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Abstract. Automated persuasion systems (APS) are conversational
agents that exchange arguments and counterarguments with users
during dialogues to persuade them to believe in something. Such sys-
tems use strategies (or policies) to carefully select a sequence of ar-
guments that are tailored to the user’s needs and will likely have a
positive outcome, that is, changing the user’s belief in a certain ar-
gument. Biparty Decision Theory (BDT) is a framework that uses
game theory to formalize a dialogue between an APS and a user, that
is, an exchange of (counter) arguments during each turn of the APS
or the user. During the APS turn, the BDT policy selects the best
argument to maximize only the utility for the APS and neglects the
utility of that argument for the user. This is a reasonable choice in
games, but in a persuasive dialogue, it can result in arguments that
have a high utility for the APS but a modest utility for the user. There
the user may be less likely to be persuaded. This is crucial in settings
where there are no arguments with good utilities for both the APS
and the user and a compromise has to be found. To this extent, we
define a new family of policies for BDT, called aggregated policies,
that consider, during the decisions of the APS, an aggregation of the
APS and user’s utilities. Such an aggregation considers both the APS
and the user’s needs leading toward a sequence of arguments repre-
senting the best trade-off of utilities. We evaluate the approach using
both a new synthetic dataset and a published dataset of utilities for
dialogical argumentation. The results show the aggregated policies
find better compromise arguments w.r.t. the classical policy of BDT.

1 Introduction

Persuasion is an activity that involves one party trying to induce an-
other party to believe something. It is an important and multifaceted
human facility. It usually involves a dialogue in which arguments and
counterarguments are exchanged between the persuader and the per-
suadee, and it is seen as increasingly important in domains such as
healthcare [19, 30, 15, 14]. For example, a doctor can use arguments
to persuade a patient to adopt a more healthy diet, and the patient can
give counterarguments based on their understanding and preferences.
Also, the doctor may provide counterarguments to attempt to over-
turn misconceptions held by the patient. An automated persuasion
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system (APS) is a software system that takes on the role of a per-
suader, and the user is the persuadee [28]. It aims to use convincing
arguments in order to persuade the user towards achieving the goal of
the system. Whether an argument is convincing depends on its own
nature, on the context of the argumentation, and on the user’s charac-
teristics. An APS maintains a model for the user (the so-called user
model) to choose the best arguments to pose in the dialogue [21]. For
the APS turn, the APS presents an argument to the user, and then the
user can answer with a counterargument selected from an input menu
or with input in natural language form [28, 10].

As an example of an approach for dialogue argumentation, the bi-
maximax policy (presented in the context of Biparty Decision The-
ory (BDT) [23]) selects, during the persuader’s turn, the argument
that maximizes the utility for the persuader at the end of the dialogue
by also considering the counterarguments that the user could pose.
Indeed, a simple local choice (that ignores the user model) during
the proponent’s turn could choose arguments that will be overturned
by the user’s counterarguments. For example, in the healthcare do-
main, the APS suggestion of eating legumes instead of red meat has a
higher utility for the APS than switching to white meat. However, the
user model in the APS contains the information that the user will eat
legumes just one meal per week, thus with a low impact on the diet.
Instead, the user prefers eating white meat. Therefore, the APS will
harness this information to propose eating white meat that has a high
APS utility than eating legumes just once per week. However, the
bimaximax policy presents an asymmetry as, during the persuader
turn, it selects arguments that maximize only the final utility of the
persuader neglecting the one of the persuadee. More generally, when
the arguments are good for only one party, the bimaximax policy re-
turns arguments that leave the other party unsatisfied. This can leave
the opponent reluctant to accept those arguments. However, some of
the available arguments can represent a good compromise between
the proponent and opponent utilities, for example, the suggestion of
eating white meat can have a higher utility for the opponent (with
respect to the legumes argument) and be more likely to be accepted.

To address this need for compromise raised above, we propose a
new family of policies for BDT, called aggregated policies, that con-
sider, during the decisions of the proponent, an aggregation of both
the proponent and opponent’s utilities. Such an aggregation takes
into account both the APS and the user’s needs leading towards a
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sequence of arguments representing the best compromise between
the proponent and the opponent, that is, the best compromise/trade-
off of the utilities. From this scenario, we formulate the following
research questions, RQ1: “Are aggregated policies able to choose
arguments for the APS to present that are the best compromise for an
APS and a user in a dialogue?”; RQ2: “Could aggregated policies be
more persuasive than non-aggregated policies?”.

We will clarify what we mean by RQ1 in Section 4. The motiva-
tion for RQ2 is to consider how compromises in argumentation can
contribute to more persuasive argumentation. Within the psychol-
ogy literature, there are numerous studies that draw out connections
between utility of a message, and its persuasiveness. In particular,
within the domain of healthcare communications, there are numerous
studies that show framing healthcare messages in terms of benefits to
the individual or their family, are more persuasive [42, 18, 7, 31]. It is
beyond the scope of this paper to undertake studies with subjects to
determine whether our aggregated policies are more persuasive. So
in order to investigate RQ2, we will investigate empirically how on
average playing arguments that have higher utility (i.e. have greater
benefits) for the opponent, are more acceptable to the opponent, and
therefore more persuasive to the opponent.

