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Abstract. The present bias is a well-documented behavioral trait
that significantly influences human decision-making, with present-
biased agents often prioritizing immediate rewards over long-term
benefits, leading to suboptimal outcomes in various real-world
scenarios. Kleinberg and Oren (2014) proposed a popular graph-
theoretical model of inconsistent planning to capture the behavior
of present-biased agents. In this model, a multi-step project is rep-
resented by a weighted directed acyclic task graph, where the agent
traverses the graph based on present-biased preferences.

We use the model of Kleinberg and Oren to address the principal-
agent problem, where a principal, fully aware of the agent’s present
bias, aims to modify an existing project by adding or deleting tasks.
The challenge is to create a modified project that satisfies two some-
what contradictory conditions. On one hand, the present-biased agent
should select specific tasks deemed important by the principal. On
the other hand, if the anticipated costs in the modified project be-
come too high for the agent, there is a risk of the agent abandoning
the entire project, which is not in the principal’s interest.

To tackle this issue, we leverage the tools of parameterized com-
plexity to investigate whether the principal’s strategy can be effi-
ciently identified. We provide algorithms and complexity bounds for
this problem.

1 Introduction

The notion of present bias is a standard assumption in behavioral
economics used to explain the gap between long-term intention and
short-term human decision-making. A present-biased agent priori-
tizes immediate rewards over long-term benefits, leading to subopti-
mal outcomes in real-world scenarios. The present bias is one of the
reasons for time-inconsistent behavior of an agent changing his opti-
mal plans in the short run without new circumstances [29, 33]. Some
examples of human time-inconsistent behavior include indulging in
unhealthy eating, procrastination on essential tasks and responsibil-
ities, spending on immediate desires instead of saving, addiction
abuse despite being aware of the negative consequences or neglecting
the immediate efforts in environmental conservation.

While originating in behavioral economics, inconsistent planning
is related to AI in several ways. In Model of Human Behavior, AI
systems are often designed to interact with and assist humans. Un-
derstanding human behavior, including time inconsistency, is crucial
for creating AI systems that can adapt to and predict human actions
and preferences. AI models that consider time inconsistency provide

more accurate recommendations or assistance [12]. In Personaliza-
tion and Recommendations, recommendation systems rely on under-
standing and predicting user preferences. If users exhibit time incon-
sistency in their preferences, AI systems may need to adapt their rec-
ommendations accordingly [9]. Finally, in Reinforcement Learning,
agents make decisions to maximize cumulative rewards over time.
Time inconsistency can affect an AI agent’s ability to make optimal
decisions, as it may need to evaluate future rewards and penalties
accurately [25].

Our work builds on Akerlof’s model [1], in which the salience
factor causes the agent to prioritize immediate events over the future,
with the cost of future tasks assumed to be 1/β times smaller than
their actual costs for some present-bias parameter β < 1. Even a tiny
salience factor could result in significant additional charges for the
agent.

Kleinberg and Oren [20, 21] introduced an elegant graph-theoretic
model that incorporates the salience factor and scenarios from Ak-
erlof. In this model, an agent traverses from a source s to a target
t in a directed edge-weighted graph G. We will provide the formal
description and begin with an illustrative example.

Kleinberg-Oren model example. Alice is a PhD student, and she
has to accomplish several research projects to obtain her PhD. Af-
ter discussing with her advisor Bob, they agree on several possible
scenarios, see Fig. 1. Every arc of the task graph corresponds to a
project, and the cost of an arc is the expected cost required to fin-
ish this task. The node s is the starting position of Alice, and the
node t is the final node she wants to reach. Thus Alice has three
possible options to pursue, corresponding to the three paths in the
graph, namely, P1 = sabct, P2 = sadt, and P3 = sadet. She
always wants to use the less costly option. To estimate the costs,
Alice uses the present-bias parameter β = 1/3—when estimating
the cost of a path; she estimates the cost of the first arc correctly.
However, she underestimates the costs of all further arcs of the path
by factor β. Thus standing in s, Alice estimates the cost of P1 as
6+(2+2+2)/3 = 8, the cost of P2 as 6+(1+6)/3 = 8 1

3
, and P3

as 6+ (1+3+7)/3 = 9 2
3

. She plans to pursue P1. By accomplish-
ing the task sa, Alice re-evaluates the remaining costs. The cost of
the remaining part of P1 is now 2 + (2 + 2)/3 = 3 1

3
, which is more

than the cost of the remaining part of P2, that is, 1 + 6/3 = 3. This
impacts Alice’s plans and now she decides to follow P2. However,
after arriving at d, she compares the remaining costs of P2, which is
6 and P3, which is 5 1

3
. Alice changes her plans again and switches

to P3.

Through Prescribed Tasks?

ECAI 2024
U. Endriss et al. (Eds.)
© 2024 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA240898

3461



Figure 1. For β = 1/3, the agent will follow the path sadet instead of
selecting the shortest path sabct.

In this work, we use the model of Kleinberg and Oren to study
a variant of the principal-agent problem, where the principal could
reduce the choices to guarantee that the agent will accomplish some
selected tasks. We continue with example.

