26] who studied control problems
by adding players to or by deleting players from aWVG; their results
have recently been improved by Kaczmarek and Rothe [16].

Control attempts in voting (e.g., by adding or deleting either vot-
ers or candidates) have been studied in depth [11]. Surprisingly, how-
ever, much less work has been done on control attempts in cooper-
ative game theory, such as for WVGs (e.g., by adding or deleting
players). Control by adding players to WVGs is inspired by the anal-
ogous notion of control by adding either candidates or voters to elec-
tions in voting. There are many real-world scenarios where WVGs
and power indices are used to analyze the power of agents and where
there is an incentive to change the power in the situation to some-
body’s advantage (e.g., in politics or to measure control in corporate
structures). Concretely, WVGs are the typical way to model decision-
making in the EU, as countries can be assigned a weight (essentially
related to their population size). The EU is constantly expanding:
New members join in (or, rarely, they leave), which is exactly con-
trol by adding players, raising the question of if and how the power
of old EU members is changed by adding new ones to the EU—
just one clear-cut case of motivation among various others. If new
members join, an old one may insist on having the same power af-
terwards (motivating the goal of “maintaining one’s power”), or at
least not lose power (“nondecreasing one’s power”), or Poland may
insist that Germany’s power does not increase when Ukraine joins
(“nonincreasing one’s power”). We continue the work on the com-
putational complexity of structural control by adding players to a
given WVG, which was started by Rey and Rothe [26]. They showed
PP-hardness for the related problems and an upper bound of NPPP.
Extending our initial results (for the Penrose–Banzhaf index only,
presented at AAMAS 2024 [15]), we optimally improve their re-
sults by showingNPPP-completeness of these problems for both the
Penrose–Banzhaf and the Shapley–Shubik index.

Many of the problems related to WVGs are computationally hard.
For instance, under suitable functional reducibilities, computing the
Shapley–Shubik power index [8] and the Penrose–Banzhaf power in-
dices [24] is #P-complete, where #P is the counting version of the
class NP [33]. This is employed by Faliszewski and Hemaspaan-
dra [10] in their result that comparing a given player’s probabilistic
Penrose–Banzhaf index or a given player’s Shapley–Shubik index in
two given WVGs is PP-complete. PP is probabilistic polynomial
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time [14], a class that presumably is larger than the class NP.
Adding players is just one possibility to change the outcome of

a WVG; as mentioned above, Aziz et al. [1] proposed merging or
splitting players so as to change their power. The problems related to
merging players in WVGs were later proven to bePP-complete [25].
However, interestingly, the same complexity gap we are concerned
with here—PP-hardness versus membership in NPPP—is also per-
sistent for false-name manipulation, i.e., for the problems related to
splitting players [25]. The novel proof techniques developed in the
current paper may thus turn out to be useful for closing this huge
complexity gap as well, which provides another strong motivation of
our work. Our novel approach might be useful for many interesting
open problems in the literature on WVGs (e.g., for control by adding
or deleting edges in graph-restricted WVGs, again with a complexity
gap between PP-hardness and membership in NPPP [18]).

We start with providing the needed notions from cooperative game
theory and computational complexity in Section 2, and introduce a
new NPPP-complete problem that will be used in some of our re-
ductions. In Section 3, we prepare some tools and show their prop-
erties that are needed in our proofs. Finally, we present our results in
Section 4. Due to space limitations, some of our proofs are omitted
here; they can be found in the full version of this paper [17].

2 Preliminaries

Let N = {1, . . . , n} be a set of players. For v : 2N → R≥0,
where R≥0 denotes the set of nonnegative real numbers, v(∅) = 0,
a coalitional game is a pair (N, v) and each subset of N is called a
coalition. (N, v) is a simple coalitional game if it is monotonic (i.e.,
v(T ) ≤ v(T ′) for any T, T ′ with T ⊆ T ′ ⊆ N ), and v(S) ∈ {0, 1}
for each coalition S ⊆ N . We focus on the following type of simple
coalitional games.

Definition 1. A weighted voting game G = (w1, . . . , wn; q) is a
simple coalitional game with player set N that consists of a natural
number q called the quota and nonnegative integer weights, where
wi is the weight of player i ∈ N . For each coalition S ⊆ N , let
wS =

∑
i∈S wi and define the characteristic function v : 2N →

{0, 1} of G as v(S) = 1 if wS ≥ q, and v(S) = 0 otherwise. We say
that S is a winning coalition if v(S) = 1, and it is a losing coalition
if v(S) = 0. Moreover, we call a player i pivotal for coalition S ⊆
N \ {i} if v(S ∪ {i})− v(S) = 1.

How significant are players in a given game? We usually measure
this by so-called power indices. The main information used in deter-
mining the power index of a player i is the number of coalitions i is
pivotal for. We study two of the most popular and well-known power
indices. One of them is the probabilistic Penrose–Banzhaf power in-
dex, which was introduced by Dubey and Shapley [9] as an alterna-
tive to the original normalized Penrose–Banzhaf index [23, 2].