The paper is structured as follows. Section 2 surveys the main
strategies in the literature for dialogical argumentation and compro-
mises in decision-making. Section 3 provides an overview of the Bi-
party Decision Theory, while Section 4 discusses the motivation be-
hind our proposal. The new policies we developed are presented in
Section 5 and empirically validated in Section 6. Section 7 concludes
the paper.

2 Related Work

Within a persuasive dialogue, an APS must adopt a specific strategy
to choose which argument to present to the user in order to move the
dialogue on. The state-of-the-art contains several types of approaches
targeting the selection of the best possible arguments to adopt. The
contributions presented in [36, 37, 17] proposed a one-step process
to manage dialogues (instead of a multi-step one) based on Mech-

anism design. Another family of techniques is based on planning

that have been adopted with the aims of optimizing the choice of ar-
guments based on belief in premises [5, 6] or minimizing the number
of moves made [3]. Strategies based on machine learning have been
designed as well, e.g. reinforcement learning [32, 41, 35, 29, 39, 2]
and transfer learning [40]. Other methods are based on probabilis-

tic strategies where moves are selected based on: (i) what an agent
believes the other is aware of [38]; (ii) to approximately predict the
argument an opponent might put forward based on data about the
moves made by the opponent in previous dialogues [20]; (iii) us-
ing a decision- theoretic lottery [27]; and, (iv) using POMDPs when
there is uncertainty about the internal state of the opponent [22]; Fi-
nally, both Local strategies and Global strategies have been pro-
posed. The former is based on the concerns (i.e., issues raised or
addressed by an argument) of one of the parties (e.g., the persuadee
ones) [21, 10]. Instead, the latter is based on taking concerns and be-
liefs into account using, for example, Monte Carlo tree search [24].

Our motivation for aggregated policies is to allow for a compro-
mise in the decision-making by the proponent. Our approach is to use
games in extensive form [33], and adapt them for argumentation. The
notion of compromise has long since been studied in game theory
[4]. Diverse developments include a minimax procedure for compro-
mise in negotiating treaties when a guarantee of non-manipulability
is desirable [8]; investigation of the role of compromise in two-player

games involving players with private information about their own
strength [9]; and investigation of the role of compromise in the de-
termining the existence of a cooperative dual to Nash equilibria for
n-person games in strategic form [12]. Also aggregation of utilities
has been considered for group decision-making [25]. However, com-
promises for extensive games have not been considered in the context
of computational argumentation in multi-agent dialogues.

3 Background: Biparty Decision Theory

Decision trees (DTs) are one of the main formalisms in decision the-
ory [34]. They have been harnessed to optimize the choice of di-
alogue move when trying to persuade an agent in believing some-
thing [26]. In this case, a DT represents all possible dialogues be-
tween two agents with the paths from the root to leaves that alternate
decision nodes with chance nodes. The former are associated with
the persuader/proponent and represent the arguments that will be
posed by the APS. The latter are associated with the persuadee/oppo-
nent and represent the arguments posed by the user. The arc between
two DT nodes n and m is labeled with the argument posed by the
corresponding agent at node n. Figure 1 contains an example of DT
for the persuasion goal of reducing red meat consumption, adapted
from [16].

n1(7, 3)

n2(7, 3)

n3(7, 2) n4(7, 3)

n5(7, 2) n6(5, 5) n7(7, 3) n8(6, 6)

[a1] You should lower your red meat consump-
tion because it is necessary for a healthy diet

[a2] I can’t lower my
consumption because it
is too difficult to do.

[a3] I can’t lower my
consumption because I
would miss the taste of
it.

[a4] It is not
difficult if you
do it gradu-
ally.

[a5] It is
not diffi-
cult if you
think of
the health
benefits.

[a6] You
won’t miss
the taste if
you switch to
fish for some
meals.

[a7] You
won’t miss
the taste if
you switch to
white meat
for some
meals.

Figure 1: A decision tree for a persuasive dialogue about reducing red
meat consumption. Solid boxes represent decision/proponent nodes
whereas dashed boxes are for chance/opponent nodes.

A policy provides decision nodes with the best arguments to pose
by the APS by considering the points of view of both the propo-
nent and the opponent. Biparty Decision Theory (BDT) [23] models
these viewpoints with the utility functions Up and Uo. These asso-
ciate each leaf with a utility value that represents the benefit the pro-
ponent p (respectively the opponent o) gets if the dialogue takes place
according to the moves in the branch to that leaf. The utility is based
on the change in behavior that is brought about by the arguments in
the dialogue. In this situation, the utility of a leaf might be different
for the proponent and the opponent. In our example, the APS might
prefer that the user has a very low-cholesterol diet for health rea-
sons, whereas the user might prefer a diet that has some meat even
if it has more cholesterol. The bimaximax policy maximizes Up at
a decision node and Uo at a chance node. Let T be a DT, L be a la-
beling function that assigns an argument to each arc (n,m) between
two nodes of T and Children(T, n) be the set of children of n. Let

I. Donadello et al. / Compromises in Dialogical Argumentation: Aggregated Policies for Biparty Decision Theory3438



Nodes(T ) be the set of nodes in T . The AMax(T, U, n) function
returns the children of n with highest utility U : AMax(T, U, n) =
{n′ ∈ Children(T, n) | ∀n′′ ∈ Children(T, n), U(n′) ≥ U(n′′)}.
Therefore:

Definition 1. A bimaximax policy for (T, L, Up, Uo, δ) is Πbim :
Nodes(T ) → Nodes(T ) defined as follows using the calculation of
the Qp : Nodes(T ) → R and Qo : Nodes(T ) → R functions.

