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Abstract. The exposure of banks to systemic risk in financial net-
works usually requires large bailouts of taxpayer money with long-
lasting and damaging societal consequences. We examine whether
the banking network can reduce systemic risk from within by self-
ishly cancelling the debts of banks in distress. This operation can
in principle reduce losses and prevent default cascades. We define
an abstract model to simulate the ensuing strategic game on ran-
domly generated financial networks, where each systemically impor-
tant bank independently decides how likely it is to cancel some debts
of insolvent banks. We compute the equilibrium of the induced em-
pirical game with the empirical game-theoretic analysis and analyse
its efficiency by measuring the price of anarchy. Our results show
that selfish debt cancellation can reduce systemic risk when adopting
the equilibrium strategy profile. However, our results also indicate
that the efficiency of the equilibrium can be low and relatively few
banks cancel debts at equilibrium, and we explain the reason for this
through analysis of the banks’ incentives and game dynamics.

1 Introduction

Since the 2007-2008 financial crisis, systemic risk in financial sys-
tems has become one of the most significant concerns for regulators.
Recently, the collapses of Silicon Valley Bank and Credit Suisse have
raised concerns about financial instability caused by complex and
nontransparent interconnections among firms in the financial system.
For example, the inability of a bank to repay its inter-bank loans can
lead to shocks to its creditor banks, in turn causing the creditors to
default, producing a chain reaction in the banking system.

Reducing systemic risk often requires saving some banks, with
governments taking steps in this direction in many instances over the
past decades. As such bailouts are tedious and use taxpayers’ money,
in the present paper, we consider instead whether it is possible for a
banking system to “self-heal” in an incentive-compatible way. Our
financial systems are modelled in a standard way, through directed
arc-weighted and node-weighted networks, where a node represents
a financial firm (a bank, in short) with its weight representing the
bank’s a priori available (liquid) external assets, whereas an arc rep-
resents a debt contract between a debtor and a creditor bank and the
arc’s weight is the amount owed. If a bank does not have enough as-
sets available to repay its debts, it is in default in which case a fraction
of the bank’s assets is charged to cover the default costs, after which
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the remaining part of the bank’s insufficient funds are distributed to
the bank’s creditors [19].

The main operation we consider is for creditors to rescue debtors
by cancelling some of their debts, in cases where this reduces their
own losses to prevent financial contagion. For example, in the single-
arc financial network of Figure 1(a), bank A defaults as it cannot
repay its liability. Considering default costs of 20% (i.e., A can only
call in 80% of its assets when in default), the actual payment of A to
B will be 0.8. If B reduces A’s liability to 1, A will not default, so B
can receive the incoming payment of 1 instead of 0.8. This example
shows that debt cancellation can be effective. However, cancelling
debts also implies giving up some claims of the debts, which may
lead to a decrease in incoming payments if more than one creditor is
involved. For example, in Figure 1(b), if A defaults, B and C will
receive 0.4, respectively, with the same default cost rate. If both B
and C reduce A’s liabilities to them to 0.5, A will not default, so they
will receive 0.5, which seems beneficial. However, if one of them
quits, the other bank has to cancel all the debts it claims to rescue A.
In this case, the bank cancelling debts will lose all while the other
bank will receive full payment. It is easy to recognise that this game
is a prisoner’s dilemma if there is no communication. These two toy
examples illustrate the dual character of debt cancellation.

(a) One creditor (b) Two creditors

Figure 1. Examples of debt cancellations where the numbers in boxes
represent banks’ external assets and numbers with which the arcs are

labelled represent the notionals of inter-bank loans.

Beyond the above examples, it is important to notice that although
in this work we only consider non-cooperative games without a bind-
ing coalition, self-enforcing cooperation can also be achieved with
proper payoff conditions. Nevertheless, the financial market in re-
ality is much more complicated than our model, including various
business alliances and coalitions, and we attempt to propose an ab-
stract model to explain some phenomena from a specific perspective.

In addition, the structural complexity of a banking network con-
tributes to the difficulty of analysing debt cancellation games. Some
studies pointed out the scale-free characteristics and core-periphery
structures of inter-bank networks, which emphasises the importance
of “core” banks in debt cancellation games because core banks as
money centres have more inter-bank connections and influence than
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peripheral banks [7, 12, 14, 3]. The difference between banks, such
as the heterogeneous financial data, generates complicated structures,
making it difficult to define a game and compute the equilibrium of
such games. Empirical Game-Theoretic Analysis (EGTA) [25, 26]
provides a framework for solving this problem. In our work, we use
the Eisenberg-Noe model [6], generalised with default costs [19] to
model a banking system and perform simulations to calculate empir-
ical payoffs and the equilibrium strategies of agents in these games.