Definition 2. Let G be a WVG. The probabilistic Penrose–Banzhaf
power index of a player i in G is defined by

β(G, i) = 1

2n−1

∑
S⊆N\{i}

(v(S ∪ {i})− v(S)).

The other index we will study is the Shapley–Shubik power index,
introduced by Shapley and Shubik [29] as follows:

Definition 3. Let G be a WVG. The Shapley–Shubik power index of
a player i in G is defined by

ϕ(G, i) = 1

n!

∑
S⊆N\{i}

|S|!(n− 1− |S|)!(v(S ∪ {i})− v(S)).

We assume familiarity with the basic concepts of computational
complexity theory, such as the well-known complexity classes P
(deterministic polynomial time), NP (nondeterministic polynomial
time), and PP (probabilistic polynomial time [14]). NPPP is the
class of problems that can be solved by anNP oracle Turing machine
accessing a PP oracle. It is a very large complexity class containing
even the entire polynomial hierarchy by Toda’s result [31].

We will use the notions of completeness and hardness for a com-
plexity class based on the polynomial-time many-one reducibility:
A problem X (polynomial-time many-one) reduces to a problem Y
(X ≤p

m Y ) if there is a polynomial-time computable function ρ such
that for each input x, x ∈ X ⇐⇒ ρ(x) ∈ Y ; Y is hard for a com-
plexity class C ifC ≤p

m Y for eachC ∈ C; and Y is complete for C if
Y is C-hard and Y ∈ C. For more background on complexity theory,
we refer to some of the common text books [13, 20, 27].

Valiant [33] introduced #P as the class of functions that give the
number of solutions ofNP problems.#P is a.k.a. the “counting ver-
sion of NP”: For every NP problem X , #X denotes the function
that maps each instance of X to the number of its solutions. For ex-
ample, for the problem SAT = {φ | φ is a boolean formula satisfied
by at least one truth assignment}, which is NP-complete [6],#SAT
maps each boolean formula to the number of its satisfying assign-
ments. Clearly, any NP problem X is closely related to its counting
version #X because if we can efficiently count the number of solu-
tions of an instance x, we can immediately tell whether x is a yes- or
a no-instance ofX: x ∈ X exactly if the number of solutions of x is
positive.

Deng and Papadimitriou [8] showed that computing the Shapley–
Shubik index of a player in a given WVG is complete for #P
via functional many-one reductions. Prasad and Kelly [24] proved
that computing the probabilistic Penrose–Banzhaf index is parsimo-
niously complete for #P. #P and PP, even though the former is
a class of functions and the latter a class of decision problems, are
closely related by the well-known result that PPP = P#P. For more
complexity-theoretic background on the counting (polynomial-time)
hierarchy, which contains NPPP, we refer to [34, 21, 32, 31, 27].
Using the standard problem complete for PP due to Gill [14], i.e.,
MAJSAT = {φ | φ is a boolean formula satisfied by a majority of
truth assignments}, Littman et al. [19] introduced and studied the
following problem, which they proved to be NPPP-complete:

EXIST-MAJORITY-SAT (E-MAJSAT)

Given: A boolean formula φ with n variables x1, . . . , xn and
an integer k, 1 ≤ k ≤ n.

Question: Is there an assignment to x1, . . . , xk, the first k vari-
ables, such that a majority of assignments to the re-
maining n− k variables xk+1, . . . , xn satisfies φ?

Another closely relatedNPPP-complete decision problem was in-
troduced by de Campos et al. [7]:

EXIST-MINORITY-SAT (E-MINSAT)

Given: A boolean formula φ with n variables x1, . . . , xn and
an integer k, 1 ≤ k ≤ n.

Question: Is there an assignment to x1, . . . , xk, the first k vari-
ables, such that at most half of the assignments to the
remaining n− k variables xk+1, . . . , xn satisfies φ?

Note that if k = 0, E-MAJSAT is equivalent to the PP-complete
problem MAJSAT, and E-MINSAT is equivalent to the complement
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of MAJSAT, which is also PP-complete since the class PP is closed
under complement [14]. If k = n, E-MAJSAT is equivalent to the
NP-complete problem SAT, and E-MINSAT is equivalent to the
complement of SAT, i.e., it is coNP-complete. Therefore, we can
omit these cases (k = 0 and k = n) when proving NPPP-hardness
of our problems. Moreover, we can also assume that a given formula
in CNF does not contain any variable x in both forms, x and ¬x, in
any of its clause (which can be checked in polynomial time) because
then the clause would be true for any possible truth assignment. Also,
we will assume that our inputs for these problems contain only those
variables that actually occur in the given boolean formula.