• If n is a leaf node, then Qp(n) = Up(n) and Qo(n) = Uo(n).
• If n is a chance node, and ni ∈ AMax(T,Qo, n), then Qp(n) =

δ ×Qp(ni) and Qo(n) = δ ×Qo(ni).
• If n is a decision node, and ni ∈ AMax(T,Qp, n), then Qp(n) =

δ×Qp(ni), Qo(n) = δ×Qo(ni) and Πbim(n) = 〈ni, L(n, ni)〉.
Here, δ ∈ R is a discount factor that decreases the utility of

longer branches. This mechanism favors shorter dialogues instead
of longer ones that require more attention from the user. Follow-
ing the running example in Figure 1, the APS leaf utility values
are Up(n5) = 7, Up(n6) = 5, Up(n7) = 7, Up(n8) = 6
whereas the opponent utilities are: Uo(n5) = 2, Uo(n6) = 5,
Uo(n7) = 3, Uo(n8) = 6. The utility values are then propagated
to the higher levels of the tree according to Definition 1. The pol-
icy Πbim is therefore (with δ = 1) Πbim(n1) = 〈n2, L(n1, n2)〉,
Πbim(n2) = 〈n4, L(n2, n4)〉, Πbim(n3) = 〈n5, L(n3, n5)〉 and
Πbim(n4) = 〈n7, L(n4, n7)〉.

A policy defines a rule for choosing the label/argument to pose
in a decision node. Given a chance node instead, the next deci-
sion node is selected by the user via, for example, a menu. When
real users are not available, which occurs when the proponent is
using the DT to optimize its choices of move prior to a dialogue,
the next decision node has to be computed according to some simu-
lated opponent policy Πo. Here, we adopt the solution in [16] where
Πo(ni) = 〈nj , L(ni, nj)〉 with nj ∈ AMax(T,Qo, ni). A simu-
lated dialogue procedure SimDialogue(Π,Πo, T, L,up,uo, δ), is
an algorithm that takes as input a policy Π (e.g., bimaximax), a
simulated policy Πo, a DT T , a labelling function L, the vectors
up = 〈Up(n1), U

p(n2), . . .〉 and uo = 〈Uo(n1), Uo(n2), . . .〉
containing the proponent and opponent utility values, respectively,
at the leaves and the discount factor δ and computes the best path p
of nodes according to Π. In our example, p = 〈n1, n2, n4, n7〉. The
values of up can be defined by domain experts from healthcare litera-
ture, e.g. [1]. Instead, the setting of uo is an open challenge. In [16],
for example, uo is predicted using machine learning methods that
leverage a training set of users’ utilities.

4 Motivation

During the APS turn, the bimaximax policy selects the arguments to
pose that maximize only the final utility for the APS by also consid-
ering the counter-arguments from the user. We can define this feature
as a selfishness property for the APS as bimaximax neglects the op-
ponent’s utility during the APS turn. This could lead to arguments
with low utility for the proponent and, therefore, hard to be accepted.
This is shown in Figure 1, where argument a6 is selected as it maxi-
mizes the APS final utility, i.e., 7. However, this argument has a low
utility for the user (just 3, the user could not like fish) and it could be
discarded with no impact on the diet.

We now clarify our intuition behind RQ1. As seen in the previous
section, with the bimaximax method, each argument is paired with a
pair of utilities, so we define the argument space, i.e., the Euclidean
space having on the X-axis the utility values for the proponent and

on the Y-axis the utility values for the opponent. This space can be
partitioned into regions of interest according to the utility values as
shown in Figure 2 (the utilities range from 1 to 10 just for the sake of
simplicity):

The optimal region contains arguments (in green) that have high
utilities for both the proponent and the opponent.

The unselfish region contains arguments (in orange) reflecting the
priorities of the opponent, i.e., with high utility for the user and
low for the APS. These arguments may be less effective with re-
spect to the goal of an APS.

The selfish region contains arguments (in red) reflecting the priori-
ties of the proponent, i.e., with high utility for the APS and low for
the user. These arguments have the risk of not being accepted by
the persuadee. In our example, the arguments a4 and a6 fall into
this region.

The compromise region contains arguments (in blue) representing
a compromise/trade-off from the dialogue perspective since their
utilities are not maximal but are equally good for both the propo-
nent and the opponent.

The best compromise region is a subset of the frontier of the com-
promise region with arguments (in black) that have the highest
utilities for both the proponent and the opponent. The arguments
represent the best compromise/trade-off between the proponent
and the opponent. The argument a5 is in the compromise region,
whereas a7 is in the best compromise region.

Figure 2: The argument space represents how arguments fit into the
Euclidean space according to their utility values. Regions of interest
indicate the quality of persuasiveness for an argument.

The optimal and the compromise regions contain arguments that are
balanced, i.e., their utilities are close to each other, whereas the self-
ish and unselfish regions contain unbalanced arguments as their util-
ities are distant from each other.

