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Abstract. Focusing on the bipartite STABLE MARRIAGE problem,
we investigate different robustness measures related to stable match-
ings. We analyze the computational complexity of computing them
and analyze their behavior in extensive experiments on synthetic in-
stances. For instance, we examine whether a stable matching is guar-
anteed to remain stable if a given number of adversarial swaps in
the agent’s preferences are performed and the probability of stability
when applying swaps uniformly at random. Our results reveal that
stable matchings in our synthetic data are highly unrobust to adver-
sarial swaps, whereas the average-case view presents a more nuanced
and informative picture.

1 Introduction

In two-sided stable matching problems, there are two sets of agents
with each agent having preferences over the agents from the other
set. The goal is to find a stable matching of agents from one side to
agents from the other side, i.e., a matching where no pair of agents
prefer each other to their current partner. Since their introduction
by Gale and Shapley [30], such problems have been studied exten-
sively in economics and computer science (see the survey ofManlove
[43]) and many real-world applications including online dating [36]
and the assignment of students to schools [1] or of children to day-
care places [38] have been identified. Importantly, in many applica-
tions, agents remain matched for a longer period of time, over which
their preferences might change as they learn more about their current
match and other options (as witnessed, e.g., by students switching
colleges or roommates). This observation already motivated differ-
ent lines of research, for instance, the study of finding robust sta-
ble matchings, that are, matchings which remain stable even if some
changes are performed [21, 41, 32].

We contribute a new perspective on robustness and stable match-
ings. Instead of computing different types of robust stable match-
ings, we focus on quantifying the robustness of a given stable match-
ing. In addition to making matching markets more transparent and
predictable, we see multiple possible use cases for our robustness
measures especially for market organizers. They can for instance be
used to make an informed decision between different proposed sta-
ble matchings or more generally might serve as an additional crite-
rion to decide between different matching algorithms. Moreover, if
a matching is detected to be very non-robust, the organizers of the
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matching market can initiate some countermeasures to prevent the
possibly high costs attached to changing a once-implemented match-
ing to reestablish stability. For instance, they can check whether pref-
erences were elicited correctly or ask agents to reevaluate their pref-
erences after assisting them with further guidance or information.

A first measure of the robustness of a stable matching is via the
study of destructive bribery [47]: The idea is to compute the mini-
mum number of changes (of a certain type) that need to be applied
to the instance such that the matching becomes unstable. This mea-
sure gives us a worst-case guarantee on the stability of our match-
ing. However, this measure disregards that changes in the real world
will not be adversarial. This is why we additionally study the ro-
bustness of stable matchings to random noise: The idea is to com-
pute the probability that the given matching remains stable if we
apply a given number k of changes uniformly at random. Observ-
ing how quickly this probability decreases with increasing k gives us
an estimate for the average-case robustness of the matching. While
these two approaches are conceptually different, they are computa-
tionally closely related: Computing the probabilities in our second
measure can be done by first counting the number of instances where
k changes have been applied and the given matching is stable and
then dividing this number by the total number of instances at this dis-
tance. Consequently, computing our average-case measure requires
solving the counting analog of the computational problem underly-
ing our worst-case measure.

Our Contributions. We contribute a novel average-case perspec-
tive to the study of robustness and stable matchings and further ex-
plore the previously mentioned worst-case analog. In addition to
studying the robustness of matchings, we also pioneer the study of
the robustness of different local configurations such as whether an
agent pair can be included in a stable matching or whether an agent is
assigned a partner. We focus on measuring robustness against swaps
in the agent’s preferences or the deletion of agents.

In Section 3, we analyze the computational complexity of eight
decision problems resulting from our two change types and four
goals (see Table 1 for an overview). The resulting complexity pic-
ture is mixed, as the complexity decisively depends on the type of
change and the assessed object. Subsequently, in Section 4, for all
variants for which we did not show hardness in the decision set-
ting, we present involved reductions showing the respective counting
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Matching Matching (bps) Pair Agent
decision counting decision counting decision counting decision counting

SWAP P (Ob. 1) #P-h. (Th. 6) NP-h. (Th. 2) − NP-h. (Pr. 3) − NP-h. (Pr. 5) −
DELETE P (Ob. 1) #P-h. (†) NP-h. (Th. 2) − ? #P-h. (Th. 7) P (Ob. 4) #P-h. (Th. 7)

Table 1. Overview of our results. “Matching (bps)” stands for the problem to create a given number of blocking pairs for a given matching using a limited
number of changes. The result marked with (†) follows from Proposition 6 of Boehmer et al. [13].

problem to be #P-hard.1 The #P-hardness of the counting problems
stand in contrast with simple polynomial-time algorithms for the de-
cision variants and require intricate reductions needing new ideas (as
counting problems have been rarely studied in the matching under
preferences literature). We conclude the section by presenting some
approximation algorithms for the counting problems.