Rey and Rothe [26] defined problems capturing control by adding
players to a given WVG so as to change a given player’s power in the
modified game. To increase this power for an index PI, the control
problem is defined as follows:

CONTROL-BY-ADDING-PLAYERS-TO-INCREASE-PI

Given: A WVG G with a set N of players, a set M of players
(given by their weights) that can be added to G, a distin-
guished player p ∈ N , and a positive integer k ≤ |M |.

Question: Can at most k playersM ′ ⊆M be added to G such that
for the new game G∪M′ , it holds that PI(G∪M′ , p) >
PI(G, p)?

The corresponding control problems for decreasing, nonincreas-
ing, nondecreasing, and maintaining PI are defined analogously, by
changing the relation sign in the question to “<,” “≤,” “≥,” and “=,”
respectively. Additionally, we assume that we add at least one new
player in case of nondecreasing, nonincreasing, or maintaining PI
(otherwise, the control problems would be trivial).

For both the Penrose–Banzhaf and the Shapley–Shubik power in-
dex, Rey and Rothe [26] showed that these five control problems
are PP-hard, and they observed that NPPP is the best known upper
bound for them. Our goal in this paper is to raise the PP-hardness
lower bound of these problems to NPPP-hardness, thus establishing
their completeness for this class. We now introduce another prob-
lem that will be used in some of our proofs, and we state its NPPP-
completeness (the proof can be found in the full version [17]):

EXIST-EXACT-SAT (E-EXASAT)

Given: A boolean formula φ with n variables x1, . . . , xn, an
integer k, 1 ≤ k ≤ n, and an integer �.

Question: Is there an assignment to the first k variables
x1, . . . , xk such that exactly � assignments to the re-
maining n− k variables xk+1, . . . , xn satisfy φ?

Lemma 1. E-EXASAT is NPPP-complete.

3 Transforming Truth Assignments of Boolean
Formulas to Weight Vectors

First, let us define a transformation from a truth assignment for a
given boolean formula to vectors of weights to be used for some
players in our reductions later on.

Definition 4. Let φ be given boolean formula in CNF with vari-
ables x1, . . . , xn and m clauses. Let k ∈ N with k ≤ n and
r = �log2 n� − 1. Let us define the following two sets of weight
vectors which are going to be assigned as weights to players divided
either into three sets—M , A, and C—or into four sets—M , A, C,
and C′—in our proofs later on:

Set 1: For some t ∈ N \ {0} such that 10t > 2�log2 n	+1, and for
i ∈ {1, . . . , n}, define

ai = 10t(m+1)+i +
∑

j : clause j
contains xi

10tj and

bi = 10t(m+1)+i +
∑

j : clause j
contains ¬xi

10tj ,

and for j ∈ {1, . . . ,m} and s ∈ {0, . . . , r}, define

cj,s = 2s · 10tj .

Define the following three weight vectors:

WM = (a1, . . . , ak, b1, . . . , bk),

WA = (ak+1, . . . , an, bk+1, . . . , bn),

WC = (c1,0, . . . , cm,r).

Set 2: For some t, t′ ∈ N \ {0} such that 10t
′
> 2�log2 n	+1 and

10t > 10t
′
+ 2�log2 n	+1 ∑m

l=1 10
lt′ , and for i ∈ {1, . . . , n},

define ai and bi as in Set 1, and for j ∈ {1, . . . ,m} and s ∈
{0, . . . , r}, let

c′j,s = 2s · 10t′j and cj,s = 2s · 10tj + c′j,s.

In addition to WM and WA defined as in Set 1, define the follow-
ing two weight vectors:

WC′ = (c′1,0, . . . , c
′
m,r) and WC = (c1,0, . . . , cm,r).

Additionally, let

q1 =
n∑

i=1

10t(m+1)+i + 2�log2 n	
m∑

j=1

10tj and

q2 =
n∑

i=1

10t(m+1)+i + 2�log2 n	
m∑

j=1

10tj

+
(
2�log2 n	 − 1

) m∑
j=1

10t
′j .

Lemma 2. Let i ∈ {1, 2}. There exists a bijective transformation
from the set of truth assignments satisfying a boolean formula φ to
the family of subsets of players with weights defined in Set i of Defi-
nition 4 whose total weight equals qi.

Proof Sketch. It can be shown that for each set S of weight qi,
for i ∈ {1, 2}, S has to contain exactly n players from M ∪ A
(namely, n players, each with exactly one weight from {aj , bj},
j ∈ {1, . . . , n}), and for each S ∩ (M ∪A), there exists exactly one
set of weight q1 with players from C for Set 1 and q2 from C ∪ C′

for Set 2 (but there can exist subsets ofM ∪A of the mentioned form
that are not contained in any set of weight qi).

Let us prove that there exists a bijection between the sets of
weight qi and the set of truth assignments to the variables x1, . . . , xn

satisfying the given formula φ.
For each truth assignment to the variables x1, . . . , xn, let 1 repre-

sent true and 0 false, and let

dl =

{
al if xl = 1,
bl if xl = 0.