Motivating by reducing choices. We continue with the example
Fig. 1. To explain the phenomenon of abandonment, Kleinberg and
Oren use the reward model. We assume that Alice expects a re-
ward of r for obtaining her PhD. At every step, she evaluates the
cost of completing the path, and if this cost exceeds β · r (reward
is also discounted by β), she abandons the whole project. For this
example, we put r = 24. While Bob, the doctoral advisor of Al-
ice, wants her to finish her study, he has additional interests too. To
Bob, the task corresponding to the arc dt is the most exciting part
of the whole project. However, if Alice proceeds according to the
present bias protocol, she will go through P3 and never accomplish
the task so important to Bob. The first thing that comes to Bob’s
mind—to leave only the tasks of the path P2 available to Alice—
does not work. For Alice standing in s, the estimated biased cost of
path P2 is 8 1

3
> β · r = 1/3 · 24 = 8. Thus, if Bob leaves P2 as the

only choice for Alice, she will abandon her studies. This brings us to
the question that is the main motivation for our study. Is it possible
to reduce choices to make both Alice and Bob happy? That is, Alice
will get PhD while working on the tasks that are most interesting to
Bob. In our example, the solution is easy—Bob has to delete the task
de—but in general, as we will see, this question brings interesting
algorithmic challenges. See Fig. 2.

Figure 2. Let P1 = sabct and P2 = sadt. For β = 1/3, the agent will
follow the path P2. Indeed, in node s, the estimated cost is

6 + 1/3(2 + 2 + 2) = 8, which is exactly the value 1/3 · r of discounted
reward, so the agent proceeds to a. When standing in a, the estimated cost of
the remaining part of P1 is now 3 1

3
and of P2 is 3. Both costs are less than

the discounted reward, so the agent follows P2.

We proceed with the formal description of the Kleinberg-Oren’s
model.

Kleinberg-Oren’s Model [20]

An instance of the time-inconsistent planning model is a 6-
tuple M = (G,w, s, t, β, r) where:

• G = (V (G), E(G)) is a directed acyclic n-vertex graph
called a task graph. V (G) is a set of elements called ver-
tices, and E(G) ⊆ V (G) × V (G) is a set of arcs (di-
rected edges). Vertices of G represent states of interme-
diate progress, whereas edges represent possible actions
that transition an agent between states.

• w : E(G) → N0 is a weight function representing the
costs of transitions between states. The transition of the
agent from state u to state v along arc uv ∈ E(G) is of
cost w(uv).

• The agent starts from the start vertex s ∈ V (G).
• t ∈ V (G) is the target vertex.
• The rational β ≤ 1 is the agent’s present-bias parameter.
• r ∈ Q≥0 is the reward the agent receives by reaching t.

An agent is initially at vertex s and can move along arcs in their
designated directions. The agent’s task is to reach the target t. The
agent moves according to the following rule. When standing at a ver-
tex v, the agent evaluates (with a present bias) all possible paths from
v to t. In particular, a v-t path P ⊆ G with edges e1, e2, . . . , ep is
evaluated by the agent standing at v to cost

ζM (P ) = w(e1) + β ·
p∑

i=2

w(ei).

We refer to this as the perceived cost of the path P . For a vertex v,
its perceived cost to the target is the minimum perceived cost of any
path to t,

ζM (v) = min{ζM (P ) | P is a v-t path}.
We refer to an v-t path P with perceived cost ζM (v) as to a perceived
path. If for the agent in vertex v the perceived cost ζM (v) exceeds
β ·r, the value of the reward evaluated in the light of the present bias,
the agent abandons the whole project. Thus when in vertex v, the
agent picks one of the perceived paths1 and traverses its first edge,
say vu. After arriving at the new vertex u, the agent computes the
perceived cost to the target ζM (u), selects a perceived u-t path, and
traverses its first edge. This repeats until the agent either abandons
the project or reaches t.

Guiding through specified arcs. We are interested in the variant of
the principal-agent problem where the principal wants the present-
biased agent to perform certain tasks. Using the Kleinberg-Oren
model, we model this problem as the following graph modification
problem.

For a set of arcs T ⊆ E(G), we say that an s-t path P is a T -
path if P contains all arcs of T . Our work addresses the following
question.

For a given set of prescribed tasks T , is it possible to modify
the time-inconsistent planning model by deleting (or adding)
a few tasks such that the present-biased agent will reach t by
following a T -path?

1 If there are several paths of minimum perceived cost, we assume that an
agent uses a consistent tie-breaking rule, like selecting the node that is ear-
lier in a fixed topological ordering of G.
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Formally, we study the following algorithmic problems. The first
problem models the situation when the principal wants to guide the
agent through the project by reducing the available options. The
second problem models the situation when, instead of reducing the
choice, the principal could add more choices from the given tasks. In
this case, we assume that we will not create directed cycles when we
add arcs.

T -PATH-DELETION

Input: Time-inconsistent planning model M =
(G,w, s, t, β, r), integer k and a set of arcs T ⊆ E(G).
Task: Find a subset of arcs D ⊆ E(G) of size at most k (or
prove that no such set exists), such that after removing D
from M , the present-biased agent will follow a T -path.

We also consider the problem where instead of reducing the
choice, the principal can add more choices from a selected family
of tasks. In this case, we assume that we will not create directed cy-
cles when we add arcs.

T -PATH-ADDITION

Input: Time-inconsistent planning model M =
(G,w, s, t, β, r), integer k, a set of arcs T ⊆ E(G),
and a set of additional weighted arcs A ⊂ V × V .
Task: Find a set S of at most k arcs from A (or prove that
no such set exists), such that after adding these arcs to G the
agent will follow a T -path.