A large body of research has been conducted with similar frame-
works based on the Eisenberg-Noe model. For example, Allouch et
al. defined a default game and showed that the introduction of a cen-
tral clearing counterparty allows banks which play different strate-
gies at different Nash equilibria to coordinate on the best equilibrium
at no additional cost [2]. Schuldenzucker and Seuken analysed the
impact of portfolio compression (i.e., removing liability cycles) on
financial networks, showing that portfolio compression may be detri-
mental to social welfare and banks’ incentives may be misaligned
with social welfare [20]. Mayo and Wellman also studied portfo-
lio compression at equilibrium using EGTA, finding that portfolio
compression may be beneficial when banks strategically remove li-
ability cycles [13]. Kanellopoulos et al. analysed the optimisation
and computational complexity problems when financial authorities
wish to maximise the total liquidity by injecting cash or removing
debts, observing that forgiving some incoming debts (i.e., edges in
financial networks) might be in the best interests of banks [8]. They
also defined and studied debt transfer games in financial networks by
game-theoretic analysis and empirical experiments, proving results
about the existence and quality of game equilibrium in which banks
maximise their utilities [9]. Papp and Wattenhofer demonstrated the
feasibility of bank-to-bank rescue by donations, debt removal and
swapping in some specific networks [16, 17].

Our main contributions can be summarised as follows:
1. we present an agent-based model allowing banks to choose to can-

cel any part of the debts owed to them by insolvent banks, which
can lead to self-healing a banking network from within;

2. we provide empirical validation of the existence of equilibria in
these debt cancellation games and perform sensitivity analyses
based on the model parameters;

3. we analyse the game equilibria by studying incentives, game dy-
namics and the price of anarchy with a similar definition in [13].

2 Model

In this section, we define a banking network based on the Eisenberg-
Noe model [6] and introduce a debt cancellation game, after which
we define a meta-game with the heuristic payoff table.

2.1 Banking Network

We consider a set of banks N = {1, · · · , n}. The liabilities matrix
L contains liability data in the banking network, where the entry lij
represents the inter-bank liability of bank i to bank j. We assume that
each liability is non-negative and a bank does not have a liability to
itself, i.e., lij ≥ 0 and lii = 0 for all i, j ∈ N, i �= j. Bank i’s total
liability, i.e., the sum of its debts, is given by Li =

∑
j∈N lij .

The relative liabilities matrix is denoted by R where the entry rij
represents the proportion of the liability of i to j relative to i’s total
liability. It is given by

rij =

{
lij
Li

if Li > 0,

0 otherwise.

Each bank also has some external assets, denoted by ei, and the
external asset vector is denoted by e. We assume that the external
assets of each bank are sufficient to repay all its debts initially:

ei = max

{
c · Li, Li −

∑
j∈N

lji

}
,

where c ∈ [0, 1] is a constant which we call the external asset pa-
rameter, and which globally controls the size of the external assets.
In our experiments, described in Section 3 below, we then simulate a
financial shock by removing the external assets of a bank in the net-
work. This may leads to a default cascade, i.e., insolvency of multiple
banks in the network.

A clearing vector Λ, representing the actual payments of debtor
banks to creditor banks, is a vector in R

n
≥0 such that Λ = Φ(Λ)

where function Φ is given by

Φ(Λ)i =

{
Li if ei +

∑
j∈N rjiΛj ≥ Li,

a
(
ei +

∑
j∈N rjiΛj

)
otherwise.

In the above function, a ∈ (0, 1) is a constant called the recovery
parameter, representing the fraction of the nominal value of assets
for liquidation. It is implicitly assumed that a (1− a) fraction of the
total assets of a defaulting bank are spent on default costs. We use
the Greatest Clearing Vector Algorithm (GA) [19] to calculate the
greatest clearing vector for a given banking network (e,L, a).

Based on the definition of clearing vector, the value of a bank is
defined as the difference between its actual total assets and its total
liabilities, given by

vi = ei +
∑
j∈N

rjiΛj − Li.

A bank is considered insolvent if its value is negative, that is vi < 0,
which is equivalent to Λi < Li.

2.2 Debt Cancellation

We allow banks to reduce or remove other banks’ debts, as a form of
debt restructuring, to rescue them. In principle, each bank can inde-
pendently decide whether to cancel any debts owed to it by any other
bank. Cancellation of debts of an insolvent debtor bank may lead to
that bank becoming solvent, which may thus comprise a rescue strat-
egy. The debt cancellation strategy of a bank is invisible to others,
resulting in the problem that an insolvent bank may receive exces-
sive resources if more than one creditor bank reduces its debts with
its net liabilities. To solve this problem, a bank’s atomic strategy is
defined as whether it joins in the debt cancellation of one particular
insolvent bank, given by

fij =

{
1 if i joins in the debt cancellation of j,
0 otherwise.

The atomic strategies of all banks are organised in a strategy matrix
F .