In Section 5, customizing the diverse synthetic dataset introduced
by Boehmer et al. [17], we perform extensive experiments related to
the stability of stable matchings and pairs in case swaps in the agent’s
preferences are performed, thereby adding a new empirical compo-
nent to the almost purely theoretical literature on robustness in stable
matchings. We find that in our dataset almost all stable matchings can
be made unstable by performing a single swap. To measure match-
ing’s robustness to random swaps, motivated by our intractability re-
sults from Sections 3 and 4, we explore a sampling-based approach
building upon the popular Mallows noise model [42]. It turns out
that stable matchings generally have a remarkably low robustness
to random noise, yet the degree of the non-robustness significantly
varies between instances; even within a single instance, different ini-
tially stable matchings may have a noticeably different average-case
robustness. For instance, matchings produced by the popular Gale-
Shapley algorithm tend to be less robust than so-called summed-rank
minimizing stable matchings. We also present a heuristic to measure
matching’s average-case robustness which builds upon the number
of pairs that are close to being blocking, and demonstrate that it is of
excellent quality in practice. Lastly, we observe that stable pairs are
generally much more robust than stable matchings.

The (full) proofs of all statements and many experimental details
are deferred to our full version [9]. The code for our experiments can
be found at github.com/n-boehmer/robustness-of-matchings.

Related Work. Previous work on the robustness of stable match-
ings predominantly focused on computing matchings that are guar-
anteed to remain stable even if a given number of changes are per-
formed [21, 41, 31, 32] or for which stability can be easily reestab-
lished by changing only a few pairs in the matching [34, 33, 35, 29].
In contrast, our work proposes and analyzes different ways to quan-
tify the robustness of a given stable matching. As a result, while our
paper shares a similar motivation, it is technically quite different.

From a technical perspective, closest to our work are the papers
of Aziz et al. [4, 3] and Boehmer et al. [13]. Related to the worst-
case robustness of matchings, Boehmer et al. [13] initiated the study
of constructive bribery problems in the stable matching literature,
i.e., problems asking whether a matching can be made stable by per-
forming a given number of changes. Eiben et al. [25] and Bérczi
et al. [7] extended their studies by analyzing related problems con-
nected to ensuring the existence of a stable matching with some de-
sired property. Notably, all three of these papers focused purely on
decision problems and did not analyze matching’s robustness. Re-

1 #P is the counting analog of NP. One consequence of this is that a
polynomial-time algorithm for a #P-hard problem implies a polynomial-
time algorithm for all problems in NP.

lated to the average-case robustness of matchings, Aziz et al. [4, 3]
analyzed different problems occurring when agent’s preferences are
uncertain. For instance, they consider the problem of computing the
probability that a given matching is stable assuming that each agent
provides a probability distribution over preference lists or the full
preference profile is drawn from some probability distribution. Our
#MATCHING-SWAP-ROBUSTNESS problem (see Section 2) is re-
lated to a special case of the latter problem, where we draw a pref-
erence profile uniformly at random from the set of all preference
profiles at a given distance from some profile. However, a formal
polynomial-time reduction cannot be established, as there are expo-
nentially many profiles in the support of this distribution.

In addition to finding robust stable matchings, there are also mul-
tiple other lines of work motivated by the observation that agent’s
preferences change over time. For instance, in the study of dynamic
stable matchings the goal is usually to adapt classic stability notions
to dynamic settings [10, 2, 5, 22, 24, 40]. Moreover, various works
have studied problems related to minimally adapting stable match-
ings to reestablish stability after changes occurred [29, 28, 8, 37, 18].

While the idea of using bribery for robustness is new in the context
of matching under preferences, there are numerous works on bribery
for quantifying robustness in the voting [27, 26, 47, 6, 11, 14], tour-
nament [23, 19] and group identification [15] literature .

2 Preliminaries

For a given set S, let L(S) denote the set of all strict and complete
orders over elements from S.

An instance I = (U,W,P) of STABLE MARRIAGE (SM) is
defined by a set U = {m1, . . . ,mn} of men and a set W =
{w1, . . . , wm} of women. Each man m ∈ U is associated with a
preference list �u∈ L(W ) over women, and each woman w ∈ W
is associated with a preference list �w∈ L(U) over men. The pref-
erences are collected in a preference profile P = {�u∈ L(W ) |
u ∈ U} ∪ {�w∈ L(U) | w ∈ W}. We refer to A = U ∪W as
the set of agents. For a ∈ A, we call �a the preference list of a and
say that a prefers agent x over y if x �a y. We sometimes write
�a as a : a1 �a a2 �a a3 �a . . . , where the “. . . ” at the end
mean that all other agents of opposite gender follow in some arbi-
trary order. We write rkb(a) for the position that agent a has in the
preference list �b of agent b, i.e., the number of agents b prefers to
a plus one. For an agent a and two agents b and c appearing in �a,
we define the distance between b and c (in the preferences of a) as
| rka(b)− rka(c)|.