We motivate our proposal for aggregated policies when the har-
vested arguments (along with their utilities) do not fall into the op-
timal region for a user. This is a reasonable assumption as, in some
cases, the user and the APS can have opposite utilities for the avail-
able arguments. In such a setting, Πbim returns arguments in the self-
ish region as shown in the running example. The aim of the RQs is
to show whether i) the aggregated policies return, instead, more bal-
anced arguments that fall in the best compromise region; ii) these
arguments are more persuasive than arguments in other regions.
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5 Method: Aggregated Policies

A possible solution to the selfishness of the bimaximax policy is the
introduction of a new term that considers both the proponent and
opponent utilities in the policy computation at decision nodes. This
term can only be added in the decision nodes as the chance nodes to-
tally depend on other parties (e.g., the user) that cannot be controlled.
We define this term as an aggregation function A : R|R| → R that
takes a vector of utilities (one for each role in R) and returns an
aggregation value in R. In BDT, R = {p, o}, but, in principle, R
can contain many roles thus allowing multiparty decision theory. We
formally define the aggregated policy for BDT as:

Definition 2. An aggregated policy for (T, L, Up, Uo,A, δ) is
ΠA : Nodes(T ) → Nodes(T ) defined as follows using the cal-
culation of the Qp : Nodes(T ) → R, Qo : Nodes(T ) → R and
Qa : Nodes(T ) → R functions.

• If n is a leaf node, then Qp(n) = Up(n), Qo(n) = Uo(n) and
Qa(n) = A(Up, Uo).

• If n is a chance node, and ni ∈ AMax(T,Qo, n), then Qp(n) =
δ ×Qp(ni), Qo(n) = δ ×Qo(ni) and Qa(n) = δ ×Qa(ni).

• If n is a decision node, and ni ∈ AMax(T,Qa, n), then
Qp(n) = δ × Qp(ni), Qo(n) = δ × Qo(ni), Qa(n) =
δ ×A(Qp(ni), Q

o(ni)) and ΠA(n) = 〈ni, L(n, ni)〉.
Differently from the standard bimaximax policy Πbim in Defini-

tion 1, the aggregated policy ΠA selects the node ni with the highest
aggregated value Qa according to the aggregate function A. In this
manner, nodes with the highest overall utility value Qa would be
preferred instead of unbalanced nodes, i.e., nodes with a high util-
ity only for one party. This would avoid the selfishness of the bi-
maximax policy that maximizes, in turn, the utility of a single party.
We, therefore, revise the running example of before. In Figure 3, we

n1(6, 6, 6)

n2(6, 6, 6)

n3(5, 5, 5) n4(6, 6, 6)

n5(7, 2, 4.5) n6(5, 5, 5) n7(7, 3, 5) n8(6, 6, 6)

Figure 3: The running example with the aggregated policy and the
arithmetic mean as A. The vector in the nodes contains the values
〈Up, Uo, Ua〉.
consider the arithmetic mean for the aggregated function A, that is,
Qa = (Qp + Qo)/2. Here, the nodes of the DT contain the values
〈Qp, Qo, Qa〉. Differently from Figure 1, in the first layer of deci-
sion nodes (the one with n3 and n4), the policy ΠA selects the nodes
n6 and n8 as they have a better-aggregated value than n5 and n7

(Qa = 5 vs Qa = 4.5 and Qa = 6 vs Qa = 5), respectively. The
node n2, instead, is a chance node and, therefore, propagates up the
utility of node n4 as it has the highest Uo value. As a consequence,
in a possible dialogue between a real user and the APS, the node n8

will be returned and it will be more likely accepted by the user with
respect to n7 (returned by Πbim instead). From the APS perspective,
n8 has a lower utility than n7 (Up = 6 vs Up = 7) but this is coun-
terbalanced by a higher opponent utility (Uo = 6 vs Uo = 3) that it
will make more suitable for the user. The policy ΠA is therefore (with
δ = 1) ΠA(n1) = 〈n2, L(n1, n2)〉, ΠA(n2) = 〈n4, L(n2, n4)〉,
ΠA(n3) = 〈n6, L(n3, n6)〉 and ΠA(n4) = 〈n8, L(n4, n8)〉.

According to Definition 2, an aggregated policy requires a suitable
aggregation function A.1 We propose and test three solutions. The
first one is the generalized mean Mk:

AMk (U
p, Uo) =

(
1

|R|
∑
i∈R

Uk
i

) 1
k

(1)

with R = {p, o} and k is a positive real number and Uk
i denoting

the power of k of the utility value Up/o. By changing k, different
means can be obtained, such as k = −1 gives the harmonic mean,
k = 0 the geometric mean, and k = 1 the arithmetic mean. Here,
the set R = {p, o} contains only the roles of the proponent and the
opponent but it can contain multiple roles making this aggregated
policy valid for multiparty decision theory. The value for k has to be
properly chosen, indeed, in our example of Figure 3 (where k = 1),
the nodes n6 and n7 have the same value for Qa even if they have
different values for Up and Uo and n6 has balanced utilities whereas
n7 has unbalanced values. A possible solution is changing the value
for k or the introduction of an aggregation function that penalizes
nodes with unbalanced utility values. We call this second type of
aggregation function sum minus difference (SMDλ) of the Up and
Uo utilities and it is defined as:

ASMDλ(U
p, Uo) = (1− λ) · (Up + Uo)− λ · |Up − Uo| (2)

with λ ∈ [0, 1] is a coefficient that weights the importance of having
a high/low sum of the utilities with respect to a low/high difference of
the utilities. In our example, the node n6 will have ASMD0.5(5, 5) =
5 that is higher of the one of n7, that is, ASMD0.5(7, 3) = 3. How-
ever, this policy cannot be generalized to multiparty decision theory.
We, therefore, define a new policy as the mean of the Up and Uo utili-
ties over their standard deviation and call it Mean over the Standard

Deviation (MoSTDα):

AMoSTDα(U
p, Uo) =

μ

(σ + α)
(3)

where μ =
∑

i∈R U i/|R| is the mean of the utilities, σ =√∑
i∈R(U i − μ)2/|R| is the standard deviation and α > 0 is a

parameter for avoiding a zero denominator when all utilities have the
same value. The set R can contain multiple roles and, therefore, the
MoSTDα policy can be used in a multiparty setting.

Table 1 compares the aggregation values Qa of the leaves com-
puted by the defined aggregated policy with the Qp values consid-
ered by the bimaximax policy for defining Π in the running example.
We can see that the most balanced (and with higher utilities) node,
n8, if selected if an aggregated policy is used. Bimaximax, on the
contrary, will select the unbalanced nodes n5 and n7.

Table 1: The aggregated values Qa of the leaves in the example com-
pared with the Qp values of the bimaximax policy.

Nodes
Policy

M−1 M0 M1 SMD0.5 MoSTD1 bim

n5(7, 2) 3.1 3.7 4.5 2.0 1.0 7

n6(5, 5) 5.0 5.0 5.0 5.0 5.0 5
n7(7, 3) 4.2 4.6 5.0 3.0 1.3 7

n8(6, 6) 6.0 6.0 6.0 6.0 6.0 6

1 The function A is defined over both the Up/Uo and the Qp/Qo, see first
and third bullet of Definition 2. Hereafter, our proposals for A will use
Up/Uo just for simplicity of notation.
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6 Empirical Evaluation

The goal of the evaluation is twofold: i) to test the ability of ΠA
to provide the arguments in the best compromise region compared
to Πbim (RQ1); ii) to test whether ΠA results in more persuasive
dialogues than Πbim. That is, whether the arguments returned by
ΠA are more likely to be accepted by users suggesting that ΠA is
more effective in influencing their decisions (RQ2). However, since
datasets of APS dialogues with real users whose arguments (with
associated utilities) are not readily available, we evaluated the differ-
ent policies on synthetically generated datasets. We tested on: i) an
ad-hoc dataset whose arguments fit the (un) selfish and (best) com-
promise regions of Figure 2; ii) a recently published dataset [16].
Using synthetic data is an important intermediate step before at-
tempting to undertake an empirical study with participants using an
argument-based chatbot (such as undertaken in [21, 10, 11, 24]). It
allows us to explore the space of possible combinations of propo-
nent and opponent utilities, as well as other parameters, in order to
get a better understanding of the behaviour of our aggregation meth-
ods. Such a preliminary understanding of the theory with synthetic
data may reduce potential risks for participants in experiments. The
source code, datasets, and appendices are online at https://github.
com/ivanDonadello/Aggregated-Policies-Biparty-Decision-Theory.

6.1 Datasets

We compared ΠA with Πbim on different abstract DTs equipped with
the utilities up and uo. The set T = {T1 . . . T10} contains 10 ab-
stract DTs taken from the dataset in [16]. Table 3 shows some fig-
ures, further details are in [16]. Each tree T ∈ T is paired with a set
of utility vectors UT = {〈up,uo〉}Ni=1 whose values are associated
to the leaves in the tree T . The cardinality N of UT represents the
number of users in the dataset. Each user has its own utility values
uo for T whereas the utilities in up can be shared among users in
the same subpopulation as they derive from domain knowledge. For
the evaluation, we i) synthetically generate UT ; ii) use the provided
values in [16].

In the first case, we synthetically generate UT to cover the selfish,
unselfish, and (best) compromise regions of the argument space by
implementing this procedure:

• we defined a rectangular area D of uniform probability distribu-
tion that ranges from Up

min = 5 to Up
max = 7 and from Uo

min = 0
to Uo

max = 12.
• We rotated D of π/4 counterclockwise and shift it to avoid nega-

tive values.
• Given T ∈ T, we created vectors 〈up,uo〉 by sampling from D a

number of points equal to the number of leaves in T . The values
are converted into integers. We repeated this N = 100 times.

We called this dataset don2022NoOPT and used it to compare the
aggregated policies with bimaximax where arguments in the opti-
mal region are lacking. We empirically investigate RQ1 by inspect-
ing whether Πbim returns arguments that fall into the selfish region
whereas ΠA is able to cover the best compromises region of argu-
ments. In addition, we also use the set UT provided in [16] (whose
utility values range from 1 to 10) to study the behavior of the ag-
gregated policies on a normal setting of arguments, that is, argu-
ments that cover also the optimal region. We refer to this dataset as
Don2022 that is is more general (and challenging) than the previous
one as it presents the optimal region and it is good to test whether
ΠA returns arguments with higher utilities than the ones returned by
Πbim even in presence of optimal arguments.

