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Abstract. In fair division, local envy-freeness is a desirable prop-
erty which has been thoroughly studied in recent years. In this paper,
we study explanations which can be given to explain that no allo-
cation of items can satisfy this criterion, in the house allocation set-
ting where agents receive a single item. While Minimal Unsatisfiable
Subsets (MUSes) are key concepts to extract explanations, they can-
not be used as such: (i) they highly depend on the initial encoding
of the problem; (ii) they are flat structures which fall short of captur-
ing the dynamics of explanations; (iii) they typically come in large
number and exhibit great diversity. In this paper we provide two SAT
encodings of the problem which allow us to extract MUS when in-
stances are unsatisfiable. We build a dynamic graph structure which
allows to follow step-by-step the explanation. Finally, we propose
several criteria to select MUSes, some of them being based on the
MUS structure, while others rely on this original graphical explana-
tion structure. We give theoretical bounds on these metrics, showing
that they can vary significantly for some instances. Experimental re-
sults on synthetic data complement these results and illustrate the
impact of the encodings and the relevance of our metrics to select
among the many MUSes.

1 Introduction

The need to make AI systems accountable has gained momentum
in recent years, with a staggering amount of contributions dedicated
to explaining ML-based recommendations in particular [10]. In this
landscape, explaining collective decisions has been relatively ne-
glected, with a few notable exceptions, especially in voting [7, 9, 23].
This may come as a surprise as this is a context in which explanations
are particularly valuable and challenging, as emphasized by Surya-
narayana et al. [25]. Indeed, the outcome is likely to make some
agents not fully satisfied, and mechanisms for collective decision
typically articulate several criteria which require to be justified, even
though axioms provide a good normative basis [24].

In this paper we tackle a problem of fair division [22] where agents
are located on a graph, and the designer’s objective is to allocate
exactly one item to each agent in such a way that no agent envies
a neighbor in this graph [3]. This is arguably one of the most basic
settings of a problem studied in many contexts [8, 11, 16]. Our prime
objective is to explain the fact that, for a given instance, no allocation
can satisfy the desired criterion of local envy-freeness. As we will
see, this setting is both simple and rich enough to unveil many facets
of explanations in this context, providing a concrete example of the
still scarce explainable fair division domain [15]. Recently, Zahedi
et al. [26] proposed an approach allowing to counterfactually contest

an allocation in a context of incomplete information of other agents’
preferences, seeing the problem as a sequential bargaining game.

Our approach will rely on the Boolean Satisfiability (SAT) model-
ing of the problem, and on the use of Minimally Unsatisfiable Sub-
sets (MUSes) of clauses as natural candidates to exhibit concise cer-
tificates of unsatisfiability, following a well-established tradition of
SAT or constraint-based formal explanations [2, 13, 14, 19]. While
many approaches assume that MUSes are viable explanations per se,
our contribution explores what it takes to turn them into proper ex-
planations. While MUSes are precious intermediary steps towards
explanations, they suffer from several issues: (i) they highly depend
on the initial encoding of the problem, meaning that the objective
of explanation must be integrated early in the modeling process; (ii)
they are flat structures which fall short of capturing the dynamics of
explanations, meaning that they must be translated to a representa-
tion more amenable to an interactive process [6]; (iii) they typically
come in large number and exhibit great diversity, meaning that some
criteria must be used to filter out the most convincing explanations.

In this paper, we provide two SAT encodings for deciding whether
a locally envy-free allocation exists. These encodings allow us to ex-
tract MUSes (Section 3). While Answer Set Programming encodings
for more general resource allocation problems have been proposed
before [20], our encodings are dedicated to this setting and more eas-
ily amenable to explanations. In Section 4, we show how to build a
dynamic graph structure from a MUS which allows to follow step-
by-step the explanation. This is in line with other approaches which
seek to provide step-by-step explanations for constraint satisfaction
problems [6]. Finally, we propose in Section 5 several criteria to se-
lect MUSes, some of them being based on the MUS structure, while
others rely on this original graphical explanation structure. We give
theoretical bounds on these metrics, showing that they can vary sig-
nificantly for some instances. Experimental results reported in Sec-
tion 6 on synthetic data complement these results and illustrate the
impact of the encodings and the relevance of our metrics to select
among the many MUSes. Due to space restrictions, some proofs and
experimental results are deferred to the technical report [4].

2 Preliminaries

For any integer k, let [k] denote {1, . . . , k}. LetN = [n] be a set of n
agents andO = {o1, o2, . . . , on} be a set of n indivisible objects (or
items) that must be assigned to the agents. The agents express strict
ordinal preferences over the objects, that is the preferences of each
agent i ∈ N are represented by a linear order �i over O. The goal
is to find an allocation σ : N → O such that {σ(i) | i ∈ N} = O
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and σ(i) �= σ(j) for every pair of agents i, j ∈ N . We aim to fulfill
the fairness criterion of local envy-freeness [3] which is based on the
plausible envy that may occur between agents, because it takes into
account the relations between the agents which are given by a social
network represented by an undirected graph G = (N,E).

Definition 1 (Local Envy-Freeness). An allocation σ is locally envy-
free (LEF) if for every pair of agents i, j ∈ N such that {i, j} ∈ E,
we have σ(i) �i σ(j).

Note that a locally envy-free allocation does not always exist and
deciding about its existence is NP-complete [3]. An instance of fair
house allocation is given by I = 〈N,O, (�i)i∈N , G = (N,E)〉,
and the set of all possible instances is denoted by I. Let I denote the
set of all instances where no LEF allocations exist.