A matching M is a set of pairs {u,w} with u ∈ U and w ∈ W
such that each agent appears in at most one pair. If an agent is con-
tained in a pair in M , they are assigned; otherwise, they are unas-
signed. For a matching M and an agent a, M(a) is the agent a is
matched to in M if a is assigned; otherwise, we set M(a) := ⊥. A
matching is complete if no agent is unassigned. A pair {u,w} blocks
a matchingM if (i) u prefers w toM(u) or is unassigned, and (ii) w
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prefers m to M(w) or is unassigned. If a matching does not admit a
blocking pair, it is stable. If a pair {u,w} ∈ U ×W appears in some
stable matching (in I), then {u,w} is a stable pair (in I). Similarly,
if an agent a ∈ A is assigned in some stable matching (in I), then a is
a stable agent (in I). Note that by the Rural Hospitals Theorem [45],
the set of assigned agents is the same in all stable matchings in I.

A swap operation swaps two neighboring agents in the preference
list of one agent. The swap distance between two instances I =
(U,W,P) and I′ = (U,W,P ′) is the minimum number of swaps
that are needed to transform P into P ′. A delete operation deletes
an agent from the agent set and from the preferences of all other
agents. Instance I = (U,W,P) is at deletion distance d from I′ =
(U ′,W ′,P ′) if I′ can be obtained from I by deleting d agents.

We now define our computational problems. In the name of our
problems, we first specify the object whose stability we want to mea-
sure (i.e., matchings, pairs, or agents) and then the action that we
allow (i.e., swaps or deletions).
MATCHING/PAIR/AGENT-SWAP-ROBUSTNESS

Input: An SM instance I = (U,W,P), a budget � ∈ N, and a
matching M /pair {m,w} ∈ U ×W /agent a ∈ U ∪W .

Question: Is there an SM instance I′ = (U,W,P ′) at swap distance
at most � from I such that M /{m,w}/a is not stable in I′?

MATCHING/PAIR/AGENT-DELETE-ROBUSTNESS is defined analo-
gously by replacing swap with deletion distance. However, for the
matching variant we only require that M ∩ (U ′ ×W ′) is not stable
in the instance I′ = (U ′,W ′,P ′) resulting from the deletion, for the
pair variant we require that neither m nor w get deleted, and for the
agent variant that a is not deleted. For all defined decision problems
X , in the analogous counting problem #X , we ask for the number
of instances at distance exactly2 � fulfilling the specified property.

These computational problems can be used to quantify the ro-
bustness of matchings, agent pairs, and whether agents are assigned.
For instance, MATCHING-SWAP-ROBUSTNESS allows for comput-
ing the minimum number of swaps that are needed to make a given
matching unstable (in fact, it is easy to see that any stable match-
ing and pair can be made unstable by using at most n − 1 swaps
[9]). Similarly, #MATCHING-SWAP-ROBUSTNESS can be used to
compute the probability that a given matching is stable in case k
swaps are performed uniformly at random, by taking the answer to
the counting problem and dividing it by the number of instances at
swap distance k. The latter quantity can be computed in polynomial
time using a dynamic program [9].

Arguably, maintaing “perfect” stability even after preferences
change is a quite strong requirement due to the binary nature of this
criterion. This motivates us to quantify the “degree of instability”
after changes are performed. We consider the number of pairs that
block a matching as a measure for this. To compute this, we face the
problem of calculating the (maximum) number of pairs that block a
matching when a certain number of changes are performed:
BLOCKING PAIRS-SWAP [DELETE]-ROBUSTNESS

Input: An SM instance I = (U,W,P), a budget � ∈ N, a matching
M , and an integer b ∈ N.

Question: Is there an SM instance I′ = (U ′,W ′,P ′) at swap [dele-
tion] distance at most � from I such that M [M ∩ (U ′ ×W ′)] is
blocked by at least b pairs in I′?

Solving the counting version of this problem would allow us to
compute the expected “degree of instability” as the expected number
of pairs blocking a matching after a given number of changes are

2 The exact constraint here is only for presentation purposes. In fact, the exact
and at most variants of the problem can be Turing reduced to each other.

performed uniformly at random.

3 Complexity of Decision Variants

We analyze the complexity of our decision problems starting with
matchings, then pairs, and lastly agents.

Stable Matchings. Making a given matching unstable is algorith-
mically straightforward. For swap, it suffices to iterate over all pairs
of agents {u,w} ∈ U ×W that are currently not matched to each
other, compute the minimum number of swaps to make this pair
blocking (by swapping down M(u) after w in �u and M(w) after
u in �w), and return the minimum. For delete, we can always make
a matching unstable by deleting one woman and one man, as their
partners form blocking pairs with each other. Deleting one agent is
sufficient in case not all agents are matched to their top choice.

Observation 1. MATCHING-SWAP/DELETE-ROBUSTNESS can be
solved in O((n+m)2) time.

If we want to modify the instance to create not only one but a cer-
tain number of blocking pairs, then the problem becomes NP-hard
for both swap and delete. The reason for this is that there can be syn-
ergy effects when creating two blocking pairs: Making a pair block-
ing might become cheaper after we have already made another pair
blocking by swapping down an agent’s partner in their preferences.
This effect allows us to devise reductions from CLIQUE and INDE-
PENDENT SET, respectively. In fact, the hardness both holds for the
case where we ask for exactly and for at least b blocking pairs.