Parameterized complexity. Our work extends the current under-
standing and offers a nuanced perspective on the interplay between
computation tractability, graph theory, and decision-making scenar-
ios involving present-biased agents. In our algorithmic study of T -
PATH-DELETION and T -PATH-ADDITION, we use the tools of pa-
rameterized complexity. We briefly recap the main definitions. A
parameterized problem is a language Q ⊆ Σ∗ × N where Σ∗ is
the set of strings over a finite alphabet Σ. Respectively, an input
of Q is a pair (I, k) where I ∈ Σ∗ and k ∈ N; k is the parame-
ter of the problem. A parameterized problem Q is fixed-parameter
tractable (FPT) if it can be decided whether (I, k) ∈ Q in time
f(k) · |I|O(1) for some function f that depends of the parameter k
only. FPT algorithms can be put in contrast with less efficient XP
algorithms (for slice-wise polynomial), where the running time is of
the form f(k) · |I|g(k), for some functions f, g. Respectively, the pa-
rameterized complexity class FPT is composed of fixed-parameter
tractable problems. The W-hierarchy is a collection of computational
complexity classes: we omit the technical definitions here. The fol-
lowing relation is known amongst the classes in the W-hierarchy:
FPT = W[0] ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[P ]. It is widely be-
lieved that FPT �= W[1], and hence if a problem is hard for the class
W[i] (for any i ≥ 1) then it is considered to be fixed-parameter in-
tractable. For our purposes, to prove that a problem is W[1]-hard it
is sufficient to show that an FPT algorithm for this problem yields
an FPT algorithm for some W[1]-complete problem. We also use
notation Para-NP-hard with parameter k that means NP-hard for a
constant value of the parameter k. We refer to [8] for an introduction
to parameterized complexity.

Our contribution. We start with establishing the hardness of the T -
PATH-DELETION problem parameterized by k. The problem trivially
belongs to the class XP. An algorithm of running time |E(G)|k ·
poly(|M |) is to try all subsets of at most k arcs and simulate in

polynomial time the actions of the agent on the graph, resulting in
the removal of each of the subset. In Theorem 1, we show that T -
PATH-DELETION is W[1]-hard parameterized by k even when T
consists of a single arc. This shows that designing an algorithm of
running time f(k) · poly(|M |) is highly unlikely for any function
f of k only. We refine this result in Theorem 2 by establishing that
T -PATH-DELETION problem is Para-NP-hard with various parame-
ters. In particular, the problem is NP-hard when the maximum cost
of the T -path is 6, when the reward r = 48, the model M contains
a unique T -path, or when the input graph G has only one heavy arc,
and all its other arcs are of weight 1. Thus, Theorem 2 refute the ex-
istence of parameterized algorithms for many natural parameters of
the time-inconsistent model.

The intractability results of T -PATH-DELETION lead us to con-
template the following question: although deriving efficient algo-
rithms for general scenarios seems unlikely, could certain struc-
tural properties of the instance be algorithmically exploited? In other
words, while the overall problem may be inherently challenging,
there may be specific properties within certain instances that could
be leveraged to develop more efficient algorithms. We introduce two
such structural properties, shedding light on potential avenues for al-
gorithmic improvement in the context of T -PATH-DELETION.

The first structural property that we exploit algorithmically is the
following. Suppose that in the input graph G, any path from s to t
contains at most m edges. This corresponds to the situation when
any sequence of tasks, either taken or anticipated by the agent, con-
tains at most m steps. In Theorem 3, we give an FPT algorithm pa-
rameterized by k and m. Our second parameterization concerns the
situation when the underlying undirected graph has a small number
of edge-disjoint cycles. Every such cycle could potentially force the
agent to change the decision. Thus this parameter is related to the
number of nodes where the time-inconsistent agent could change his
mind. The main result here is Theorem 5, which establishes the pos-
sibility of compressing the instance when the underlying graph of G
has a small number of edge-disjoint cycles. More precisely, a feed-
back edge set of an undirected graph is a set of edges whose removal
turns the graph into a forest. Informally, Theorem 5 proves that there
is a polynomial time algorithm that, for any instance of the problem,
constructs an equivalent instance whose size is bounded by a polyno-
mial of the minimum feedback edge set of the underlying undirected
graph. In other words, T -PATH-DELETION admits a polynomial ker-
nel parameterized by the size of a feedback edge set of the underlying
undirected graph. In particular, this implies that the problem is FPT
parameterized by the size of a feedback edge set.

Finally, we provide several algorithmic results for the T -PATH-
ADDITION problem. We consider the case when the set of prescribed
arcs T forms a path P containing all vertices of the graph. In terms of
principal-agent problem, this corresponds to the following interesting
scenario. The principal already decided on the sequence of steps the
agent should perform. However, in order for the agent to move along
this path, the anticipated cost of the proposed path needs to be low-
ered. Coming back to our example with Alice and Bob, Bob already
knows what work Alice has to perform but Alice is too scared by the
anticipated amount of time she has to spend on these tasks. Could
Bob add some tasks (shortcuts to the path) such that Alice at the end
will do all the tasks from T ? As we will see in Theorem 9, even in
this case, T -PATH-ADDITION remains intractable. On the positive
side, in Theorem 10, we prove that for a wide class of problems with
a well-separable properties of additional tasks, the problem becomes
FPT.

T. Belova et al. / How to Guide a Present-Biased Agent Through Prescribed Tasks? 3463



Related work. The mathematical ideas of present bias go back to the
1930s when Samuelson [31] introduced the discounted-utility model.
It has developed into the hyperbolic discounting model, one of the
cornerstones of behavioral economics [24, 26]. The model of time-
inconsistent planning that we adopt for our work is due to Kleinberg
and Oren [20, 21]. It could be seen as a special case of the quasi-
hyperbolic discounting model (see e.g. [24, 26]), which also gener-
alizes both Samuelson’s discounted-continuity model [31] and Ak-
erlof’s salience factor [1]. While there is a lot of empirical support
for this model, there are also known psychological phenomena about
time-inconsistent behavior it does not capture [16].