Approaches based on Boolean Satisfiability (SAT) propose to rep-
resent a set of constraints to satisfy as a Conjunctive Normal Form
(CNF) formula, i.e., a set of clauses, and check whether this set ad-
mits at least one model (i.e., an interpretation which makes the for-
mula true) [5]. A CNF is unsatisfiable when it does not admit any
model. Given a CNF φ, a MUS is an unsatisfiable subset ψ ⊆ φ
of clauses such that removing any clause from ψ makes it satisfi-
able. Computing a MUS is difficult in general, as it requires (several)
calls to a SAT solver [21]. However, algorithms which are efficient in
practice are available, like the algorithm implemented in the library
that is used later in the experimental part of this paper [17]. In this
article, we will use a SAT-based approach to explain the lack of LEF
allocations.

3 SAT Formulation of Local Envy-Freeness

We first propose two variants of a SAT encoding such that, for a given
instance I , the corresponding Boolean formula is satisfiable iff I is
LEF, i.e., there exists an LEF allocation. Moreover the models of the
formula correspond to LEF allocations. As far as we know, this is the
first attempt at encoding LEF into SAT.

For our SAT encodings, we use the following Boolean allocation
variables: ∀i ∈ N, ∀o ∈ O, σi,o = 
 iff o is allocated to i. The
constraints that encode the specific structure of the allocation and the
local envy-freeness requirement are defined as follows.

φalloc =
∧

i∈N

(
φ≥1,N
alloc (i) ∧

∧

o∈O

(
∧

j∈N :j>i

φ≤1,O
alloc (o, i, j)

))

with: φ≥1,N
alloc (i) =

∨

o∈O

σi,o, φ≤1,O
alloc (o, i, j) = (¬σi,o ∨ ¬σj,o)

φlef =
∧

i∈N

∧

j∈N :{i,j}∈E

∧

o∈O

φlef (i, j, o), where

φlef (i, j, o) = ¬σi,o ∨
∨

o′∈O: o′�jo ∧ o�io′
σj,o′

The φlef (., ., .) clauses are called lef-clauses while structural
clauses φ≥1,N

alloc (.) and φ≤1,O
alloc (., ., .) are called at-least-one-per-agent

and at-most-one-per-object allocation clauses, respectively. In to-
tal, we have n at-least-one-per-agent clauses, n2(n−1)

2
at-most-one-

per-object clauses, and 2n|E| lef-clauses. Intuitively, a lef-clause
φlef (i, j, o) means that, if agent i receives the object o, then her
neighbor j must receive an object o′ such that j prefers o′, and i
prefers o.

Note that, in case {o′ ∈ O : o′ �j o ∧ o �i o
′} = ∅ for given

two agents i and j and object o, we have the associated lef-clause
which is reduced to a single negative literal: φlef (i, j, o) = (¬σi,o).

Proposition 1. There exists a locally envy-free allocation iff formula
φ = φalloc ∧ φlef is satisfiable.

Note that the structural allocation clauses in φalloc are sufficient
to impose that exactly one object is assigned to every agent, because
there are exactly as many objects as agents. However, one may add
redundant clauses specifying that each object must be allocated at
least once (at-least-one-per-object clauses) and no agent can be as-
signed more than one object (at-most-one-per-agent clauses), with-
out hurting the encoding of LEF allocations.

φ+
alloc = φalloc∧

∧
oj∈O φ≥1,O

alloc (oj)∧
∧

i∈N

∧
k>j φ

≤1,N
alloc (i, oj , ok)

with: φ≥1,O
alloc (o) =

∨
i∈N σi,o, φ≤1,N

alloc (i, o, o
′) = (¬σi,o∨¬σi,o′)

Corollary 2. There exists a locally envy-free allocation iff formula
φ+ = φ+

alloc ∧ φlef is satisfiable.

In general, clauses φ≥1,·
alloc are called at-least clauses and clauses

φ≤1,·
alloc are called at-most clauses. The encodings based on formulas

φ and φ+ are called the basic and redundant encodings, respectively.
When an LEF allocation does not exist, we will particularly focus

on subsets of clauses of φ or φ+ that make the instance negative. In
this respect, the redundant encoding φ+ can sometimes be useful to
derive more direct explanations. We first provide a basic observation
on key clauses for unsatisfiability.

Observation 3. Each unsatisfiable subset of clauses must contain at
least one at-least clause and at least one lef-clause.

4 Satisfiability Implication Graph

Our goal is to provide explanations for the non-existence of LEF
allocations. For this purpose, we will construct a graph representation
of unsatisfiable subsets of clauses.

4.1 Construction of the graph

Let us first analyze the structure of the clauses of formula φ+. Ob-
serve that the lef-clauses and at-least clauses are dual-Horn clauses,
i.e., they contain at most one negative literal, thus they can be writ-
ten as implications between a positive literal (or “true” for an at-least
clause) and a disjunction of positive literals. The at-most clauses are
goal clauses, i.e., they contain no positive literals, and thus they can
be written as an implication between a conjunction of positive liter-
als and “false”. It follows that we can generally rewrite all clauses of
the LEF formula φ+ as an implication between a (possibly empty)
conjunction of positive literals and a (possibly empty) disjunction of
positive literals. More precisely, the clauses of φ+ can be rewritten
as simple implications as follows:

φ≥1,N
alloc (i) = 
 →

∨

o∈O

σi,o; φ≥1,O
alloc (o) = 
 →

∨

i∈N

σi,o

φ≤1,O
alloc (o, i, j) = (σi,o ∧ σj,o) → ⊥

φ≤1,N
alloc (i, o, o

′) = (σi,o ∧ σi,o′) → ⊥
φlef (i, j, o) = σi,o →

∨

o′∈O: o′�jo ∧ o�io′
σj,o′

(1)

For a given subset of clauses ψ, we construct its satisfiability
implication graph Hψ = (V ψ, Fψ), which is a directed bipartite
graph where the nodes are partitioned into variable-nodes and clause-
nodes, i.e., V ψ = V arψ ∪ Clψ with V arψ := {
,⊥} ∪ {σi,o :
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σi,o ∈ ψ or ¬σi,o ∈ ψ} and Clψ := ψ, and Fψ denotes the set
of arcs between variable-nodes and clause-nodes. The set of arcs is
such that there is an arc in Fψ from a variable-node x to a clause-
node y iff x corresponds to a variable which is part of the implicant
conjunction of the clause (as formulated in (1)) related to y, and an
arc from a clause-node y to a variable-node z iff z corresponds to a
variable which is part of the implied disjunction of the clause related
to y. More precisely, we have the following arcs in Fψ:

• for every at-least clause φ≥1,Y
alloc (x) ∈ ψ where Y ∈ {N,O}, we

have the arcs (
, φ≥1,Y
alloc (x)) and:

– (φ≥1,Y
alloc (x), σx,o) for every o ∈ O if Y = N , or

– (φ≥1,Y
alloc (x), σi,x) for every i ∈ N if Y = O;

• for every at-most clause φ≤1,Y
alloc (x, y, z) ∈ ψ, for Y ∈ {N,O},

we have the arcs (φ≤1,Y
alloc (x, y, z),⊥) and:

– (σy,x, φ
≤1,Y
alloc (x, y, z)) and (σz,x, φ

≤1,Y
alloc (x, y, z)) if Y = O,

– (σx,y, φ
≤1,Y
alloc (x, y, z)) and (σx,z, φ

≤1,Y
alloc (x, y, z)) if Y = N ;

• for every lef-clause φlef (i, j, o) ∈ ψ, we have the arcs
(σi,o, φlef (i, j, o)) and (φlef (i, j, o), σj,o′) for all o′ ∈ O s.t.
o′ �j o and o �i o

′, or (φlef (i, j, o),⊥) if there is no such o′.

The construction of the satisfiability implication graph is illus-
trated in the next example.

Example 1. Let us consider the following instance with four agents.

1 : o1 � o4 � o3 � o2
2 : o1 � o2 � o4 � o3
3 : o3 � o4 � o1 � o2
4 : o2 � o3 � o4 � o1

1 2 3 4

We consider the subset of clauses ψ given below on the left. The
associated satisfiability implication graph Hψ can be constructed as
shown below on the right, where variable-nodes are represented with
circles and clause-nodes with rectangles.

φ≥1,N
alloc (2) = (σ2,o1 ∨ σ2,o2 ∨ σ2,o3 ∨ σ2,o4)

φlef (2, 3, o2) = (¬σ2,o2 ∨ σ3,o3 ∨ σ3,o4)
φlef (3, 4, o3) = (¬σ3,o3 ∨ σ4,o2)
φlef (3, 4, o4) = (¬σ3,o4 ∨ σ4,o2)

φ≤1,O
alloc (o2, 2, 4) = (¬σ2,o2 ∨ ¬σ4,o2)

φlef (2, 1, o1) = (¬σ2,o1)
φlef (2, 1, o3) = (¬σ2,o3)
φlef (2, 1, o4) = (¬σ2,o4)




φ≥1,N
alloc (2)

⊥

σ2,o2 σ2,o1 σ2,o3 σ2,o4

φlef (2, 3, o2)

σ3,o3

φlef (3, 4, o3)

σ3,o4

φlef (3, 4, o4)

σ4,o2

φ≤1,O
alloc (o2, 2, 4)

φlef (2, 1, o1)

φlef (2, 1, o3)

φlef (2, 1, o4)

4.2 Dynamic activation process

A satisfiability implication graphHψ is associated with an activation
function v : V ψ → {0, 1}. A node x is said to be activated iff
v(x) = 1. The interpretation of the activation differs depending on
the types of the node:

• an activated variable-node means that we set the corresponding
variable to true, and

• an activated clause-node means that the implicant part of the
clause (as formulated in (1)) is true and thus the implied part must
be true too.

We represent a dynamic activation process on the satisfiability im-
plication graph by considering an initial activation state v0 where
only the variable-node 
 is activated, and then recursively defin-
ing new successor activation states as described below. An activation
state v′ is a successor of activation state v iff v′ �= v and:

• if v(x) = 1, then v′(x) = 1, for every node x ∈ V ψ ,
• if x is a clause-node and all predecessors of x are activated in v,

then x becomes activated in v′,
• if x is a clause-node and becomes activated in v, then one of its

successor variable-nodes y is chosen to be activated in v′.

The set of all possible successor activation states of an activation
state v is denoted by succψ(v), and all activated nodes in a given
activation state v is denoted by activψ(v), i.e., activψ(v) := {x ∈
V ψ : v(x) = 1}. By definition, between one activation state v and
one of its successor states v′ ∈ succψ(v), we have activψ(v) �

activψ(v′). We create new successor activation states as long as it
is possible, but then, by strict monotony, there necessarily exist ac-
tivation states v which are final, i.e., succψ(v) = ∅. Let Sψ denote
the set of all activation states.1 Let an activation path define a path
〈v0, v1, . . . , vT 〉, where for each t ∈ [T ], vt ∈ succψ(vt−1) and
succψ(vT ) = ∅, i.e., vT is a final activation state. Let us denote by
Pψ the set of all possible activation paths. The size |v| of an activa-
tion path v = 〈v0, v1, . . . , vT 〉 ∈ Pψ is equal to T .

The dynamic activation process on the satisfiability implication
graphHψ associated with a subset of clauses ψ enables to character-
ize the satisfiability of ψ, as stated below.

Theorem 4. A subset of clauses ψ is unsatisfiable iff every activation
path 〈v0, v1, . . . , vT 〉 ∈ Pψ eventually activates the node ⊥, i.e.,
⊥ ∈ activψ(vT ).

Sketch of proof. Suppose that there exists an activation path v =
〈v0, v1, . . . , vT 〉 in Pψ such that ⊥ /∈ activψ(vT ). We construct
the corresponding truth assignment ϕ of the variables of ψ, i.e., ϕ
sets to true all variables associated with variable-nodes which are ac-
tivated in vT and sets to false the remaining variables of ψ. One can
prove that ϕ satisfies all the clauses of ψ and thus ψ is satisfiable.