Theorem 2. BLOCKING PAIRS-SWAP/DELETE-ROBUSTNESS is
NP-complete.

Stable Pairs. Turning to stable pairs, the simple algorithms for sta-
ble matchings can no longer be applied, as there is no unique straight-
forward way to make a pair unstable. In fact, by reducing from the
NP-hard constructive problem to make a given pair stable [13], we
establish the NP-hardness of PAIR-SWAP-ROBUSTNESS.

Proposition 3. PAIR-SWAP-ROBUSTNESS is NP-complete.

Notably, the analogous CONSTRUCTIVE-EXISTS-DELETE prob-
lem of making a given pair stable by deleting some agents was shown
to be polynomial-time solvable by Boehmer et al. [13]. However,
there seems to be no easy possibility to extend their algorithm to
solve our PAIR-DELETE-ROBUSTNESS problem. Settling the prob-
lem’s complexity remains an intriguing open question.

Stable Agents. Turning to the problem of making a given agent
unstable, we observe the first difference between swap and delete.
For delete, it is possible to reduce the problem to the polynomial-
time solvable CONSTRUCTIVE-EXISTS-DELETE problem: Assum-
ing that a woman w∗ should be made unstable, we add a man m∗

that ranks w∗ first followed by all other women in an arbitrary order-
ing and add m∗ at the end of the preferences of all women. It is easy
to see that stable matchings where w∗ is unmatched in the original
instance correspond to matchings including {m∗, w∗} in the con-
structed instance. Accordingly, it suffices to compute the number of
deletions needed to make {w∗,m∗} a stable pair:

Observation 4. AGENT-DELETE-ROBUSTNESS can be solved in
O(n ·m) time.

For swap, we establish hardness by reducing from one of the NP-
hard constructive bribery problems studied by Boehmer et al. [13]:

Proposition 5. AGENT-SWAP-ROBUSTNESS is NP-complete.
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4 Complexity of Counting Variants

For all decision problems for which we have proven NP-hardness,
their counting variants are naturally also computationally expensive
to solve (in particular, at least as hard as the decision variants). We
prove the #P-hardness of all remaining counting problems in this sec-
tion, starting with the robustness of stable matchings to swaps in the
preferences. Recall that we have observed in Observation 1 a very
simple algorithm for the decision problem, yet the counting version
turns out to be computationally intractable:

Theorem 6. #MATCHING-SWAP-ROBUSTNESS is #P-hard.

Proof Sketch. We reduce from the #P-hard #BIPARTITE 2-SAT
WITH NO NEGATIONS problem [44], where we are given a set
V = U ∪ Z of variables and a set C ⊆ U × Z of clauses, i.e., the
formula does not contain any negative literals. The task is to count
the number of truth assignments of the variables from V such that
each clause contains a fulfilled literal.

In our reduction, for each positive and negative literal, we add a
literal man and a literal woman that are matched to each other in
the given matching. Moreover, we add a set of |C| dummy men and
women. The agent set is

U ′ = {mv,mv̄ | v ∈ V } ∪ {md
i | i ∈ [|C|]}

W ′ = {wv, wv̄, | v ∈ V } ∪ {wd
i | i ∈ [|C|]}

and the designated matching is

M :={{mv, wv}, {mv̄, wv̄} | v ∈ V }
∪ {{md

i , w
d
i } | i ∈ [|C|]}.

We now describe the preferences of the agents, focusing on agents
corresponding to variables from U first. We construct the preferences
so that matching M is not stable in the initial instance: Specifically,
for each variable u ∈ U , mu and wū form a blocking pair, which
implies that one of the two needs to modify their preferences to re-
solve the pair. If we modify the preferences of mu, then this means
that we set u to true, while modifying wū implies setting u to false.
To ensure that the induced variable assignment fulfills all clauses,
for each clause {p, q} ∈ C, we let {mp, wq} form a blocking pair,
implying that one of the involved literal agents needs to modify its
preferences. Combining these ideas, the preferences are as follows.
Consider a variable u ∈ U and let p1, . . . , pc(u) ∈ Z be all vari-
ables that appear together with u in a clause. The preferences for the
corresponding agents are as follows:

mu : wū � wp1 � · · · � wpc(u)
�

wd
1 � · · · � wd

|C|−c(u) � wu � . . .

wū : mu � md
1 � · · · � md

|C| � mū � . . .

wu : mu � . . . mū : wū � . . .

For z ∈ Z, the preferences are constructed analogously where the
roles of men and women are reversed. The dummy men have pref-
erences md

i : wd
i � . . . and the dummy women have preferences

wd
i : md

i � . . . for i ∈ [|C|].
Now, a swap budget of � := |V |(|C| + 1) is exactly sufficient to

resolve the blocking pair for each variable by modifying the prefer-
ences of one of the two literal agents by executing |C|+ 1 swaps to
swap their partner in M in the first position. Doing so, we also need
to resolve the blocking pairs induced by the clauses, which ensures

that the induced variable assignment satisfies all clauses. However,
this is not sufficient to establish a one-to-one correspondence be-
tween the satisfying assignments for the given 2-SAT formula and
preference profiles at swap distance exactly � from I ′ where M is
stable. In fact, if a literal is not contained in any clause, there are two
ways to modify the corresponding agent within the given budget by
either swapping the designated partner in M up or the literal agent
forming a blocking pair down. This results in a difficult-to-quantify
blow-up in the number of solutions. To account for this, in the full
construction and proof of correctness, we alter the construction by
adding a second copy of the instance [9].