(1)
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The resulting weight vector �d = (d1, . . . , dn) is unique for each as-
signment to x1, . . . , xn (from the previously mentioned assumption
that no clause contains both a variable and its negation, so al �= bl
for any l ∈ {1, . . . , n}). Also, if this vector �d corresponds to a satis-
fying assignment of φ, the total weight of the players’ subset in both
cases of Set 1 and Set 2 equals

n∑
l=1

dl =
n∑

l=1

10t(m+1)+l +
m∑

j=1

pj10
tj ,

where pj , 1 ≤ pj ≤ n, is at least 1 since each clause is satisfied by
our fixed assignment: For each clause j, there exists some xl making
it true (i.e., either xl = 1 and the clause j contains xl, or xl = 0 and j
contains ¬xl), which implies that the corresponding dl has 10tj as
one of its summands (i.e., either dl = al if xl is contained in clause j,
or dl = bl if ¬xl is contained in j). From the fact that pj �= 0 for
all j ∈ {1, . . . ,m} and the previous analysis, there exists exactly
one subset of C when i = 1 or exactly one subset of C ∪ C′ when
i = 2 such that the players with the corresponding weights together
with the players whose weights correspond to �d form a coalition of
weight qi. Therefore, for each truth assignment satisfying φ, there
exists a unique set of players from A ∪M ∪ C (respectively, A ∪
M ∪ C ∪ C′) with total weight qi.

Conversely, let S ⊆M∪A∪C for i = 1, and S ⊆M∪A∪C∪C′

for i = 2, be a coalition of players whose total weight is qi. From
the previous analysis, S can contain exactly one player with weight
from {aj , bj} for j ∈ {1, . . . , n}, and for S ∩ (M ∪A), there exists
exactly one subset of C for i = 1, and exactly one subset of C ∪ C′

for i = 2, which creates with the former a coalition of players with
total weight qi, i.e., there exist no two different sets S and S′ both
with wS = wS′ = qi such that S ∩ (M ∪A) = S′ ∩ (M ∪A).

For the set S ∩ (M ∪A) with the weight vector (d1, . . . , dn), set

x� =

{
1 if d� = a�

0 if d� = b�
(2)

for � ∈ {1, . . . , n}. For each clause j ∈ {1, . . . ,m}, there exists
some d� corresponding to the player whose weight’s part is equal to
10tj ; and if the weight is a�, clause j contains x�, so assigning true
to x� makes clause j true; otherwise, the player’s weight is b� and
the clause j contains ¬x�, so assigning false to x� makes j true.
Hence, this is a unique truth assignment to the variables x1, . . . , xn

that satisfies φ and is obtained by the described transformation from
the set S.

The full proof of Lemma 2 can be found in the full version [17].

4 NPPP-Hardness of Control by Adding Players to
a Weighted Voting Game

In this section, we show our results, i.e., we prove NPPP-hardness
of the control problems by adding players to a given WVG. Specifi-
cally, we will present full proofs of NPPP-hardness for three of the
problems. The remaining proofs (see Theorem 5) can be found in the
full version of this paper [17].

Theorem 3. CONTROL-BY-ADDING-PLAYERS-TO-INCREASE-β
is NPPP-complete.

Proof. We will prove NPPP-hardness by using a reduction from E-
MAJSAT. Let (φ, k) be a given instance of E-MAJSAT, where φ is
a boolean formula in CNF with variables x1, . . . , xn andm clauses,

and 1 ≤ k < n. Before we construct an instance of our control
problem from (φ, k), we need to choose some numbers and introduce
some notation.

Let t ∈ N be such that

10t > max
{
2�log2 n	+1, k + (n− k − 1)(k + 1)

}
, (3)

and for that t, given φ and k, we define q1 and WA, WC , and WM

as in Set 1 of Definition 4 for player sets A, C, and M .
Now, we construct an instance of CONTROL-BY-ADDING-

PLAYERS-TO-INCREASE-β: Let k be the limit for the number of
players that can be added, and letM be the set of 2k players that can
be added with the list of weights WM . Further, we define the quota
of the WVG G by

q = 2 · (wA + wM + wC + (n− k)(k + 1)) + 1, (4)

and we letN be the set of 4n−2k+m(r+1) players in G, subdivided
into the following seven groups:

• player p with weight 1 will be our distinguished player,
• group A contains 2(n− k) players with weight listWA,
• group C contains m(r + 1) players with weight listWC ,
• group W contains k players with weight list

(q − q1 − 2, q − q1 − 3, . . . , q − q1 − (k + 1)),

• group X contains k players with weight 1 each,
• group Y contains n− k players with weight list

(q− 1, q− 1− (k+1), . . . , q− 1− (n− k− 1)(k+1)), and

• group Z contains n− k − 1 players with weight k + 1 each.

This concludes the description of how to construct the instance
(G,M, p, k) of our control problem from the given instance (φ, k)
of E-MAJSAT. Obviously, this can be done in polynomial time.