There is a significant amount of follow-up work on the model of
Kleinberg and Oren, see e.g. [10, 13, 19, 18, 22, 23, 27]. In particular,
the following two problems are most relevant to our model.

The first problem is of finding a motivating subgraph. In our
model, this corresponds to the situation when the set of prescribed
arcs T is empty. Tang et al. [32] show that finding motivating sub-
graphs is NP-complete. They also investigate a few variations of the
problem where intermediate rewards can be placed on vertices. Al-
bers and Kraft [3] independently show that finding a motivating sub-
graph is NP-complete. Furthermore, they show that the approxima-
tion version of the problem (finding the smallest r such that a moti-
vating subgraph exists) cannot be approximated in polynomial time
to a ratio of

√
n/3 unless P = NP. Still, a 1 +

√
n -approximation

algorithm exists. They also explore another variation of the problem
with intermediate rewards. Fomin and Strømme [13] studied the pa-
rameterized complexity of computing a simple motivating subgraph.
Albers and Kraft [2] study a variation on the model where the de-
signer is free to raise arc costs.

The second problem related to our work is the P -motivating sub-
graph problem of [30]. In this variant of the principal-agent problem
with a present-biased agent, the principal identifies an s-t path P in
the task graph G. Then the question is whether there is a subgraph of
G, such that in this subgraph, the agent will follow along P . In our
model, this corresponds to the situation when the prescribed arcs T
form the edge set of P . Also, the difference with our model is that
Oren and Soker [30] look for any P -motivating subgraph, while in
our model, we are interested in a subgraph from the original graph by
a small number of arc deletions/additions. Oren and Soker [30] prove
that the P -motivating subgraph problem is NP-complete even when
there are only two different costs of arcs. In the same scenario of two
costs, Oren and Soker gave an algorithm that runs in polynomial time
when the number of light arcs in the path P is a constant.

Finally, in graph algorithms, a prevalent subject of interest re-
volves around graph modifications, wherein the objective is to al-
ter a graph by modifying adjacencies or deleting vertices to achieve
a graph with predefined properties. For comprehensive insights into
this topic, we direct readers to surveys such as [6, 7, 28]. Our con-
tribution can be viewed as an augmentation to the existing body of
literature within this vibrant research domain.

2 Motivate by Deletion

In this section we study the complexity of the T -PATH-DELETION

problem. We show that it is NP-hard, as well as W[1]-hard parame-
terized by k and several other parameters that naturally arise in this
setting. Also in Theorems 3 and 4 we show that the problem admits
an FPT algorithm with respect to the structural parameter fes, and
also that by adding a new parameter—the maximum edge length of
the path, one can obtain an efficient parameterized algorithm.

To prove hardness, we will reduce the NP-hard problem SHORT-

EST PATH MOST VITAL EDGES [4] to our problem. The problem
is known to be W[1]-hard parameterized by k even when the arcs’
weights are polynomial in the number of vertices of the input graph
[17]. The original formulation of the SP-MVE problem assumes an
undirected graph, but all the results are preserved for the case of a
directed acyclic graph.

SHORTEST PATH MOST VITAL EDGES (SP-MVE)

Input: A directed acyclic graph G = (V,E) with positive
arcs lengths, two vertices s, t ∈ G, and integers k, � ∈ N.
Task: Is there an arc subset S ⊆ E, |S| ≤ k, such that the
length of a shortest s-t path in G− S is at least �?

The following theorem rules out algorithms with a running time of
f(k) · |V (G)|O(1) for T -PATH-DELETION, for any function f of k
only.

Theorem 1. T -PATH-DELETION is W[1]-hard parameterized by k
for any β ≤ 1 even when T consists of a single arc and the weights
of arcs are polynomial in |V (G)|.
Proof. We construct a parameterized reduction from the SP-MVE
problem to the T -PATH-DELETION problem. Let (G, s, t, k, �) be an
input of SP-MVE such that weights of arcs of G are bounded by
a polynomial in the number of vertices of the G. We construct an
instance of T -PATH-DELETION M = (G′, w, s′, t′, β, r), integer k′

and a set of arcs T ⊆ E(G′) such that in G′ at most k′ arcs can be
removed to motivate the agent to pass along the T -path if and only if
in G it is possible to remove at most k arcs so that the shortest path
between s and t is at least �.

We construct graph G′ from G as follows. We start the construc-
tion of G′ by multiplying all the arcs’ weights of G by 2. Then
we add new vertices s′, v1, t′ and arcs with the following weights:
w(s′v1) = 0, w(v1t

′) = 2� − 1, w(s′s) = 0, and w(tt′) = 0, see
Fig. 3. We put one prescribed arc T = {s′v1}, parameter k′ = k,
and reward r = 2�

β
. Finally, we make arc s′s and tt′ of multiplicity

k + 1. Thus G′ has |V (G)|+ 3 vertices and |E(G)|+ 2k + 4 arcs.

s′s′ t′t′

GG

00

00 00

2�− 12�− 1

ss

v1v1

tt

Figure 3. The construction of the graph G′ for Theorem 1.

Such a construction could clearly be done in time polynomial in k
and |V (G)|. Thus, to prove that this is an FPT-reduction, it remains
to show that the reduction transforms an instance of SP-MVE into
an equivalent instance of T -PATH-DELETION. In other words, we
have to prove that (M = (G′, w, s′, t′, β, r), k′, T ) is a yes-instance
of T -PATH-DELETION if and only if (G, s, t, k, �) is a yes-instance
of SP-MVE.