It remains to consider the problem of counting the number of agent
sets whose deletion makes a given agent or pair stable. In the deci-
sion world, we proved that the former problem is polynomial-time
solvable while we were unable to settle the complexity of the lat-
ter problem. In our most involved construction, we prove that both
variants are #P-hard in their counting version:

Theorem 7. #PAIR/AGENT-DELETE-ROBUSTNESS is #P-hard.

Proof Sketch (Agent). For an instance I, we denote by #AD(I)
the number of solutions for this instance. To show #P-hardness for
#AGENT-DELETE, we will give a Turing reduction from the #P-hard
#EDGE COVER problem, where we are given a graph G = (V,E)
and an integer k ∈ N and want to compute the number of subsets of
edges E′ ⊆ E with |E′| = k and

⋃
e∈E′ e = V [20]. In this proof,

we let n := |V |, m := |E|, and N := m+ 1.
We start by defining the #AGENT-DELETE instances that we will

give as input to our oracle. To this end, given a graph G, let IG
i,j

be the #AGENT-DELETE instance constructed as follows. We set the
deletion budget to j + i · N . The agent set consists of edge men
{me | e ∈ E}, vertex men {mq

v | v ∈ V, q ∈ [N ]}, extra men
{m∗

p | p ∈ [i]} and vertex women {wv | v ∈ V }. The designated
agent is m∗

i .
The preferences of an edge men me with e = {u, v} ∈ E are:

me : wu � wv � . . . . Further, for some v ∈ V , the preferences of
vertex women wv are

wv : m1
v � · · · � mN

v � me1 � · · · � medeg(v)

� m∗
1 � · · · � m∗

i � . . . ,

where e1, . . . , edeg(v) are the edges incident to v. The extra men have
arbitrary preferences, and the vertex menmq

v rank the corresponding
vertex woman wv in the first position.

To give an intuition for how the solutions to this instance are con-
nected to edge covers of G, consider the case i = 1 with designated
agent m∗

1 and budget j + N . Assume that we are interested in edge
covers of size m− j. Given a size-j edge subset E′ ⊆ E, we delete
all edge men that do not correspond to an edge from E′. If E′ is
an edge cover, then m∗

1 cannot be made stable by deleting N ad-
ditional agents: For each vertex woman wv , there is one edge man
that was not deleted plus the N corresponding vertex men that wv

prefers to m∗
1. If, however, E′ is not an edge cover, then there is a

vertex v ∈ V such that all edge men corresponding to incident edges
are deleted. After deleting all vertex men mq

v for q ∈ [N ], wv can
be matched to our designated agent m∗

1 in a stable matching, since
all vertex men and edge men that wv prefers to m∗

1 were deleted.
Thus, edge sets that are not edge covers inG correspond to solutions
to our constructed instance of the above-described form. However,
one problem with this idea is that the correspondence is not one-to-
one, as in case an edge set E′ does not cover multiple vertices, we
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have multiple ways to ensure that m∗
1 gets matched. To deal with

this issue, for each non-edge cover E′, we need to know how many
vertices are not covered to bound the number of corresponding so-
lutions. More formally, we can establish a connection between solu-
tions of the constructed instance and i-vertex-isolating sets, that are
edge sets E′ ⊆ E such that after deleting all edges in E′ there are
exactly i vertices that have no incident edges. The crucial ingredient
of our Turing reduction is the following lemma whose proof appears
in our full version [9]:

Lemma 8. Let G = (V,E) be a graph, i ∈ [n], and j ∈ [m]:

#AD(IG
i,j) =

∑j
j′=0

∑n
i′=i(

(
(N+1)(n−i)

j−j′
) · (i′

i

)|Ej′
i′ |) +Di,j ,

Ej
i is the set of all i-vertex-isolating sets of size j in G and Di,j is

the number of solutions to IG
i,j that delete at least one extra man.

After showing that Di,j can be computed via a dynamic program
that queries the oracle for #AGENT-DELETE with altered versions of
IG
i,j , we can use the above lemma to compute the number of i-vertex

isolating sets using another dynamic program with oracle calls. From
this, the number of size-k edge covers can be computed easily.

In light of the computational hardness results from this and the
previous section, we seek an algorithm to approximate the proba-
bility that a matching/pair is stable after k random changes are per-
formed. It turns out that using Hoeffding’s inequality, we can estab-
lish the effectiveness of a simple Monte-Carlo algorithm that samples
profiles at distance k uniformly at random and records the fraction of
these profiles in which the matching/pair is stable:

Proposition 9. Given ε, δ > 0, � ∈ N, and SM instance I, there is
a polynomial-time algorithm that computes for a given matching M
an estimate p of the probability that M is stable at profiles at swap
(or deletion) distance � so that p ∈ [p∗ − ε, p∗ + ε] with probability
1− δ, where p∗ is the correct probability. The statement also applies
to pairs and agents.