6.2 Simulation Design and Settings

To compare ΠA with Πbim on the datasets, we run the
SimDialogue(Π,Πo, T, L,up,uo, δ) procedure for each
〈up,uo〉 ∈ UT , for each T ∈ T and for each policy
Π ∈ {Πbim} ∪ {ΠA} where A ∈ {Mk, SMDλ,MoSTDα}
and δ = 1. As the DTs in T are abstract with no particular
meaning, the labeling function L is not defined. For A = Mk

we set k ∈ {−2,−1, 0, 1, 2} whereas the weight λ ranges from
0 to 1 with a step of 0.1.2 For MoSTDα we set α = 1. Each
run of the SimDialogue returns a sequence p of n visited nodes
in T where the last one pn = 〈Up, Uo, Ua〉 contains the last
argument returned. Such last nodes are then collected in the set
P = {〈Up, Uo, Ua〉}Ni=1 and evaluated.

We empirically investigate RQ2 by testing the persuasiveness of
the policies. We define for each user i an acceptability threshold tha

i

that indicates the lowest level of utility for a user to accept any argu-
ment. For example, a demanding user that would reject many argu-
ments will have a high acceptability threshold as they would only ac-
cept arguments having a utility above this threshold. To perform this
evaluation during our simulations, we define three clusters of users
having low, medium or high tha. Given a user i, their acceptability
threshold is sampled from a normal distribution with μ ∈ {3, 5, 7}
and σ = 1. Therefore, users in cluster with μ = 3 will show the most
receptive behavior with high argument acceptability. Users in cluster
with μ = 5 will be less selective, users in cluster with μ = 7 will
have a pickier behavior accepting few arguments.

6.3 Metrics

The aim of the evaluation is to compare the behavior of all policies
and to test the ability of the aggregation policies to i) provide bet-
ter compromise arguments with respect to the bimaximax policy; ii)
select the arguments with the highest utilities for both the proponent
and the opponent among all the compromise arguments; iii) provide
arguments that are more likely to be accepted by users. In the men-
tioned example, both n6 = 〈5, 5, 5〉 and n8 = 〈6, 6, 6〉 are compro-
mise arguments, but n8 has to be chosen as it has higher utilities. The
first point is evaluated with the metric Average of Absolute Distance

(AAD) of the utilities:

AAD =
∑
i∈P

|Up
i − Uo

i |/|P|

AAD is an aggregated measure of how distant the utility values of
a returned node are from each other for a given policy. Such a dis-
tance shows some characteristics and behaviors of different policies:
a low AAD suggests that the policy tends to select nodes whose argu-
ments have utility values that are relatively balanced and stay in the
compromise region. In contrast, a policy with higher AAD returns
unbalanced arguments. The second point is evaluated with the met-
rics Average of the Proponent Utility (APU) and Average of the

Opponent Utility (AOU):

APU =
∑
i∈P

Up
i /|P| AOU =

∑
i∈P

Uo
i /|P|

These aggregated values suggest whether a policy returns arguments
in the best compromise (high values for both APU and AOU) area
with respect to arguments in the compromise area. The third point is

2 We show the results only for a subset of these values. Full results are in
Appendix A.
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Table 2: Evaluation results for don2022NoOPT. AAD on the left, APU in the center, AOU on the right. The ΠA policies return arguments in
the best compromise region with respect to Πbim, see the lower AAD and balanced values for APU and AOU.

Policy
Height 4 5 6

bim 4.085 2.93 2.85
M−2 1.662 2.393 2.223
M−1 1.948 2.783 2.487
M0 2.425 3.347 3.063
M1 4.155 5.51 5.433
M2 6.348 7.037 7.247
SMD0.1 3.158 4.317 4.14
SMD0.5 1.510 1.933 1.753
SMD0.9 1.248 1.577 1.327
MoSTD1 1.232 1.627 1.290

Policy
Height 4 5 6

bim 7.940 7.317 7.490
M−2 5.635 5.117 5.257
M−1 5.558 4.990 5.190
M0 5.385 4.710 4.917
M1 4.888 3.660 3.770
M2 3.995 2.807 2.707
SMD0.1 5.292 4.293 4.463
SMD0.5 5.605 5.263 5.420
SMD0.9 5.555 5.367 5.483
MoSTD1 5.590 5.337 5.533

Policy
Height 4 5 6

bim 4.075 4.907 4.747
M−2 6.782 7.437 7.413
M−1 6.945 7.680 7.623
M0 7.240 8.023 7.933
M1 7.822 9.103 9.170
M2 8.432 9.677 9.953
SMD0.1 7.455 8.517 8.490
SMD0.5 6.575 7.103 7.060
SMD0.9 6.352 6.783 6.723
MoSTD1 6.358 6.823 6.697

Table 3: Figures for the decision trees in T.

Tree id 0 1 2 3 4 5 6 7 8 9

Height 4 4 4 6 6 4 5 5 5 6
# nodes 46 19 24 171 168 35 99 60 52 105
# leaves 30 11 15 108 102 22 60 37 39 62

evaluated with the metric Acceptance Rate (AR), which measures
the persuasive power of a policy over the set of users P:

AR =
1

|P|
∑
i∈P

I[Qo
i ≥ tha

i ]

where I[·] is the indicator function taking the value 1 when its argu-
ment is true and 0 when false. AR values range from 0 and 1 (the
higher the better) and quantify the effectiveness of a policy: values
close to 0 indicate a policy with limited persuasive ability, AR val-
ues close to 1 indicate a higher probability of user acceptance of an
argument, indicating a more effective policy.