Let us first discuss which coalitions player p can be pivotal for in
any of the games G∪M′ for some M ′ ⊆ M .1 Player p is pivotal for
those coalitions of players in (N \ {p}) ∪M ′ whose total weight is
q − 1. First, note that any two players from W ∪ Y together have
a weight larger than q. Therefore, at most one player from W ∪ Y
can be in any coalition player p is pivotal for. Moreover, by (4), all
players fromA∪C∪M∪X∪Z together have a total weight smaller
than q− 1. This means that any coalition S ⊆ (N \ {p})∪M ′ with
a total weight of q − 1 has to contain exactly one of the players in
W∪Y . Now, whether this player is inW or Y has consequences as to
which other players will also be in such a weight-(q−1) coalition S:

Case 1: If S contains a player fromW with weight, say, q−q1−�−1
for some �, 1 ≤ � ≤ k, S also has to contain those players from
A ∪ C ∪M whose weights sum up to q1 and j players from X .
Indeed, wX∪Z < 10t, so players from A ∪ C ∪M are needed to
achieve q1 + �. Moreover, they are able to achieve only the value
q1 because any subset of A ∪ C ∪M is divisible by 10t. At the
same time, each player in Z has weight k+1 > �, so no coalition
with them achieves q1 + �. Also, recall that q1 can be achieved
only by a set of players whose weights take exactly one of the
values from {ai, bi} for each i ∈ {1, . . . , n}, so S must contain
exactly n−k players fromA that already are in G (either ai or bi,
for k + 1 ≤ i ≤ n) and exactly k players from M (either ai or
bi, for 1 ≤ i ≤ k); these k players must have been added to the
game, i.e., |M ′| = k.

1 This also includes the case of the unchanged game G itself, namely for
M ′ = ∅.
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Case 2: If S contains a player from Y with weight, say, q − 1 −
�(k + 1) for some �, 0 ≤ � ≤ n − k − 1, then either S already
achieves weight q−1 for � = 0, or S has to contain � > 0 players
from Z. The players fromX are not heavy enough and since each
player from A ∪ C ∪M has a weight larger than wX∪Z (which,
together with any player from S, gives a total weight exceeding
the quota).

Since there are no players with weights ai or bi for i ∈ {1, . . . , k}
in game G, player p can be pivotal only for the coalitions described
in the second case above, and therefore,

β(G, p) =
∑n−k−1

j=0

(
n−k−1

j

)
2|N|−1

=
2n−k−1

2|N|−1
.

We now show the correctness of our reduction: (φ, k) is a yes-
instance of E-MAJSAT if and only if (G,M, p, k) as defined
above is a yes-instance of CONTROL-BY-ADDING-PLAYERS-TO-
INCREASE-β.

Only if: Suppose that (φ, k) is a yes-instance of E-MAJSAT,
i.e., there exists an assignment to x1, . . . , xk such that a majority
of assignments to the remaining n − k variables yields a satisfying
assignment for the boolean formula φ. Let us fix one of these satis-
fying assignments to x1, . . . , xn. From this fixed assignment, we get
the vector (d1, . . . , dn) as defined in the proof of Lemma 2, where
the first k positions correspond to the players M ′ ⊆ M , |M ′| = k,
which we add to the game G.

Since there are more than 2n−k−1 assignments to xn−k, . . . , xn

which—together with the fixed assignments to x1, . . . , xk—
satisfy φ, by Lemma 2 there are more than 2n−k−1 subsets of
A∪C∪M ′ such that the players’ weights in each subset sum up to q1.
Each of these subsets with total weight q1 can form coalitions of
weight q−1with each player fromW having weight q−q1−(�+1),
� ∈ {1, . . . , k}, and � weight-1 players from X—and there are

(
k
�

)
such coalitions. Therefore, recalling from Case 2 above that Y ∪ Z
already contains 2n−k−1 coalitions of weight q − 1, we have

β(G∪M′ , p) >
2n−k−1 + 2n−k−1 ∑k

�=1

(
k
�

)
2|N|+k−1

=
2n−k−1 + (2k − 1) · 2n−k−1

2|N|+k−1

=
2k · 2n−k−1

2|N|+k−1
=

2n−k−1

2|N|−1
= β(G, p),

so player p’s Penrose–Banzhaf index is strictly larger in the new
game G∪M′ than in the old game G, i.e., we have constructed a yes-
instance of our control problem.

If: Assume now that (φ, k) is a no-instance of E-MAJSAT, i.e.,
there does not exist any assignment to the variables x1, . . . , xk such
that a majority of assignments to the remaining n − k variables sat-
isfies the boolean formula φ. In other words, for each assignment to
x1, . . . , xk, there exist at most 2n−k−1 assignments to xk+1, . . . , xn

that yield a satisfying assignment for φ. Again, we consider subsets
M ′ ⊆ M of players that uniquely correspond to the assignments of
x1, . . . , xk according to Lemma 2. Note that any other possible sub-
set will not allow to form new coalitions for which player p could be
pivotal in the new game, i.e., p’s Penrose–Banzhaf index will not in-
crease unless we add any player with weight either ai or bi for each
i ∈ {1, . . . , k}.