Additionally, for the Matching-Swap setting, i.e. for counting the
number of preference profiles at some swap distance from a given
SM instance such that a given matching is unstable, we can find an
n2−n-approximation by counting all profiles where a specific pair is
blocking, and summing over all pairs (by that possibly overcounting
the number of profiles by a factor of n2 − n). We can estimate the
average factor by which we overcount and obtain a fully polynomial-
time randomized approximation scheme (FPRAS):

Theorem 10. There is a FPRAS for counting the number of prefer-
ence profiles at swap distance exactly � from I where M is unstable.

5 Experiments

In this section, we analyze the robustness of stable matchings (Sec-
tion 5.1) and pairs (Section 5.2) against random or adversarial swaps
in a diverse set of synthetic instances.3 In our experiments, we some-
times measure the linear correlation between two quantities using the
Pearson Correlation Coefficient (PCC) which is 1 in case of a per-
fect positive linear correlation,−1 in case of a perfect negative linear
correlation and 0 if there is no linear correlation.
3 To maintain focus, we do not consider delete operations, as we believe
that swaps are the more common changes in practice. Moreover, we do
not consider stable agents, as this would require the generation of instances
where the two sides have a different size, which would make the setup more
complicated.

Computing Stability Probabilities. The sampling algorithm de-
scribed at the end of Section 4 for approximating the probability
that a given matching or pair remains stable after k changes are per-
formed requires sampling profiles at some given swap distance; a
time-consuming process already for 30 agents [11]. This is why, fol-
lowing the works of Baumeister and Hogrebe [6] and Boehmer et al.
[14] in the context of elections, we make use of the popular Mallows
model [42] for adding noise to preference lists. TheMallows model is
parameterized by a central preference list�∈ L(A) and a dispersion
parameter φ ∈ [0, 1], and samples a preference list �′∈ L(A) with
probability proportional to φκ(�,�′), where κ(�,�′) is the swap dis-
tance between� and�′. Note that the dispersion parameter controls
the level of noise added to the central preference list: For φ = 0 only
the central preference list is sampled, whereas for φ = 1 all lists are
sampled with the same probability. However, as argued by Boehmer
et al. [12] and Boehmer et al. [16] the connection between the value
of φ and the expected number of swaps applied to the preference list
is non-linear. Thus, to make our results easier to interpret, we use
the normalized Mallows model introduced by Boehmer et al. [12]:
Here, we specify a normalized dispersion parameter norm-φ ∈ [0, 1],
which is internally converted to a value of the dispersion parameter φ
such that the expected swap distance between a sampled preference
list and the central one in the resulting Mallows model is a norm-φ
fraction of the maximum possible one.

To measure the robustness of an SM instance I = (U,W,P) in
our experiments, we fix a value of the norm-φ parameter, and for
each a ∈ A, we draw a preference list �′

a from the Mallows model
with this norm-φ value and �a as the central preference list. We re-
fer to the stability probability of a matching or pair at norm-φ as the
probability of the matching or pair being stable when executing this
procedure.4 To approximate the stability probabilities in the resulting
instance I′ := (U,W,P ′ := {�′

a| a ∈ A}), we record whether a
certain matching (or pair) is stable in I′ and repeat this process 1000
times to get a Monte-Carlo-style approximation. Similar in spirit to
the works of Boehmer et al. [11, 14], we sometimes assess the robust-
ness of a matching or pair by the 50%-(stability)-threshold, which is
the smallest examined value of norm-φ for which the estimated prob-
ability of being stable drops below 50%.

Dataset. Due to the lack of publicly available real-world data, we
use the large diverse synthetic dataset created by Boehmer et al. [17]
focusing on instances with 50men and women. To generate the data,
they used 10 different synthetic models (see our full version [9] for
descriptions) including the Impartial Culture (IC) model, where each
agent samples its preference list uniformly at random, and Euclidean
models, where agents are uniformly at random sampled points in the
Euclidean space and rank each other depending on their distance.
Their dataset also contains three “extreme” instances: (i) The Identity
instance, where all agents have the same preferences, (ii) the Mutual
Agreement instance, where u ranks w in position i if w ranks u in
position i, and (iii) the Mutual Disagreement instance, where u ranks
w in position i if w ranks u in position 50− i.

As in instances from the dataset of Boehmer et al. [17] the worst-
and average-case robustness of stable matchings is quite low, we
add a Robust extreme instance and instances sampled form a new
Mallows-Robust model. In the Robust instance, for i ∈ [50], the pref-
erence list of man ui is ui : wi � wi+1 � · · · � wn � w1 � · · · �
wi−1 and the preference list of woman wi is wi : ui � ui+1 �
4 In our full version [9], we prove that our counting problems can be reduced
to computing the stability probability under the described model, implying
that the latter task is also computationally intractable.
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Figure 1. Distribution of the
50%-threshold of men-optimal

matching.
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· · · � un � u1 � · · · � ui−1. In this instance, 50 swaps are needed
to make the matching {{ui, wi} | i ∈ [n]} unstable. The Mallows-
Robust model is parameterized by the normalized dispersion param-
eter norm-φ ∈ [0, 1]. Each agent generates their preferences by mak-
ing a sample from the Mallows model with their preference list from
the Robust instance as the central preference list and parameter norm-
φ. We sample 20 instances for each norm-φ ∈ {0.2, 0.4, 0.6, 0.8}.
In total, our dataset contains 544 instances.