First, the principal wants the agent to pass through T = s′v1 and
thus through the path s′v1t′. Hence, none of the arcs of this path
could be removed. Second, in G′ arcs s′s and tt′ are of multiplicity
k+1, but the principal could remove at most k′ = k arcs. Therefore,
it is safe to assume that in every solution to T -PATH-DELETION,
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none of these arcs is removed. This allows us to conclude that the
only arcs the principal could remove to reach his goal are from G.
Let D be the set of k arcs deleted by the principal from G.

The agent starts at vertex s′. Currently, the perceived cost of the
upper path s′v1t′ is β(2� − 1). If the agent moves to v1, he will
follow the path s′v1t′ because the perceived reward β · r is always
more than the perceived costs along this path at each step. The only
reason why the agent decides not to follow this path is that there is
another path in G′ −D with a smaller estimated cost, which should
be at most β(2� − 2). The arcs s′s and tt′ are of zero costs, and the
principal reaches his goal if and only if graph G′ − D has no path
from s to t of cost at most 2�− 2. Since in G′ the weights of the arcs
taken from G are twice their original weights in G, it means that the
agent will move to v1 instead of s′ in G′ −D (and thus will follow
the plans of the principal) if and only if the length of a shortest s-t
path in G−D is at least �.

Theorem 1 can also be generalized to the case of any constant
|T | ≥ 1, we can split the arc s′v1 into path s′u1 . . . uhv1 with zero
arcs where h is a constant and set T = {s′u1, u1u2, . . . , uhv1}.
It means that T -PATH-DELETION is W[1]-hard parameterized by k
with any constant |T | ≥ 1. On the other hand, the problem is also
W[1]-hard parameterized by k with an empty set T , proof can be
found in the full version of this paper [5].

The lower bound established in Theorem 1 immediately ques-
tions whether there is a potential for more refined parameteriza-
tions to yield parameterized tractability. Unfortunately, the problem
is Para-NP-hard for many natural parameters like the value of the
reward r or the cost of an T -path. That is, the problem remains NP-
hard even when these parameters are constants. We summarize these
results in the following theorem, whose proof can be found in [5].

Theorem 2. The T -PATH-DELETION problem remains NP-hard
even when one of the following conditions holds.

1. The costs of any T -paths in M does not exceed C ≤ 6.
2. The reward r is a constant that does not exceed 48.
3. There is a unique T -path in G.
4. All arcs in G but one are of weight 1.
5. Any path from s to t contains at most m = 8 arcs.

The lower bounds of Theorem 1 and Theorem 2 create an im-
pression that no efficient algorithms for T -PATH-DELETION could
exist for any reasonable scenario. Despite that, we can identify two
interesting parameterizations that make the problem computationally
tractable. The first parameter models the natural situation when any
sequence of tasks, either taken or anticipated by the agent, contains
a bounded number of steps m. In other words, in this model we as-
sume that in the input graph G, any path from s to t contains at most
m edges. Although our problem is Para-NP-hard for the parameter
m and W[1]-hard parameterized by k, our next theorem provides an
FPT algorithm parameterized by k and m.

Theorem 3. T -PATH-DELETION problem is solvable in time
O(m2k) · poly(|M |).
Proof. To prove the theorem, we employ the classic technique of
parameterized algorithms, namely branching. The idea is to identify
a subgraph H of G with at most m2 arcs such that if the principal
can motivate the present-biased agent to move over edges of T by
removing a set D of at most k arcs, then at least one arc of D should
be from H .

Consider how the present-biased agent navigates from s to t in
graph G. If the agent’s path includes all arcs from T , there is no

need for the principal to delete any arc from G, so we set D = ∅.
Otherwise, we construct a subgraph H of G as follows.

Let P0 = sv1v2 · · · vp, p ≤ m, be the path along which the
present-biased agent traverses in G from s to t (perhaps not reaching
the vertex t if the agent abandons the project at vertex vp). When
standing at a vertex vi, 1 ≤ i ≤ p − 1, the agent evaluates (with a
present bias) all possible paths from vi to t. We pick up a path Pi

of the minimum perceived cost ζM (Pi) from vi to t. Then we de-
fine the graph H as the union of paths H =

⋃p−1
i=0 Pi. For every

0 ≤ i ≤ p − 1, path Pi has at most m − i arcs. Thus, the number
of arcs in subgraph H does not exceed

∑m
i=0(m − i) ≤ m2. Since

computing the perceived cost of a path could be done in polynomial
time [20], the time required to construct graph H is polynomial in
the input size.

Let D �= ∅, |D| ≤ k, be the arcs the principal deletes to achieve
his goals. We claim that at least one arc of D is from H . Indeed, if
this is not the case, then the minimum value ζM (vi) for each vertex
vi in graph G−D does not change. Hence, if none of the arcs of H
are deleted, the agent will traverse G−D along the path P0 and thus
will not traverse all arcs from T .

This suggests the following branching algorithm. We go through
all arcs of H . By the above arguments, we know that at least one of
the arcs, say e, is in D. Thus, for the correct guess of the arc e, we
have that M = (G,w, s, t, β, r) with parameter k is a yes-instance
if and only if M ′ = (G − e, w, s, t, β, r) with parameter k − 1 is
a yes-instance. In other words, we employ the following branching
algorithm:

(i) Compute graph H and branch into |E(H)| = O(m2) sub-
problems, corresponding to removing an arc from G and reducing
the parameter by 1. (ii) Repeat the procedure recursively. That is,
in polynomial time, we find a new path of the agent P ′ in graph
G′ := G−e and check if it contains all the selected arcs. If yes, then
we stop; otherwise, go to step (i).