By Lemma 2 and our assumption, there are at most 2n−k−1 sub-
sets of A ∪ C ∪ M ′ such that the players’ weights in each subset
sum up to q1. As in the proof of the “Only if” direction, for each

� ∈ {1, . . . , k}, each of these subsets ofA∪C∪M ′ forms
(
k
�

)
coali-

tions of weight q−1with a player inW having weight q−q1−(�+1)
and � players in X . Again recalling from Case 2 above that Y ∪ Z
already contains 2n−k−1 coalitions of weight q − 1, we have

β(G∪M′ , p) ≤ 2n−k−1 + (2k − 1) · 2n−k−1

2|N|+k−1

=
2k · 2n−k−1

2|N|+k−1
=

2n−k−1

2|N|−1
= β(G, p).

Thus player p’s Penrose–Banzhaf index cannot increase by adding
up to k players fromM to the game G, and we have a no-instance of
our control problem.

Theorem 4. CONTROL-BY-ADDING-PLAYERS-TO-INCREASE-ϕ
and CONTROL-BY-ADDING-PLAYERS-TO-NONDECREASE-ϕ are
NPPP-complete.

Proof. We prove NPPP-hardness of both control problems using
one and the same reduction from E-MAJSAT (and argue slightly
differently for them). Let (φ, k) be a given instance of E-MAJSAT,
where φ is a boolean formula in CNF with variables x1, . . . , xn and
m clauses, and let k < n.

Before we construct an instance of our control problems from
(φ, k), we need to choose some numbers and introduce some no-
tation. Let

P = 6n2m+ 26n2 + 8k2 + 8nm+ 18n+ 4k − 2m− 3

be the number of players in our game (note that P is an odd number).
The numbers

δ = 3n2m+ 13n2 + 4k2 + 3nm+ 5n+ 4k − 2m− 5,

x = δ + nm+ 4n− 2k +m+ 3 =
P − 1

2
, and

k′ =
(
1 +

x+ 1

P − x

)
· . . . ·

(
1 +

x+ 1

P − x+ k − 1

)
≤ 2k

with k′ ≥ 2, will be used in our calculations later in the proof. Fi-
nally, let

z = �2n−k+1(k′ − 1)� − 1 < 2n+1

and choose y1, . . . , yu with y1 > · · · > yu such that

z = 2y1 + · · ·+ 2yu

is satisfied. Note that y1 ≤ n and u ≤ n.
To make the calculations in our proof simpler, we want all

coalitions counted for computing the Shapley–Shubik indices to
be equally large (to be more specific, we want these coalitions to
have size x). Therefore, we define the following values. For i ∈
{0, 1, . . . , 2n− 2k}, let

αi = nm+ 4n− 2k +m+ 2− i,

and for i ∈ {0, . . . , y1}, let
βi = (n− r)m+ 3n− 2k + 2− i.

Finally, let t′ ∈ N be such that

10t
′
> max

{
2�log2 n	+1, (2n− 2k + 1)w′

}

for w′ = (α2n−2k + 1)w∗
2n−2k as defined in Table 1. For φ, k, and

t′, let t, q2, M , A, C, and C′ with weight lists WM , WA, WC , and
WC′ be defined as in Set 2 of Definition 4.

J. Kaczmarek and J. Rothe / Control by Adding Players to Change or Maintain the Shapley–Shubik or the Penrose–Banzhaf Power Index 3529



Table 1: Groups of players in the proof of Theorem 4, with their categories, numbers, and weights (note that, e.g., the sum
∑i−1

j=0 βjvj in the
second (size) row has value 0 for i = 0)

Category Group Number of Players Weights

distinguished player p 1 1

(ms) A 2n− 2k WA

(ms) C m(r + 1) WC

(ms) C′ m(r + 1) WC′

(size) D δ 1

(def) S
∑u

i=1(yi + 1)
q − q2 − βjivji − jiv

′
i − δ − 1

for i ∈ {1, . . . , u} and ji ∈ {0, . . . , yi}
(size) Vi for i ∈ {0, . . . , y1} βi vi = 1 + δ +

∑i−1
j=0 βjvj

(num) V ′
i for i ∈ {1, . . . , u} yi v′i = (βy1 + 1)vy1 +

∑i−1
i′=1

yi′v
′
i′

(def) T 2n− 2k + 1
q − αiw

∗
i − iw′ − δ − 1

for i ∈ {0, . . . , 2n− 2k}
(size) W ∗

i for i ∈ {0, . . . , 2n− 2k} αi w∗
i = (yu + 1)v′u +

∑i−1
i′=0

αi′w
∗
i′

(num) W ′ 2n− 2k w′ = (α2n−2k + 1)w∗
2n−2k

Z remaining players q

Now, we are ready to construct the instance of our two control
problems by adding players to increase or to nondecrease a given
player’s Shapley–Shubik power index as follows: Let k be the limit
for the number of players that can be added, let M be the set of 2k
players that can be added and letWM be the list of their weights, let

q = 2·
(
wA + wM + wC + wC′ + 10t

′
+ 1

)

be the quota of G, and let N be the set of P players in game G,
subdivided into groups as presented in Table 1.