5.1 Robustness of Stable Matchings

In this section, we analyze the robustness of men-optimal and other
types of stable matchings as well as a simple heuristic for matching’s
average-case robustness.

Men-Optimal Matching. We start by considering the robustness
of men-optimal matchings computed by the popular Gale-Shapley
algorithm, which turn out to be very non-robust to adversarial swaps:
In almost all instances from our dataset, the men-optimal matching
can be made unstable by a single swap, implying that the worst-case
robustness is seemingly not capable to meaningfully distinguish the
robustness of matchings in practice.

Turning to the robustness against random noise, Figure 1 depicts
the distribution of the 50%-thresholds. In most instances, the 50%-
threshold of the men-optimal matching is between 0.002 and 0.003.
This corresponds to performing, on average, between 1.225 and
1.8375 swaps in each preference list. Considering that most swaps
do not involve an agent’s partner and thus do not influence the stabil-
ity of the matching, this number is remarkably low. The explanation
for this behavior is that in our instances there are in fact many agent
pairs that only need one swap to become blocking. In our full version
[9], we also examine how the 50%-threshold depends on the model
from which the instance was sampled. Among others, we find that in
instances sampled from the IC and Mallows-Robust model the 50%-
threshold tends to be larger, whereas for instances sampled from Eu-
clidean models it is lower. These findings highlight that while match-
ings are also in general quite non-robust against random noise, the
picture is more nuanced than for adversarial noise.

Taking a closer look, in Figure 2 we depict how the stability prob-
ability behaves when we increase the added noise (aka. the chosen
norm-φ parameter) for men-optimal matchings in three of the ex-
treme instances, which indeed behave extreme here: The Identity in-
stance is the least robust instance in our dataset. Its stability proba-
bility drops down very quickly and is already below 50% at norm-
φ = 0.0006 (which corresponds to making an expected number of 36
swaps in the full instance) and below 10% at norm-φ = 0.002. This

can be easily explained by the fact that in this instance as soon as an
agent swaps down its current partner in its preferences a blocking pair
is formed. In contrast, the Mutual Agreement instance is the most ro-
bust instance that is not sampled from the Mallows-Robust model.
Its stability probability drops down slower, as in this matching all
agents are matched to their most preferred agent. Lastly, the Robust
instance has the highest stability probability in all our instances and
we see that only at norm-φ = 0.2 does the matching’s probability
of being stable drop below 99%. Moreover, we observe that for all
instances (as for the three depicted ones) the stability probability of
the men-optimal matching decreases monotonically (up to sampling
errors) with increasing norm-φ.

Robustness Heuristic. Next, we examine a heuristic to estimate
the 50%-threshold of a matching, which can be used as a fast ap-
proximation and sheds further light on what makes a matching robust
to random noise. For this, for a matching M and a man-woman pair
{m,w}, we let β(m,w) be the minimum number of swaps needed
to make {m,w} blocking and#β(M,k) the number of man-woman
pairs {m,w} ∈ U×W with β(m,w) = k. Intuitively, if#β(M, 1)
is large, then the probability that we create a blocking pair after
making a few random swaps is high, as there are many swaps that
when executed immediately create a blocking pair. Looking at the
number #β(M, 2) of pairs for which two swaps are needed, those
are slightly less likely to become blocking (as both necessary swaps
would need to be performed). If we increase the k further, the likeli-
hood of these pairs becoming blocking decreases exponentially. Ac-
cordingly, we derive the blocking pair proximity, which is small if
matchings are robust:

Definition 11. For some d ∈ [n], we define the blocking pair prox-
imity of a matching M as π(M) := logn

∑d
k=1 n

d−k ·#β(M,k).

To avoid large numbers, in our experiments, we set d = 5, imply-
ing that we only examine pairs that need at most 5 swaps to become
blocking (those pairs have the strongest effect on the blocking pair
proximity values). We find that the blocking pair proximity is in-
deed a very good indicator for the 50%-threshold of a matching: For
the men-optimal matchings from our dataset the correlation between
the two measures is with −0.965 very strong [46]. Consequently, in
practice, the average-case robustness of a stable matching seems to
boil down to how far agent pairs are away from being blocking and
can be well approximated using the much faster-to-compute blocking
pair proximity measure.

Other Stable Matchings. Stable matchings are often not unique,
which motivates the question of whether different initially stable
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matchings have a different robustness. To this end, we consider two
alternative types of stable matchings. First, the summed-rank mini-
mizing stable matching [39], which minimizes the average rank of
an agent’s partner in their preference list and can be computed in
polynomial time [48]. Second, the so-called robust stable matching,
which is a stable matching minimizing the expression from Theo-
rem 11 (see our full version [9] for details on how to compute this
matching). In 176 of our instances the three matchings are identical.