To analyze the running time of the algorithm, we obtain a branch-
ing tree of depth k and arity at most m2, and thus with O(m2k)
nodes. For each tree node, we compute graph H , which is done in
time polynomial in |M |. Thus, the running time of the algorithm is
O(m2k) · poly(|M |).

Our second algorithmic result about T -PATH-DELETION concerns
the limited number of situations when an agent could change a deci-
sion. Let us note that the agent could change his mind only when he
is on a vertex of some cycle of the underlying undirected graph. The
following parameterization concerns the situation when the underly-
ing undirected graph has few edge-disjoint cycles.

A feedback edge set of an undirected graph G is the set of edges
whose removal makes G acyclic. For a directed graph G, we use
fes(G) to denote the minimum size of a feedback edge set of the
underlying undirected graph of G. Equivalently, fes(G) is the cy-
clomatic number of the underlying graph. Note that if G is weakly
connected, that is, the underlying graph of G is connected, then
fes(G) = |E(G)| − |V (G)|+ 1.

We consider kernelization for T -PATH-DELETION parameterized
by fes(G). Recall that a kernelization algorithm, given an instance
(x, k) of some parameterized problem, runs in polynomial time and
outputs an equivalent instance (x′, k′) of the same problem such that
|x′|, k′ ≤ f(k), for some function f . This instance (x′, k′) is called
the kernel, and function f is called the size of the kernel. Kernel-
ization is one of the fundamental tools for parameterized algorithms,
and it is well known that a problem admits a kernel from parame-
ter k if and only if there exists an FPT algorithm for it from this
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parameter. We refer to books [8, 14] for further expositions of ker-
nelization. In particular, our kernelization algorithms implies that T -
PATH-DELETION is FPT parameterized by fes(G).

It is convenient to work with the more general variant of the prob-
lem, called T -PATH-DELETION WITH FALSE PROMISES, where
promised rewards for distinct vertices may be distinct. Formally, we
consider time-inconsistent planning models M = (G,w, s, t, β, r)
where r : V (G) → Q≥0. In this variant of the model, the agent occu-
pying a vertex v abandons the project if ζM (v) > β · r(v). Note that
T -PATH-DELETION is a special case of T -PATH-DELETION WITH

FALSE PROMISES where r(v) = r.
The size of our kernel will depend on fes(G) only. In particular, it

would be independent of the sizes of weights and reward. To obtain
such a kernel, we have to compress weights and rewards. For this, we
use the approach proposed by Etscheid et al. [11] that is based on the
result of Frank and Tardos [15].

Proposition 4 ([15]). There is an algorithm that, given a vector w ∈
Q

d and an integer N , in polynomial time finds a vector w ∈ Z
d with

‖w‖∞ ≤ 24d
3

Nd(d+2) such that sign(w · b) = sign(w · b) for all
vectors b ∈ Z

d with ‖b‖1 ≤ N − 1.

Theorem 5. There is a polynomial-time algorithm that, given an
instance of T -PATH-DELETION WITH FALSE PROMISES, outputs
an equivalent instance where the graph has at most 8 fes(G) + 3
vertices and at most 9 fes(G) + 2 arcs. Moreover, if the weights and
rewards are rational, and β is a rational constant that is not a part
of the input, then the T -PATH-DELETION WITH FALSE PROMISES

problem admits a polynomial kernel when parameterized by the size
of a feedback edge set of the input graph.

Proof. Let (M,k, T ) be an instance of T -PATH-DELETION WITH

FALSE PROMISES with M = (G,w, s, t, β, r). Let also f =
fes(G). We apply the following reduction rules.
Rule 1. If there is v ∈ V (G) \ {s, t} with din(v) = 0 or dout(v) =
0, then set G := G − v. Furthermore, if v is incident to an arc from
T , stop and return a trivial no-instance of T -PATH-DELETION WITH

FALSE PROMISES.
The rule is safe, that is, it returns an equivalent instance of the

problem because v with din(v) = 0 or dout(v) = 0 cannot be in-
volved in any s-t path or agent’s evaluation. We apply Rule 1 exhaus-
tively. The next rule is trivially safe.
Rule 2. If t is not reachable from s then stop and return a trivial
no-instance.

Notice that if we did not stop after applying the rules then s and
t are unique source and target, respectively, of G. In particular, for
each vertex v, v is reachable from s, and t is reachable from v. The
next rule is crucial for kernelization.
Rule 3. If G has a path xyz such that dout(x) = 1 and din(y) =
dout(y) = 1 then

• delete y and add an arc xz,
• set w(xz) := w(xy) + w(yz),
• if T ∩ {xy, yz} �= ∅ then set T := (T \ {xy, yz}) ∪ {xz},
• set r(x) := min{r(x) + 1−β

β
w(yz), r(y) + 1

β
w(xy)}.

To argue that the rule is safe, assume that the instance (M ′, k, T ′)
is obtained by the application of the rule from (M,k, T ) and denote
by w′ and r′ the obtained weight and reward functions. We claim
that the instances are equivalent.