Suppose now that the set of clauses ψ is satisfiable, i.e., there ex-
ists a truth assignment ϕ of the variables of ψ such that all clauses
of ψ are satisfied. Let us construct a specific activation path v =
〈v0, v1, . . . , vT 〉 where only node 
 is activated in v0 and, for ev-
ery t ∈ [T ], we choose vt ∈ succψ(vt−1) in such a way that only
variable-nodes associated with true positive literals in ϕ are activated
(following this definition,⊥ cannot be activated). One can prove that
the constructed path v is indeed a valid activation path, in the sense
that vT is a final activation state, i.e., succψ(vT ) = ∅.

4.3 Textual explanation from the graph activations

From the satisfiability implication graph and its activation states, we
can thus deduce a formal proof to derive an explanation for the non-
existence of an LEF allocation. This explanation can be constructed
by performing a depth-first search over activation states starting from
v0 and each time printing the meaning of each new activated node,
i.e., by calling ExplPψ (v0), where ExplPψ (v) is defined as de-
scribed in Algorithm 1, and semantics(x) refers to the textual
meaning of each node x as defined in Table 1.

Let us compute a textual explanation for our running example.

1 By definition, Sψ only contains the initial activation state v0 and activation
states which are successors from previously created activation states.
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Table 1. Description of the semantics of the nodes of graph Hψ

Node x semantics(x)

σi,o “Suppose that object o is assigned to agent i.”

⊥ “Contradiction.”

φ≥1,N
alloc (i) “Agent i must get at least one object.”

φ≥1,O
alloc (o) “Object o must be assigned to at least one agent.”

φ≤1,O
alloc (o, i, j) “Object o cannot be assigned to both agents i and j.”

φ≤1,N
alloc (i, o, o′) “Agent i cannot get both objects o and o′.”

φlef (i, j, o) “If agent i gets object o then, to avoid local envy, her neigh-
bor j must be assigned to an object that agent j prefers to
o and that agent i likes less than o, i.e., one object among:”
{o′ ∈ O : o′ �j o ∧ o �i o

′}.

Algorithm 1: ExplPψ (v)

Input: Activation state v
1 if ⊥ ∈ activψ(v) then return;
2 foreach v′ ∈ succψ(v) do

3 foreach x ∈ activψ(v′) \ activψ(v) do
4 print(semantics(x));

5 ExplPψ (v′);

Example 1 (continued). Let us run Algorithm 1 with the call
ExplPψ (v0) on the instance given in Example 1. We detail in Fig-
ure 1 the output of the algorithm by mentioning the specific calls with
the activation states indexed w.r.t. the depth-first search traversal.

5 Minimal Explanation based on MUS

In this section, we will try to derive minimal explanations for nega-
tive instances (when no LEF allocations exist), based on MUSes. We
denote by M(I) (resp., M+(I)) the set of all MUSes of φ (resp.,
φ+) for instance I ∈ I. Basically,M(I) ⊆ M+(I), andM(I) �= ∅
iff M+(I) �= ∅ iff I ∈ I. We first observe that the satisfiability im-
plication graph associated with a MUS exhibits a particular structure.

Proposition 5. If a set of clauses ψ is a MUS, then the satisfiability
implication graph Hψ is connected and contains exactly one source,
namely the node 
, and exactly one sink, namely the node ⊥.

This proposition holds thanks to the property of minimality by in-
clusion of the MUS. Indeed, the graph associated with an arbitrary
unsatisfiable set of clauses may not satisfy any of the two properties.

5.1 Complexity of an LEF explanation

Even if a MUS provides a minimal unsatisfiable subset of clauses, it
does not necessarily give the shortest or the most understandable ex-
planation. We will analyze several metrics to measure the complexity
of an explanation based on a MUS. For a negative instance I ∈ I, a
metricm applied on I is a functionmI : M+(I) → R to minimize.

Let us first provide below examples of canonical explanations
based on specific MUSes for two particular instances.

Example 2. Consider an instance where two neighbors i and j share
the same preferences. A possible MUS contains the at-least-one-per-
agent clause φ≥1,N

alloc (i) and all n lef-clauses φlef (i, j, o) = (¬σi,o)
for all o ∈ O.

Example 3. Consider an instance where the same item o is ranked
last by all agents, and no agent is isolated in the social network. A
possible MUS contains the at-least-one-per-object clause φ≥1,O

alloc (o)
and all n lef-clauses φlef (i, j, o) = (¬σi,o) for all i ∈ N , and j
some neighbor of i.

We introduce the notion of metric gap to measure how much the
complexity of an explanation can increase if we choose the “worst”
MUS from which to derive an explanation.

Definition 2 (Metric Gap). For a given metric m, the metric gap of
m is defined as the worst ratio over all negative instances between
the worst value of m on a MUS and the best one, i.e.:

MG(m) := max
I∈I

max
ψ,ψ∗∈M+(I)

mI(ψ)

mI(ψ∗)

The following example will be useful to derive metric gaps be-
cause it exhibits MUSes of very different complexity.

Example 4. Consider an instance with an even number n of agents
where the social network G = (N,E) is a matching with one addi-
tional edge, i.e., E = {{i, i+ 1} : i ∈ {1, 3, . . . , n− 1}} ∪ {1, 3}.
Each agent i ∈ N has the following preferences if i is odd: o1 �i

o2 �i · · · �i on−1 �i on, and the following preferences if i is
even: on−1 �i · · · �i o2 �i o1 �i on. The two connected agents 1
and 3 have the same preferences, therefore there is a MUS ψ1 sim-
ilar to the one given in Example 2. Moreover, since all agents have
the same last object on, there is also a MUS ψ2 similar to the one
given in Example 3. Consider now the MUS ψ3 composed of the
following clauses: the at-least-one-per-agent clauses φ≥1,N

alloc (i) for
every agent i ∈ N , the lef clauses φlef (i, i+ 1, on) = (¬σi,on) for
every i ∈ {1, 3, . . . , n− 1}, the lef clauses φlef (i, i− 1, on) for ev-
ery i ∈ {2, 4, . . . , n}, and finally all at-most-one-per-object clauses
φ≤1,O
alloc (ok, i, j) for every k ∈ [n− 1] and i, j ∈ N .