6.4 Results

Table 2 shows the results on the don2022NoOPT dataset according
to the height of the tree. Such an analysis gives us insights on how
results change according to the length of the dialogue between the
APS and the user. The policies with the lowest AAD are ΠMoSTD1

and ΠSMDλ with high values for λ. This is in line with the design of
this policy as, for high values of λ, the arguments with utilities that
are closer to each other will be preferred to arguments with unbal-
anced utilities, see Equation (2). In general, most of the aggregated
policies have lower AAD values than Πbim meaning that they are
better able to return arguments in the compromise region than bi-
maximax. On the other hand, some aggregated policies have worse
results for AAD than bimaximax. Indeed, as long as k in ΠMk in-
creases, it gives more importance to the outliers of the utilities in
the node. The same holds for ΠSMDλ with low values for λ. The
Πbim policy has a decreasing trend for AAD as long as the height
of the tree increases. This is a positive property as longer dialogues
can be less persuasive as they require bigger attention from the user.
The ΠA policies tend to have an increasing trend of AAD but for
MoSTD1 and SMDλ, with high values of λ, this is not so signif-
icant and can be considered as a stable trend. These results allow us
to state that Πbim returns arguments in the selfish region whereas the
arguments returned by ΠA are spread more in the compromise area.
However, we need to analyze the AAD in conjunction with APU
and AOU metrics to understand whether ΠA finds arguments in the
best compromise region. The APU and AOU values for Πbim are
quite distant with higher values for APU. This means that Πbim re-
turns arguments in the selfish area that have a high utility only for

the APS, therefore, they will be more difficult to be accepted by the
user. The ΠA policies, instead, have closer values for APU and AOU
with higher values for the opponent. This is a positive property as
such policies support more the user instead of giving arguments with
high utility only for the APS. In general, the policies with low AAD,
that is, SMD0.9 and MoSTD1, have values for APU and AOU that
place the returned arguments in the best compromise region.

To further assess the relative performance of the policies, we ap-
plied the Nemenyi test (adapted from [13]) as a means for statistical
comparison of the policies over the results in P . We compared the
opposite of the absolute distances (AD) −|Up

i − Uo
i | obtained by

each policy for a given sample i ∈ P . We considered the opposite of
the AD as this test performs a ranking of the policies based on a met-
ric score where the policy with the highest score will have the highest
position in such a ranking. The resulting critical difference diagram
(Figure 4), obtained using a 0.05 significance level, confirms that

2 3 4 5 6 7 8

CD

MoSTD

SMD_0.5

M(-2)

M(-1)

M(0)

Bim

M(1)

M(2)

Figure 4: Comparison of the policies with the Nemenyi test according
to the best AD. Groups of policies that are not significantly different
(p-value < 0.05) are connected.
most of the aggregated policies, such as MoSTD1, SMDλ (with
λ ≥ 0.5), M−2 and M−1 are on average the ones that return ar-
guments from the compromise area with respect to the bimaximax
policy. The above analysis on the APU and AOU metrics can be sta-
tistically confirmed by the Nemenyi test, see Appendix B.

Table 4 shows the results for the Don2022 dataset. All the aggre-
gated policies have a lower value for AAD than Πbim and, differently
from don2022NoOPT, as the height of the DT increases, the AAD
decreases. This suggests the ability of ΠA of returning arguments
with balanced utilities as the dialogue increases. Such arguments are
spread in the optimal region as we can see in the results for APU
and AOU. On the contrary, Πbim returns arguments in the border be-
tween the optimal region and the selfish region as the APU is around
10 and the AOU ranges from around 7 to around 8.

These results support a positive (and statistically robust) answer to
RQ1 with/without presence of arguments in the optimal region.

Table 5 shows the evaluation of the persuasive power for the
Don2022 dataset according to the users’ clusters and the heights of
the trees. Most aggregated policies have a higher AR value compared
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Table 4: Evaluation results for Don2022. AAD on the left, APU in the center, AOU on the right. The ΠA policies return arguments in the best
compromise region with respect to Πbim even in presence of arguments in the optimal region. Wee the lower AAD and balanced values for
APU and AOU.

Policy
Height 4 5 6

bim 3.543 2.012 2.274
M−2 1.947 1.524 1.415
M−1 2.061 1.545 1.411
M0 2.123 1.574 1.434
M1 2.318 1.694 1.545
M2 2.759 1.86 1.644
SMD0.1 2.166 1.574 1.445
SMD0.5 1.657 1.350 1.165
SMD0.9 0.799 0.677 0.433

MoSTD1 1.025 0.843 0.509

Policy
Height 4 5 6

bim 10.171 9.861 10.606
M−2 9.403 9.301 10.038
M−1 9.452 9.331 10.069
M0 9.408 9.308 10.086
M1 9.298 9.288 10.114
M2 8.963 9.219 10.182
SMD0.1 9.342 9.304 10.073
SMD0.5 9.341 9.178 9.894
SMD0.9 7.573 8.599 8.872
MoSTD1 8.450 8.630 8.963

Policy
Height 4 5 6

bim 7.111 8.235 8.362
M−2 8.336 8.781 9.059
M−1 8.289 8.778 9.054
M0 8.271 8.782 9.052
M1 8.206 8.753 9.021
M2 8.194 8.717 8.994
SMD0.1 8.246 8.786 9.045
SMD0.5 8.349 8.775 9.072
SMD0.9 7.605 8.434 8.713
MoSTD1 8.086 8.534 8.770

Table 5: Acceptance rates for Don2022: μ = 3 left, μ = 5 in the center, μ = 7 on the right. The aggregated policies have higher persuasive
power than Πbim.