For the forward direction, assume that (M,k, T ) is a yes-instance.
Then there is a set of arcs D of size at most k such that after removing
D from G, the present-biased agent follows a T -path P . We define

D′ = (D \ {xy, yz}) ∪ {xz} if {xy, yz} ∩ D �= ∅, and we set
D′ = D otherwise. Note that |D′| ≤ |D| ≤ k. We claim that D′ is
a solution to (M ′, k, T ′). The claim is trivial if P does not contain
x because, in this case, xy, yz /∈ E(P ). Assume this is not the case
and x ∈ V (P ). Let Q be the x-t subpath of P . Because dout(x) = 1
and din(y) = dout(y) = 1, xyz is a prefix of Q. Because the agent
does not abandon the project, ζM (x) ≤ β · r(x) and ζM (y) ≤ β ·
r(y). Suppose that r′(x) = r(x) + 1−β

β
w(yz). Then ζM′(x) =

ζM (x) + (1 − β)w(yz) ≤ β · r′(x). If r′(x) = r(y) + 1
β
w(yz)

then ζM′(x) = ζM (y) + w(xy) ≤ β · r′(x). Therefore, the agent
occupying x would not abandon the project in the modified graph.
Thus, the agent would follow the path Q′ obtained from Q by the
replacement of xyz by xz. This implies that the path P ′ obtained
from P by the replacement of xyz by xz is a T ′-path in G′ −D′ in
the modified instance, and the agent should follow it. We conclude
that (M ′, k, T ′) is a yes-instance.

For the opposite direction, assume that (M ′, k, T ′) is a yes-
instance and denote by D′ a set of arcs of G′ of size at most k such
that after removing D′ from G′, the present-biased agent follows a
T ′-path P ′. If xz ∈ D′, we set D = (D′ \{xz})∪{xy}, and we set
D = D′ otherwise. By the definition, |D| = |D′| = k. We claim that
D is a solution to (M,k, T ). Similarly to the proof for the forward
direction, the claim is trivial if P ′ does not contain x. Let assume that
x ∈ V (P ′). Then xz ∈ E(P ′). Denote by Q′ the x-t subpath of P ′.
Since the agent follows Q′, ζM′(x) ≤ β · r′(x). Because r′(x) ≤
r(x) + 1−β

β
w(yz), ζM (x) = ζM′(x)− (1− β)w(yz) ≤ β · r(x).

Hence, the agent occupying x in G would not abandon the project
and go to y. Further, we have that ζM (y) = ζM′(x) − w(xy). Be-
cause r′(x) ≤ r(y) + 1

β
w(xy), ζM (y) ≤ β · r(y). Therefore,the

agent occupying y in G would go to z. We obtain that the agent oc-
cupying x in G would follow the path obtained from Q′ by replacing
of xz by xyz. This implies that the path P obtained from P ′ by the
replacement of xz by xyz is a T -path in G−D, and the agent should
follow it. Thus, (M,k, T ) is a yes-instance. This concludes the proof
that the rule is safe.

Rule 3 is applied exhaustively whenever possible. Assume from
now that Rules 1, 2, and 3 cannot be applied to (M,k, T ). Observe
that the rules cannot increase the feedback edge set of the underlying
graph, that is, fes(G) ≤ f . We show the following claim, see in [5].

Claim 6. |V (G)| ≤ 8 fes(G) + 3 and |E(G)| ≤ 9 fes(G) + 2.

Since Rules 1, 2, and 3 can be applied in polynomial time, Claim 6
concludes the proof of the first part of the theorem.

To show the second claim, assume that the weights and rewards
are rational and β = p/q is a constant. Consider the vector w ∈ Q

d

for d = |V (G)| + |E(G)| whose elements are the values of the re-
ward function r for the vertices of G and the weights of arcs. We
define N = dmax{p, q} − 1. Then we apply Proposition 4. The
algorithm outputs a vector w ∈ Z

d and we replace the rewards
and the weights by the corresponding values of the elements of w.
We have that sign(w · b) = sign(w · b) for all vectors b ∈ Z

d

with ‖b‖1 ≤ N − 1. In particular, the equality holds for vectors
b whose elements are 0,±p, q. This implies that the replacements
of the rewards and weights create an equivalent instance. Because
the rewards and weights are upper-bounded by 24d

3

Nd(d+2) and
d = O(fes(G)), we obtain that each numerical parameter can be
encoded by a string of length O(fes(G)3). We conclude that the
algorithm outputs an instance of T -PATH-DELETION WITH FALSE

PROMISES of size O(fes(G)4). This means that we have a polyno-
mial kernel. This completes the proof.
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In the second part of Theorem 5, we assume that β is a rational
constant that is not a part of the input. However, it can be observed
that the claim holds if β = p/q for integers p, q ≤ 2fes(G)c for
some constant c. Also, we note that because T -PATH-DELETION is
NP-complete for rational weights and any rational positive constant
β < 1, any problem from NP can be reduced to T -PATH-DELETION

in polynomial time. This implies the following corollary.

Corollary 7. If the weights are rational and β is a rational constant
which is not a part of the input, then T -PATH-DELETION admits a
polynomial kernel when parameterized by the size of a feedback edge
set of the input graph.

Also, we can solve T -PATH-DELETION in FPT time using the
algorithm from Theorem 5—we reduce an instance of T -PATH-
DELETION to an equivalent instance of T -PATH-DELETION WITH

FALSE PROMISES with a graph of bounded size and guess a solu-
tion.

Corollary 8. T -PATH-DELETION is solvable in 2O(fes(G)) ·|M |O(1)

time.