Wewill propose several natural metrics in the next two subsections
and prove that their metric gap is unbounded, showing that we need
to carefully choose the MUSes to derive explanations. For most of
the metrics, the gap holds even if we restrict to the basic encoding.

5.1.1 Metrics based on the SAT formula

Some basic metrics can for instance be based on the number of ob-
jects or agents involved in an explanation.

Proposition 6. The tight lower and upper bounds for the minimal
number of agents (resp., items) involved in a MUS are 2 and n (resp.,
1 and n), respectively. The metric gap for the number of agents (resp.,
items) is Θ(n).

When restricting to the basic encoding, any MUS always involves
all the n objects. Therefore, we need to consider the redundant en-
coding if the number of involved objects is a concern.

Since our explanation is based on a CNF formula, metrics counting
the number of variables or clauses in φ+ turn out to be very natural.

Proposition 7. The tight lower and upper bounds for the number of
variables involved in a MUS are n and n2, respectively. The metric
gap for the number of variables is Θ(n).

Proof. By Observation 3, each MUS contains at least one at-least
clause associated with an agent i ∈ N (resp., an object o ∈ O),
which involves the n variables σi,o for all n objects o ∈ O (resp., all
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[Expl(v0)] Agent 2 must get at least one object:

• [Expl(v1)] Suppose that object o2 is assigned to agent 2. [Expl(v2)] If agent 2 gets object o2 then, to avoid local envy, her neighbor 3
must be assigned to an object that agent 3 prefers to o2 and that agent 2 likes less than o2, i.e., one object among: {o3, o4}
– [Expl(v3)] Suppose that object o3 is assigned to agent 3. [Expl(v4)] If agent 3 gets object o3 then, to avoid local envy, her neighbor

4 must be assigned to an object that agent 4 prefers to o3 and that agent 3 likes less than o3, i.e., one object among: {o2}. [Expl(v5)]
Suppose that object o2 is assigned to agent 4. [Expl(v6)] Object o2 cannot be assigned to both agents 2 and 4. [Expl(v7)] Contradiction.

– [Expl(v3)] Suppose that object o4 is assigned to agent 3. [Expl(v8)] If agent 3 gets object o4 then, to avoid local envy, her neighbor 4
must be assigned to an object that agent 4 prefers to o4 and that agent 3 likes less than o4, i.e., one object among: {o2}. [Expl(v9)] Suppose
that object o2 is assigned to agent 4. [Expl(v10)] Object o2 cannot be assigned to both agents 2 and 4. [Expl(v11)] Contradiction.

• [Expl(v1)] Suppose that object o1 is assigned to agent 2. [Expl(v12]) If agent 2 gets object o1 then, to avoid local envy, her neighbor 1must
be assigned to an object that agent 1 prefers to o1 and that agent 2 likes less than o1, i.e., one object among: ∅. [Expl(v13)] Contradiction.

• [Expl(v1)] Suppose that object o3 is assigned to agent 2. [Expl(v14)] If agent 2 gets object o3 then, to avoid local envy, her neighbor 1must
be assigned to an object that agent 1 prefers to o3 and that agent 2 likes less than o3, i.e., one object among: ∅. [Expl(v15)] Contradiction.

• [Expl(v1)] Suppose that object o4 is assigned to agent 2. [Expl(v16)] If agent 2 gets object o4 then, to avoid local envy, her neighbor 1must
be assigned to an object that agent 1 prefers to o4 and that agent 2 likes less than o4, i.e., one object among: ∅. [Expl(v17)] Contradiction.

Figure 1. Textual explanation derived from Example 1.

n agents i ∈ N ). The total number of variables n2 is a trivial upper
bound for the number of variables involved in a MUS. Both bounds
are tight by the instance given in Example 4 where the MUS ψ1 is
a canonical one with n variables while the MUS ψ3 contains all n2

variables. We can thus derive the metric gap, which is equal to n.

Proposition 8. The tight lower bound for the number of clauses in a
MUS is n+ 1. The metric gap for the number of clauses is Ω(n2).

Sketch of proof. One can prove that any MUS contains at least n+1
clauses. To derive the metric gap, consider the instance given in Ex-
ample 4 where the MUS ψ1 is a canonical one with n + 1 clauses,
while the MUS ψ3 contains n at-least clauses, n lef-clauses, and
n(n−1)

2
(n− 1) at-most clauses, for a total of Θ(n3) clauses. There-

fore, we can deduce that the metric gap is Ω(n2).

5.1.2 Metrics based on the satisfiability implication graph

We will now focus on metrics based on the satisfiability implica-
tion graph associated with a MUS. In fact, an explanation for the
non-existence of an LEF allocation in an instance I ∈ I performs
a depth-first search over all possible activation states associated with
the satisfiability graph Hψ for a given MUS ψ ∈ M+(I). There-
fore, some basic metrics can be defined according to the structure of
explanation paths in Pψ .

Definition 3 (Explanation length). For a given MUS ψ, the length
Lψ of the explanation is its total duration, i.e., the running time of
Algorithm 1, which is given by the total number of activation states,
i.e., Lψ = |Sψ|.

In our context, an explanation is a proof where some disjunction
cases are necessary, see, e.g., the at-least clauses. These disjunction
cases are made explicit by all possible different successors of a given
activation state. For a given case, it can be important for the under-
standability of the explanation to conclude quickly to a contradic-
tion. The depth of the explanation captures this idea by considering
the longest case to develop within the proof to reach a contradiction,
which corresponds to the longest activation path.