Note that each group of players in Table 1 (except the distin-
guished player p and groupZ whose players are not part of any coali-
tion for which p is pivotal) belongs to some category: We categorize
players by their function, i.e., there are groups of players who are
responsible for defining coalitions that are counted when computing
the Shapley–Shubik indices; other groups of players are responsible
for the size of the coalition they are in (again, when counted in these
indices); and there are players who are responsible for the number of
coalitions. Some of these players are defined by setting their weights
to the quota minus some values that have to be satisfied by other play-
ers (for a sufficiently large quota, so as to make it impossible for the
distinguished player to be pivotal for any coalition containing more
than one of these players). For the remaining players, we define their
weights in such a way that they are not interchangeable.

In more detail, the players with category (def) “define” which
other players are needed to create a coalition of weight q− 1, among
the players with category (ms) and the players in M , we will focus
on those coalitions whose total weight is q2. The main purpose of
the players from the groups marked (num) is to specify the number
of coalitions for which player p can be pivotal. The players from
groups with category (size) are used to make all these coalitions of
equal size (among these players, the players with the same weight
are together part of the same coalitions). Now, we will discuss the
coalitions counted in our proof in detail.

Let us analyze for what coalitions player p can be pivotal in G or
any new game resulting from G by adding players from M . Player p

is pivotal for coalitions of weight q − 1. First, note that any two
players from S ∪ T together have a total weight larger than q. Next,
the total weight of N \ ({p} ∪ S ∪ T ∪ Z) is smaller than q − 1.
Therefore, a coalition with a total weight of q − 1 has to contain
exactly one of the players in S ∪ T and whether this player is in S
or T has consequences as to which other players have to be in such a
coalition:

Case 1: If the coalition contains a player from S, it also has to con-
tain the players from M ∪ A ∪ C ∪ C′ whose weights sum up to
q2, some players from Vi ∪ V ′

i (for i defined as in Table 1), and
all players fromD—the players from

y1⋃
i=0

Vi ∪
u⋃

i=1

V ′
i ∪

2n−2k⋃
i=0

W ∗
i ∪W ′ ∪D

have total weight smaller than 10t
′
. Therefore, q2 can be achieved

only by the players from M ∪A ∪ C ∪ C′. Recalling that q2 can
be achieved by a set consisting of those players whose weights
take exactly one value in {ai, bi} for each i ∈ {1, . . . , n}, we
have to add a set M ′ ⊆ M with |M ′| = k to G. But weights of
players from M ∪ A ∪ C ∪ C ′ can sum up only to values which
are divisible by 10t

′
therefore they can achieve only the q2-part.

Each player from
⋃2n−2k

i=0 W ∗
i ∪W ′ also is too heavy to achieve

the required value.
Case 2: If the coalition contains a player from T , the coalition also

has to contain some of the players from W ∗
i ∪W ′ and all play-

ers from D. Also here, we do not find any other combination of
players which could form a weight-(q− 1) coalition with a player
in T—all players in

y1⋃
i=0

Vi ∪
u⋃

i=1

V ′
i ∪D

have a total weight too small to be able to replace even one player
from

⋃2n−2k
i=0 W ∗

i ∪W ′ and (as mentioned in Case 1) any player
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in M ∪ A ∪ C ∪ C′ together with any player from T has total
weight larger than q − 1.

In both cases, each coalition has the same size of

1 + δ + n+m(r + 1) + βj + j = 1 + δ + αi + i = x

for any i ∈ {0, . . . , 2n− 2k} and j ∈ {0, . . . , y1}.
Since there are no players with weights ai or bi for i ∈ {1, . . . , k}

in game G, player p can be pivotal only for the coalitions described
in the second case above and therefore,

ϕ(G, p) = 22n−2k x!(P − x− 1)!

P !
.

To prove the correctness of the reduction, we show that the follow-
ing three statements are pairwise equivalent:

• (φ, k) is a yes-instance of E-MAJSAT;
• (G,M, p, k) is a yes-instance of CONTROL-BY-ADDING-

PLAYERS-TO-INCREASE-ϕ;
• (G,M, p, k) is a yes-instance of CONTROL-BY-ADDING-

PLAYERS-TO-NONDECREASE-ϕ.

Suppose (φ, k) is a yes-instance of E-MAJSAT, i.e., there exists
an assignment to x1, . . . , xk such that a majority of assignments of
the remaining n − k variables satisfies the boolean formula φ. Let
us fix one of these satisfying assignments. From this fixed assign-
ment, we get the vector �d = (d1, . . . , dn) as defined in the proof
of Lemma 2, where the first k positions correspond to the players in
M ′ ⊆M , |M ′| = k, which we add to the game G.