Policy
Height 4 5 6

bim 0.996 1.0 1.0
M−2 0.999 0.999 1.0
M−1 0.999 1.0 1.0
M0 0.999 0.999 1.0
M1 0.998 0.999 1.0
M2 0.999 0.999 1.0
SMD0.1 0.998 1.0 1.0
SMD0.5 0.999 1.0 1.0
SMD0.9 0.993 1.0 1.0
MoSTD1 0.998 0.999 1.0

Policy
Height 4 5 6

bim 0.888 0.982 0.986
M−2 0.963 0.991 0.997
M−1 0.954 0.99 0.997
M0 0.946 0.991 0.996
M1 0.941 0.99 0.994
M2 0.936 0.99 0.995
SMD0.1 0.941 0.992 0.996
SMD0.5 0.963 0.993 0.999
SMD0.9 0.913 0.99 0.996
MoSTD1 0.933 0.989 0.993

Policy
Height 4 5 6

bim 0.524 0.848 0.76
M−2 0.694 0.898 0.912
M−1 0.678 0.894 0.902
M0 0.676 0.89 0.9
M1 0.657 0.884 0.888
M2 0.669 0.886 0.872
SMD0.1 0.672 0.888 0.897
SMD0.5 0.698 0.906 0.924
SMD0.9 0.589 0.863 0.861
MoSTD1 0.628 0.873 0.867

Table 6: Acceptance rates for Don2022NoOPT: μ = 3 left, μ = 5 in the center, μ = 7 on the right. The aggregated policies have higher
persuasive power than Πbim.

Policy
Height 4 5 6

bim 0.703 0.857 0.907
M−2 0.984 0.989 1.0
M−1 0.992 0.989 1.0
M0 1.0 1.0 1.0
M1 0.984 1.0 1.0
M2 0.875 1.0 0.99
SMD0.1 0.992 1.0 1.0
SMD0.5 0.992 0.989 1.0
SMD0.9 0.984 0.989 1.0
MoSTD1 0.992 0.989 1.0

Policy
Height 4 5 6

bim 0.275 0.443 0.4
M−2 0.906 0.938 0.968
M−1 0.891 0.948 0.979
M0 0.891 0.979 1.0
M1 0.891 0.979 0.979
M2 0.841 0.979 1.0
SMD0.1 0.899 0.959 1.0
SMD0.5 0.877 0.918 0.947
SMD0.9 0.862 0.897 0.937
MoSTD1 0.87 0.918 0.947

Policy
Height 4 5 6

bim 0.007 0.054 0.083
M−2 0.373 0.58 0.611
M−1 0.455 0.625 0.722
M0 0.537 0.741 0.806
M1 0.709 0.875 0.954
M2 0.716 0.973 1.0
SMD0.1 0.575 0.821 0.843
SMD0.5 0.276 0.509 0.546
SMD0.9 0.246 0.366 0.407
MoSTD1 0.224 0.393 0.454

to the bimaximax policy. For users in clusters with μ = 3 and μ = 5,
all policies show high AR values, which is expected as these clus-
ters include the most receptive users, that are more willing to accept
arguments. On the other hand, users from cluster with μ = 7 have
lower AR values, due to their “picky” nature. Comparing results of
this cluster with the AOU value from Table 4, we notice that the AR
values are strictly linked to the AOU values; higher values of AOU
mean a higher chance for the argument to be accepted by the user. Ta-
ble 6 presents the results for Don2022NoOPT dataset. All the aggre-
gated policies have a higher AR value compared to Πbim, while the
main difference, compared with Don2022 dataset, is that the Πbim

begins with significantly lower AR values for users in cluster with
μ = 3 compared with near-perfect scores achieved by aggregated
policies. The AR also increases with the height of the DT, following
the same trend as the AOU (see Tables 2 and 4). These results show
higher persuasiveness of the aggregated policies giving evidence that
compromises can potentially be more persuasive.

7 Conclusions

Biparty Decision Theory is a promising approach in dialogical ar-
gumentation. However, for the bimaximax policy, the maximization
of the APS utility, irrespective of the user’s utility, can be ineffec-
tive since it will make the APS choose arguments with a low utility
for the user that they may be reluctant to accept. To address this, we
have developed a new family of policies, the aggregated policies, that
maximizes the utility for both the APS and the user during the APS
turn. When tested on a new synthetic and on a published dataset,
the aggregated policies return better arguments for both the APS and
the user compared with the bimaximax policy. Such arguments have
good utility values for both the APS and the user.

In future work, we will extend the theoretical basis of the new poli-
cies, especially to handle user utilities changing over time. Also, we
will test the policies with real users and compare them with concern-
based methods for dialogical argumentation [21]. We will also study
aggregated policies in a multiparty setting where the APS has to per-
suade multiple opponents by trying to present arguments that best
satisfies the majority without leaving some unsatisfied.
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