Definition 4 (Explanation depth). For a given MUS ψ, the depth dψ

of the explanation is the maximum duration of a possible activation
path, i.e., dψ = maxv∈Pψ |v|.2

In a similar vein, the proof can be more difficult to follow if there
are many disjunction cases to develop. The breadth of the explanation
counts the number of disjunction cases to develop within the proof.

Definition 5 (Explanation breadth). For a given MUS ψ, the breadth
Bψ of the explanation is the total number of possible activation
paths, i.e., Bψ = |Pψ|.

The different metrics are illustrated in the next example.

Example 5. Let us consider the following instance with three agents.

1: o1 � o2 � o3
2: o1 � o2 � o3
3: o2 � o3 � o1 3

1 2

The four following subsets of clauses, ψ1, ψ2, ψ3 and ψ4, are
MUSes of φ+, where only the first three ones are MUSes of φ.

ψ1 ψ2

φ≥1,N
alloc (1) = (σ1,o1 ∨ σ1,o2 ∨ σ1,o3) φ≥1,N

alloc (3) = (σ3,o1 ∨ σ3,o2 ∨ σ3,o3)

φ≥1,N
alloc (2) = (σ2,o1 ∨ σ2,o2 ∨ σ2,o3) φlef (3, 1, o1) = (¬σ3,o1)

φlef (1, 3, o2) = (¬σ1,o2) φlef (3, 1, o2) = (¬σ3,o2 ∨ σ1,o1)
φlef (1, 3, o3) = (¬σ1,o3) φlef (3, 2, o2) = (¬σ3,o2 ∨ σ2,o1)
φlef (2, 3, o2) = (¬σ2,o2) φlef (3, 1, o3) = (¬σ3,o3 ∨ σ1,o1)
φlef (2, 3, o3) = (¬σ2,o3) φlef (3, 2, o3) = (¬σ3,o3 ∨ σ2,o1)

φ≤1,O
alloc (o1, 1, 2) = (¬σ1,o1 ∨ ¬σ2,o1) φ≤1,O

alloc (o1, 1, 2) = (¬σ1,o1 ∨ ¬σ2,o1)

ψ3 ψ4

φ≥1,N
alloc (1) = (σ1,o1 ∨ σ1,o2 ∨ σ1,o3) φ≥1,O

alloc (o3) = (σ1,o3 ∨ σ2,o3 ∨ σ3,o3)
φlef (1, 3, o2) = (¬σ1,o2) φlef (1, 3, o3) = (¬σ1,o3)
φlef (1, 3, o3) = (¬σ1,o3) φlef (2, 3, o3) = (¬σ2,o3)

φlef (1, 3, o1) = (¬σ1,o1 ∨ σ3,o2 ∨ σ3,o3) φlef (3, 1, o3) = (¬σ3,o3 ∨ σ1,o1)
φlef (3, 2, o2) = (¬σ3,o2 ∨ σ2,o1) φlef (3, 2, o3) = (¬σ3,o3 ∨ σ2,o1)

φlef (3, 2, o3) = (¬σ3,o3 ∨ σ2,o1) φ≤1,O
alloc (o1, 1, 2) = (¬σ1,o1 ∨ ¬σ2,o1)

φ≤1,O
alloc (o1, 1, 2) = (¬σ1,o1 ∨ ¬σ2,o1)

The satisfiability implication graphs for each of the MUSes are
given in Figure 2, in the order of presentation of the MUSes.

The following table collects the evaluation of the four MUSes on
the different proposed metrics.

2 The depth is also the size of the longest path without repetition from � to
⊥ in Hψ . However, since directed cycles can occur in satisfiability impli-
cation graphs, the definition based on activation paths is more appropriate.
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φ≥1,N
alloc (1) φ≥1,N

alloc (2)

σ1,o2 σ1,o3 σ1,o1 σ2,o1 σ2,o2 σ2,o3

φlef (1, 3, o2) φlef (1, 3, o3) φlef (2, 3, o2) φlef (2, 3, o3)φ≤1,O
alloc (o1, 1, 2)

⊥




φ≥1,N
alloc (3)

σ3,o1 σ3,o2 σ3,o3

φlef (3, 1, o1)

φlef (3, 1, o2) φlef (3, 2, o2) φlef (3, 1, o3) φlef (3, 2, o3)

σ1,o1 σ2,o1

φ≤1,O
alloc (o1, 1, 2)

⊥




φ≥1,N
alloc (1)

σ1,o2

σ1,o1

σ1,o3

φlef (1, 3, o2) φlef (1, 3, o3)

φlef (1, 3, o1)

σ3,o2 σ3,o3

φlef (3, 2, o2) φlef (3, 2, o3)

σ2,o1

φ≤1,O
alloc (o1, 1, 2)

⊥




φ≥1,O
alloc (o3)

σ1,o3

σ3,o3

σ2,o3

φlef (1, 3, o3) φlef (2, 3, o3)

φlef (3, 1, o3) φlef (3, 2, o3)

σ1,o1 σ2,o1

φ≤1,O
alloc (o1, 1, 2)

⊥

Figure 2. Satisfiability implication graphs for the MUSes of Example 5

# clauses # variables # agents length depth breadth

ψ1 7 6 3 28 4 9
ψ2 7 5 3 14 6 3
ψ3 7 6 3 19 8 4
ψ4 6 5 3 12 6 3

We can observe that ψ2 provides a smaller (or as small) explana-
tion than ψ3 on all our metrics, and ψ4 provides a smaller (or as
small) explanation than ψ2 on all our metrics, showing the interest
of the redundant encoding φ+ for possibly smaller explanations.

Proposition 9. The tight lower bounds for the length, the depth, and
the breadth of a MUS are 3n+ 1, 4, and n, respectively.

Proposition 10. The metric gap for the depth is Ω(n).