Since there are at least 2n−k−1+1 assignments for xn−k, . . . , xn

which—together with the fixed assignments for x1, . . . , xk—
satisfy φ, by Lemma 2 there are more than 2n−k−1 subsets of
M ′ ∪A ∪C ∪C′ such that the players’ weights in each subset sum
up to q2. Now, each of these subsets can form 2y1 + · · · + 2yu = z
coalitions with the players from

S ∪
y1⋃
i=0

Vi ∪
u⋃

i=1

V ′
i ∪D

for which player p is pivotal in the new game G∪M′ . Therefore,

ϕ(G∪M′ , p)

≥
(
22n−2k + z · (2n−k−1 + 1)

)x!(P + k − 1− x)!

(P + k)!

=
(
22n−2k +

(
�2n−k+1(k′ − 1)� − 1

)
·
(
2n−k−1 + 1

))

· x!(P − 1− x)!

P !
· (P − x) · · · (P + k − 1− x)

(P + 1) · · · (P + k)

≥
(
22n−2k +

(
2n−k+1(k′ − 1)− 1

)
·
(
2n−k−1 + 1

))

· 1
k′

x!(P − 1− x)!

P !

=
(
22n−2kk′ − 2n−k−1 + 2n−k+1(k′ − 1)− 1

)

· 1
k′ ·

x!(P − 1− x)!

P !

> ϕ(G, p),

so player p’s Shapley–Shubik power index is strictly larger in the
new game G∪M′ than in the old game G, i.e., we have constructed a
yes-instance of both our control problems.

Conversely, suppose now that (φ, k) is a no-instance of
E-MAJSAT, i.e., for each assignment to x1, . . . , xk, there exist at
most 2n−k−1 assignments of xk+1, . . . , xn which satisfy φ. It is
enough to consider subsets M ′ ⊆ M of players that uniquely cor-
respond to the assignments of x1, . . . , xk according to Lemma 2,
because any other possible subset will not allow to form new coali-
tions for which player p could be pivotal in the new game, i.e., p’s
Shapley–Shubik index will only decrease if we do not add any player
with weight either ai or bi for each i ∈ {1, . . . , k}.

Now let M ′ ⊆ M be any subset of players that corresponds to
some assignment to x1, . . . , xk. By Lemma 2 and our assumption,
there are at most 2n−k−1 subsets ofM ′ ∪A ∪ C ∪ C′ such that the
players’ weights in each subset sum up to q2. For each of these sets,
there are exactly z new coalitions described in Case 1 for which p is
pivotal after adding the new players from M ′. Therefore,

ϕ(G∪M′ , p)

≤
(
22n−2k +

(
�2n−k+1(k′ − 1)� − 1

)
· 2n−k−1

)

· x!(P − 1− x)!

P !
· (P − x) · · · (P + k − 1− x)

(P + 1) · · · (P + k)

<
(
22n−2k + 2n−k+1(k′ − 1) · 2n−k−1

)

· 1
k′ ·

x!(P − 1− x)!

P !

=
22n−2kk′

k′ · x!(P − 1− x)!

P !
= ϕ(G, p),

which means that the Shapley–Shubik index of player p decreases.
Thus the Shapley–Shubik index of player p can neither increase nor
nondecrease by adding up to k players from M to the game G, and
we have a no-instance of both our control problems.

Theorem 5. The following seven problems are NPPP-complete:

(a) CONTROL-BY-ADDING-PLAYERS-TO-NONDECREASE-β;
and for γ ∈ {β, ϕ},

(b) CONTROL-BY-ADDING-PLAYERS-TO-DECREASE-γ,
(c) CONTROL-BY-ADDING-PLAYERS-TO-NONINCREASE-γ, and
(d) CONTROL-BY-ADDING-PLAYERS-TO-MAINTAIN-γ.

5 Conclusions

We have shown that control by adding players to WVGs so as to
change or maintain a given player’s Shapley–Shubik or Penrose–
Banzhaf index is NPPP-complete, thus settling the complexity of
these problems by raising their lower bounds so as to match their
upper bound. Compared with the eminently rich body of results on
control attacks in voting [11], these results fill a glaring gap in the
literature on WVGs which—perhaps due to the immense hardness of
these problems that is proven here—fairly much has neglected issues
of control attacks to date.

For future work, we propose to study the corresponding problems
for deleting players from WVGs. Further, it would be interesting
to study these problems in the model proposed by Kaczmarek and
Rothe [16] in which the quota is indirectly changed when players are
added or deleted. Our techniques may also turn out to be useful for
closing the complexity gap for other problems in NPPP only known
to be PP-hard, such as false-name manipulation [1, 25] and control
by adding or deleting edges in graph-restricted WVGs [18].
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