In terms of their worst-case robustness, the three types of sta-
ble matching behave almost identically in all instances. In contrast,
for the average-case robustness, there is a larger difference: In case
the three matchings differ from each other, oftentimes the robust
and summed-rank minimizing matching have a clearly higher 50%-
threshold than the men-optimal matching. In particular, for 49 in-
stances, the 50%-threshold of the robust and summed-rank mini-
mizing stable matching is more than twice as high as for the men-
optimal one; however, there are also few instances where the men-
optimal stable matching slightly outperforms the summed-rank min-
imizing one. The average difference between the 50%-threshold of
the robust and summed-rank minimizing matching is with 0.0004
less pronounced. Nevertheless, within one instance the stability prob-
ability of all three matchings typically behaves quite similarly when
adding noise (see Figure 3 for an example). All in all, we can con-
clude that from a robustness perspective it is recommendable to use
the summed-rank minimizing stable matching instead of the men-
optimal one (the small gain from using the robust stable matching
instead arguably does not justify the increase in computation time).

Average Number of Blocking Pairs. As discussed in Section 2,
enforcing that an initially stable matching remains stable after
changes have been performed might be viewed as a quite strict
requirement. This motivated the study of the BLOCKING PAIRS-
ROBUSTNESS problems and motivates us in this section to analyze
the expected number of pairs by which a given matching is blocked
when changes are performed. For this, we again make use of the
Mallows model and compute the average number of pairs blocking
a given matching when applying the Mallows model with a given
norm-φ parameter to all preference lists. We find that the average
number of pairs blocking a matching is highly correlated with the
matching’s 50%-threshold: In Figure 4, each point corresponds to
the men-optimal matching in one of our instances with the x-axis
showing the matching’s 50%-threshold and the y-axis showing the
average number of pairs blocking the matching at norm-φ = 0.1
(plots for other values show similar trends). We see a clear corre-
lation between the two measures, but also clear differences on the
instance-level, e.g., a matching with 50%-threshold 0.02 might be
blocked by between 23 and 44 pairs on average. The general con-
nection between the measures indicates that the 50%-threshold re-
mains informative beyond the focus on binary stability, yet the av-
erage number of blocking pairs allows for a more nuanced picture.
We refer to our full version [9] for further details, e.g., we find that
within one instance, the average number of blocking pairs typically
grows linearly with increasing value of norm-φ (a clearly different
behavior compared to the stability probability of matchings).

Further Experiments. In our full version [9], we analyze the de-
pendence of our results on the number of agents, observing that the
50%-threshold decreases with an increasing number of agents. We
also check whether matchings that are not initially stable can have a
non-negligible stability probability in case some noise is applied. In
most instances, we were unable to find such matchings.
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5.2 Stable Pairs

We also analyze the robustness of stable pairs in our instances. Anal-
gous as for matchings, we define the 50%-threshold of a pair as the
smallest value of norm-φ so that the probability of the pair being sta-
ble is below 50%. Comparing the 50%-thresholds of initially stable
matchings to the 50%-thresholds of initially stable pairs, it turns out
that pairs are in general much more stable than matchings. In partic-
ular, pairs oftentimes have a 50%-threshold above norm-φ = 0.08:
In Figure 5, we show the distribution of instances’ average 50%-
thresholds computed by taking the average 50%-threshold of pairs
initially stable in the instance. We observe that for 422 out of our 544
instances the average 50%-threshold is above norm-φ = 0.08. Note
that this observation is quite intuitive, as creating a single blocking
pair is sufficient to make a matching unstable. In contrast, a certain
pair in this matching can still continue to be stable in other stable
matchings in the instance, as oftentimes not the full matching needs
to be replaced to reestablish stability.

However, there are additional differences between pairs and
matchings. Recall that we have argued above that different stable
matchings in one instances (cf. Figure 3) are often similarly robust to
changes. In contrast, the difference between pairs can be more pro-
nounced: As an example, in Figure 6 we see how the stability prob-
ability of three pairs in an instance sampled from a Euclidean model
develops when adding more and more noise to the preference list. It
is easy to think of extremely stable pairs, for instance, pairs that rank
each other on the first place and are ranked last by every other agent.
Our experiments indicate that such drastic examples do appear in our
dataset (see [9] for details).

6 Conclusion

We have conducted an algorithmic and experimental study of the
average-case and worst-case robustness of stable matchings, pairs,
and agents. For future work, regarding the complexity part, settling
the complexity of PAIR-DELETE-ROBUSTNESS is the most pressing
open question. Moreover, it would also be interesting to examine the
parameterized complexity of our problems. For instance, it is open
whether our counting problems are #W[1]-hard when parameterized
by the examined distance. For future experimental work, it would be
interesting to run the experiments on data from other sources to fur-
ther confirm our findings of the non-robustness of stable matchings
in practice.
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