Proof. Consider an instance with n agents where the social network
G = (N,E) is a circle around all agents, i.e., E = {{i, i + 1} :
i ∈ [n − 1]} ∪ {1, n}. Each agent i ∈ [n − 1] has the following
preferences: oi �i oi−1 �i o1 �i o2 �i · · · �i on, while agent n
has the following preferences: o1 �n on−1 �n o2 �n · · · �n on.
Consider theMUSψ1 composed of the following clauses: φ≥1,N

alloc (1),
φlef (1, n, o1) = (¬σ1,o1), and the n − 1 clauses φlef (1, 2, oi) =
(¬σ1,oi) for i ∈ {2, . . . , n}. This minimum MUS has a depth equal
to dψ

1

= 4. However, there is another MUS ψ2 which is the same
as ψ1 except that clause φlef (1, n, o1) is replaced by the following
subset of clauses: φlef (i, i+1, oi) = (¬σi,oi ∨σi+1,oi+1), for every
i ∈ [n − 2], φlef (n − 1, n, on−1) = (¬σn−1,on−1 ∨ σn,o1), and
φ≤1,O
alloc (o1, 1, n) = (¬σ1,o1 ∨¬σn,o1). This replacement induces an

explanation path whose size is 2n+ 2. Therefore, the depth of ψ2 is
dψ

2

= 2n + 2. By considering the ratio between the depth of these
two MUSes, we thus get that the metric gap is Ω(n).

Proposition 11. The metric gap for the breadth and the length is
Ω(nn−1).

Proof. Consider the instance given in Example 4. The MUS ψ1 has a
breadth and a length equal to n and 3n+1, respectively. In contrast,
the MUS ψ3 contains n at-least clauses from which nn activation
paths will be derived. Therefore, ψ3 has a breadth equal to nn and a
length equal to 3nn + 1 (each activation path has size 4). Hence, the
metric gap for both metrics is Ω(nn−1).

Note that, except for the number of items metric gap, the computa-
tion of all other metric gaps involves MUSes which only use clauses
from the basic encoding φ. Therefore, restricting to MUSes of the
basic encoding would not help decreasing the provided bounds.

Many proofs are based on the instance given in Example 4. How-
ever, if we remove edge {1, 3} from the social network, then ψ1 is
not a valid MUS anymore. Then, the only smallest MUS, in terms of
the number of variables, the number of clauses, the breadth, and the
length, is ψ2 which is not a MUS of the basic encoding. This again
highlights the interest of the redundant encoding to get small MUSes.

6 Experimental Evaluation

In this section, we will empirically compare our encodings and met-
rics, with the aim of finding an appropriate MUS in order to construct
its associated satisfiability implication graph and derive an explana-
tion from it, thanks to a depth-first search along its activation states.

For this purpose, we generate synthetic data where agents’ prefer-
ences are drawn from impartial culture, i.e., given a number of agents
n, each linear order �i is drawn with uniform probability among all
possible linear orders, for i ∈ [n], and social network graphs are
generated from two well-known models for random network gener-
ation: Erdős-Rényi’s model (ER) [12], and Barabási-Albert’s model
(BA) [1]. In ER random graphs, each edge is added with independent
probability p ∈ [0, 1], producing a graph whose density tends to p.
For our simulations, we use p ∈ {0.25, 0.375, 0.5, 0.625, 0.75}. Al-
ternatively, in BA random graphs, the idea is to iteratively construct
the network by adding a new node to connect to m existing nodes
which are chosen according to a preferential attachment mechanism,
i.e., it is more likely to be connected to higher degree nodes. For
our simulations, we use m ∈ {�0.25n�, �0.5n�, �0.75n�}. We use
NetworkX implementations of ER and BA random graphs.

We solve the problem of LEF existence thanks to SAT solvers. In
our simulations, we use the PySAT [18] module with in particular the
OptUx solver to extract and enumerate smallest size MUSes, on the
basis of a weighted CNF formula, and possibly all the MUSes. How-
ever, enumerating all MUSes was a highly demanding task, com-
putationally speaking, even for small instances. Therefore, we have
decided to only focus on MUSes of minimum size. For this purpose,
we use OptUx on weighted CNF formulas with a weight 1 on each
clause. Even generating all minimum MUSes was computationally
challenging in practice, therefore our experiments consider a rela-
tively small number of agents, i.e., n ∈ {3, . . . , 8}. Since we aim
to explain the lack of LEF allocations, we focus on 100 random in-
stances where no LEF allocations exist for each experimental setting.

By definition, the redundant encoding contains more clauses than
the basic one. However, using the redundant encoding can help to
get smaller MUSes. We report in Figure 3 the size in average (over
100 instances) of the minimum MUSes for the basic or redundant
encoding. It turns out that, on average, minimum MUSes under the
redundant encoding always have a smaller size than under the basic
one. The gap in sizes seems to increase with the number of agents.

Concerning the number of minimum MUSes on average, which
are presented in Figure 4, we remark an interesting behavior between
the two encodings. While the number of minimum MUSes is larger
under the redundant encoding for a small number of agents, this sit-
uation is reversed for a sufficiently large number of agents.

Even if we focus on minimum MUSes for computational reasons
(thus minimizing the number of clauses metric), we still have an im-
portant number of MUSes. Therefore, one could desire to discrimi-
nate even more among the minimum MUSes by using the other met-
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Figure 3. Average size of minimum MUSes
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Figure 4. Average number of minimum MUSes

rics defined in Section 5. To get a clearer idea on which metrics better
filter the MUSes, we perform simulations where we count the aver-
age number of minimum MUSes which also minimize each of the
other proposed metrics. The results are presented in Figure 5 for the
basic encoding and ER graphs. It is rather clear that choosing to min-
imize the number of concerned agents in MUSes enables to get fewer
MUSes. Another metric which discriminates a lot among the mini-
mum MUSes turns out to be the length, especially on sparser graphs.