3 Motivate by Addition

In this section, we show that the T -PATH-ADDITION problem is
computationally hard with respect to the number of edges added even
on the simplest type of instances when the initial graph is a path
whose edges form T and only detours are allowed to be added—
edges whose start and end belong to the path. In this case, we as-
sume that all the arcs we add go from left to right. We will call such
inputs a path with detours. We omit the proof of Theorem 9 in this
section due to space restrictions, please consult the full version of
this paper [5].

Theorem 9. The T -PATH-ADDITION problem on the path with de-
tours instances is W[1]-hard parameterized by k.

By Theorem 9, T -PATH-ADDITION is difficult even in the partic-
ular case when the set of selected tasks is a Hamiltonian path. On
the other hand, the problem is easily solvable in time 2|A|nO(1) by
going through all potential solutions S ⊆ A, |S| ≤ k, and checking
in polynomial time whether S is a solution of the problem. Our next
theorem generalizes this observation to the situation when the set A
has a nice “separable” structure.

Let us start with an example. Let c ∈ [n], V1 = {v1, . . . , vc},
V2 = {vc, . . . , vn}, and let A do not contain any arc (vi, vj) such
that i < c < j. Let us partition A into two intersection components
A1 = A ∩ (V1 × V1) and A2 ∩ (V2 × V2), see Fig. 4. We want to
show that to solve the problem, we then can solve it on G[V1] and
G[V2] separately in total time (2|A1| + 2|A2|) · nO(1).

ss ttvcvc

A1A1 A2A2

Figure 4. Intersection components of set A for the T -PATH-ADDITION
problem.

Let S ⊆ A, S1 = S ∩ A1, S2 = S ∩ A2, k1 = |S1|, k2 = |S2|.
Consider the agent’s path in G ∪ S and also divide it into two parts
going through V1 and V2, respectively. Notice that in case the agent
gets to V2, the second part of the path is exactly the agent’s path in

G[V2]∪S2. Now let us consider the first part of the path. Notice that
for every vertex vi ∈ V1, any perceived path induces one of the short-
est paths in G[V2]∪S2. That means that the agent’s decisions depend
only on G[V1] ∪ S1 and distG[V2]∪S2

(vc, vn), where by distG(s, t)
we denote weight of the shortest path in G from s to t. Moreover,
distG[V2]∪S2

(vc, vn) takes part only in comparison of a perceived
cost with β · r that can be replaced with comparison of the perceived
cost in G[V1] ∪ S1 with β(r − distG[V2]∪S2

(vc, vn)), so the first
part of the agent’s path is exactly the agent’s path in G[V1]∪S1 with
reward r − distG[V2]∪S2

(vc, vn).
Hence, there exists a solution S for the initial problem if and only

if there exist k1, k2 : k1+k2 ≤ k, S1 ⊆ A1 of size k1 and S2 ⊆ A2

of size k2 such that in G[V2] ∪ S2 the agent follows path vc . . . vn
with reward r, and in G[V1] ∪ S1 the agent follows path v1 . . . vc
with reward r − distG[V2]∪S2

(vc, vn). We also notice that for every
such (k1, k2, S1, S2), the above also holds for any (k1, k2, S1, S

′
2)

where S′
2 ⊆ A2 of size k2 such that the agent takes path vc, . . . , vn

in G[V2] ∪ S′
2, and distG[V2]∪S′

2
(vc, vn) ≤ distG[V2]∪S2

(vc, vn).
That means, that it is sufficient to consider only S2 that minimizes
distG[V2]∪S2

(vc, vn).
Now we can solve T -PATH-ADDITION in time (2|A1| + 2|A2|) ·

nO(1) in the following way. For every k2 ≤ k we compute d[k2] =
{distG[V2]∪S2

(vc, vn) | S2 ⊆ A2, |S2| ≤ k2, the agent follows path
vc . . . vn in G[V2] ∪ S2 with reward r}. That can be done in time
2|A2|nO(1) by going through all S2 ⊆ A2. Then, for every k1 ≤ k
we go through all S1 ⊆ A1, |S1| = k1 and check whether the agent
follows path v1 · · · vc in G[V1]∪S1 with reward r− d[k− k1]. That
can be done in time 2|A1|nO(1).

Let us now generalize the result. Let 1 = c1 < c2 < · · · <
cm+1 = n be indices such that for every 2 ≤ � ≤ m there is no
edge (vi, vj) such that i < c� < j. For every 1 ≤ � ≤ m, let V� =
{vc� , . . . , vc�+1}, and let us partition A into intersection components
A� = A∩(V�×V�). Then we show that the following theorem holds,
proof can be found in [5].

Theorem 10. The T -PATH-ADDITION problem on paths with de-
tours can be solved in time 2τnO(1), where τ is the size of the maxi-
mum intersection component of A.

4 Conclusion

In this work, we use the graph-theoretical model of Kleinberg and
Oren to introduce the principal-agent problem, where the principal
could reduce the choices to guarantee that the agent will accomplish
some selected tasks. We conclude with directions for further research
and some concrete open problems. While we consider only the sce-
nario of deleting and adding arcs, several other natural models would
be exciting to explore. The process of adding and deleting arcs could
be simulated by changing the weights of the arcs. This more general
model, where the principal could change the weights of the arcs in
order to motivate the agent, is much more algorithmically challeng-
ing. Another attractive model is where the principal motivates the
agent by putting rewards for accomplishing some intermediate tasks
like in [2].

As a concrete open question, for the T -PATH-DELETION problem,
we obtained a kernel whose size is polynomial in the size of a feed-
back edge set of G. We do not know if a kernel whose size is bounded
by a size (even exponential) of a vertex cover of G exists.
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