3 4 5 6 7 8
0

100

200

300

number of agents n

other metric ER 0.25
none ER 0.5

# agents ER 0.75
# variables

length
breadth
depth

Figure 5. Average number of minimum MUSes which also minimize other
metrics for Erdős-Rényi generated graphs under the basic encoding

In order to derive our explanation, we thus decide to choose, ran-
domly, a minimum MUS which also minimizes the number of con-
cerned agents. Nevertheless, to ensure that we do not lose much in
the other metrics, we run more experiments to compute the average
value of such chosen MUSes on the other metrics compared to the
minimum, average, and maximum value of the metric over all mini-
mumMUSes. We present in Figure 6 the results for the length metric
in Erdős-Rényi graphs (the results for the other metrics and graphs
show a similar behavior). It turns out that the average value of the
metric over the minimum MUSes minimizing the number of con-
cerned agents is around the average value of the metric over all min-

imum MUSes. Moreover, as the number of agents grows, it seems
that the maximum value of the metric increases the gap with its aver-
age value, while our chosen MUSes stick to the average. Therefore,
we rarely obtain the worst configurations for the other metrics by
minimizing the number of agents.

3 4 5 6 7 8
0

50

100

150

number of agents n

ER 0.25 min agents encoding
ER 0.5 min basic
ER 0.75 average redundant

max

Figure 6. Evaluation of the minimum MUSes minimizing the number of
agents on the length metric for Erdős-Rényi generated graphs

Finally, one can efficiently output textual explanations for the lack
of LEF allocations, by using the DFS strategy over activation states
of Algorithm 1 and the semantics of clauses on these chosen MUSes.

7 Conclusion

In this paper we address the question of explaining why no allocation
respecting the property of local envy-freeness can be returned. Our
study starts from an original SAT modeling of the problem. While
our approach relies on MUSes as basic building blocks for expla-
nations, we share with others [6] the view that a more interactive
process is needed to present explanations to users. Thanks to a trans-
lation of MUSes to a dynamic activation process, we offer a fully
automated way to generate textual explanations. We explore several
metrics relevant to capture the simplicity of explanations, show that
they can in theory greatly vary even among minimal MUSes, and
report on experiments which suggest that minimizing the number of
agents involved in explanations is a good filtering heuristic. There are
certainly improvements which could simplify further this dynamic
process (e.g., factoring some branches of explanations), but we be-
lieve this already offers a user-friendly output. As we have seen, this
seemingly simple setting already triggers challenging conceptual and
computational questions. Indeed, we have seen that even the compu-
tation of minimal MUSes can be too demanding. Recently, methods
have emerged to compute cost-optimal unsatisfiable subsets [13]. It
would be interesting to explore whether they could be adapted in
our setting. Finally, while we have focused on explaining allocations
without solution, our approach can be seen as a first step towards a
more general theory of explainable fair division. First, we note that
our approach can be easily adapted to provide local explanations, for
instance by focusing on a specific agent (or set of agents) specially
concerned by the decision. Furthermore, it can also be used as a basis
to provide justifications in case an agent is unsatisfied with an exist-
ing allocation – in which case it could challenge counterfactually the
outcome (“Why didn’t I get this object?”). If assuming this assign-
ment leads to an unsatisfiable instance, then our approach can readily
be used. Of course in practice it may well be that several possible fair
solutions exist, including some where the agent indeed gets the item
desired. In that case other criteria, like Pareto optimality, may have
been used and thus mentioned in the explanation.

A. Beynier et al. / Explaining the Lack of Locally Envy-Free Allocations 3483



Acknowledgements

This work is partially supported by the ANR projects APPLE-PIE
(grant ANR-22-CE23-0008-01) and AIDAL (grant ANR-22-CPJ1-
0061-01).

References

[1] A.-L. Barabási and R. Albert. Emergence of scaling in random net-
works. Science, 286(5439):509–512, 1999.

[2] K. Belahcene, Y. Chevaleyre, N. Maudet, C. Labreuche, V. Mousseau,
and W. Ouerdane. Accountable approval sorting. In Proceedings of
the 27th International Joint Conference on Artificial Intelligence (IJCAI
2018), pages 70–76, 2018.

[3] A. Beynier, Y. Chevaleyre, L. Gourvès, A. Harutyunyan, J. Lesca,
N. Maudet, and A. Wilczynski. Local envy-freeness in house allocation
problems. Autonomous Agents and Multi-Agent Systems, 33:591–627,
2019.

[4] A. Beynier, J.-G. Mailly, N. Maudet, and A. Wilczynski. Explaining
the lack of locally envy-free allocations. Technical report, August 2024.
See https://hal.science/hal-04670468.

[5] A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook
of Satisfiability - Second Edition, volume 336 of Frontiers in Artificial
Intelligence and Applications. IOS Press, 2021. ISBN 978-1-64368-
160-3. doi: 10.3233/FAIA336. URL https://doi.org/10.3233/FAIA336.

[6] B. Bogaerts, E. Gamba, and T. Guns. A framework for step-wise ex-
plaining how to solve constraint satisfaction problems. Artificial Intel-
ligence, 300:103550, 2021.

[7] A. Boixel and U. Endriss. Automated justification of collective deci-
sions via constraint solving. In Proceedings of the 19th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS
2020), pages 168–176, 2020.

[8] R. Bredereck, A. Kaczmarczyk, and R. Niedermeier. Envy-free allo-
cations respecting social networks. Artificial Intelligence, 305:103664,
2022.

[9] O. Cailloux and U. Endriss. Arguing about voting rules. In Proceed-
ings of the 15th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2016), pages 287–295, 2016.

[10] F. Doshi-Velez and B. Kim. Towards a rigorous science of interpretable
machine learning. arXiv 1702.08608, 2017.

[11] E. Eiben, R. Ganian, T. Hamm, and S. Ordyniak. Parameterized com-
plexity of envy-free resource allocation in social networks. Artificial
Intelligence, 315:103826, 2023.
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