We assume that the participating banks in cancelling an insolvent
bank j’s debts will cancel no more debts than the amount −vj neces-
sary to render j solvent, and furthermore we assume that those banks
all cancel an equal fraction of the debt that j owes them: Thus, if a set
of banks K manage to rescue insolvent bank j, each k ∈ K reduces
j’s liabilities with the factor

dkj =
−vj∑
k∈K ljk

.
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From the above formula, we know that all participant banks will re-
duce j’s debts by the same fraction. We can put all cancellation pro-
portions into a cancellation matrix D(F ) where the (i, j)-entry is
given by

d(F )ij =

⎧⎨
⎩ min

{
1,

fij · (−vj)∑
k∈N fkj ljk

}
if vj < 0,

0 if vj ≥ 0.
(1)

Note that here we also assume that the cancellation proportion is
bounded by 1 because the banks can at best remove all the liabili-
ties of the insolvent bank. During the debt cancellation process, the
liabilities matrix L will be updated according to the cancellation ma-
trix, resulting in a new liabilities matrix L(D)′, given by:

∀i, j ∈ N, l(D)′ji = lji(1− d(F )ij). (2)

Due to the update of the liabilities matrix, a new banking network
(e,L(D)′, a) is defined. Again its bank value vector v(F )′ will be
calculated by the GA algorithm. The payoff of each bank adopting
the strategy matrix, denoted by p(F )i, is defined by the change in its
value, that is

p(F )i = v(F )′i − vi.

2.3 Meta-Game

As banks can independently decide whether to join in the debt can-
cellations by choosing atomic strategies from the atomic strategy
space {0, 1}, there will be

(
2n−1

)n different strategy profiles in to-
tal, and it can be difficult to analyse a game of this size.

To solve this problem, we replace this underlying game with a
meta-game [18, 22]. A meta-game is a simplified game where play-
ers apply meta-strategies instead. In our work, we assume that banks
determine their strategies probabilistically. Specifically, we replace
the strategy space from atomic strategies {0, 1} to an interval [0, 1];
each number in the interval represents a probability of choosing
atomic strategy 1. We split this interval into three sub-intervals,
representing three meta-strategies S = {S1, S2, S3} where S1 =[
0, 1

3

]
, S2 =

(
1
3
, 2
3

]
, S3 =

(
2
3
, 1
]
, referring to a low, medium

and high probability of participating in debt cancellations, respec-
tively. Instead of selecting atomic strategies, every bank picks a meta-
strategy before debt cancellations, thus composing a meta-strategy
profile, s = {s1, · · · , sn} where si ∈ S. In each simulation, a prob-
ability is chosen uniformly at random for each bank according to its
meta-strategy, determining strategy matrix F (s):

fij(s) =

{
1 w.p. ξi
0 w.p. (1− ξi)

, ξi ∼ U(si) (3)

where U(si) represents the uniform distribution on the interval de-
fined by the meta-strategy si.

In this way, we shift the research object from specific bank-to-
bank actions to how likely they are to participate in debt cancellation
actions. This reduces the size of the game in terms of the number of
strategy profiles to 3n, but even in this case it may be still challeng-
ing to collect adequate payoff data and compute the equilibrium. To
further reduce the size of the game, we replace payoff matrix with the
heuristic payoff table [24, 23] in which the payoffs of meta-strategies
are stored as a function of only the number of banks using them. Let
N be a table where each entry corresponds to a meta-strategy cardi-
nality profile �, that describes the number of banks assigned to each
strategy of the meta-strategy space S. In other words, � is a profile
(�1, �2, �3) ∈ N

3
0, �1 + �2 + �3 = n, showing how many banks

use each meta-strategy. For a meta-strategy Sj , j ∈ {1, 2, 3}, the
value N (�, j) in the table represents the payoff to a bank using meta-
strategy Sj when for all k ∈ {1, 2, 3}, the number of banks playing
meta-strategy Sk equals �k. Using such a heuristic payoff table, we
further reduce the size of the game to the number of rows in N , that
is Cn

n+|S|−1.
Heuristic payoff tables have been proven effective for symmetric

games [23], but they may not be directly applicable to our model,
as our game is not symmetric: payoffs may vary if the banks inter-
change their strategies, due to their heterogeneous financial data. Fur-
thermore, even within the set of banks using the same meta-strategy,
the payoff of each bank generally differs because of the heterogene-
ity, so we cannot precisely determine the payoffs for each entry in
N . Consequently, we let N denote average payoffs instead, and to
generate N we run simulations to generate a number of M = 100
estimations N 1, . . . ,NM of N , and finally set N to the average of
them. For each N k, k ∈ {1, . . . ,M}, we set each entry � selecting a
random profile of meta-strategies sk such that |skj (�)| = �j for each
j ∈ {1, 2, 3}, where skj (�) denotes the set of banks choosing meta-
strategy Sj under sk. We set the payoff of the entry N k(�, j) to the
average payoff of all the banks in skj (�):

N k(�, j) =

⎧⎪⎨
⎪⎩

1

�j

∑
i∈skj (�)

(
v(F (sk(�)))′i − vi

)
if �j > 0,

0 otherwise.

(4)

As stated above, we set M to 100 in our setup. Although an increase
in sample size can further reduce the standard error of the mean, hy-
pothesis testing shows that the total variation distance between the
stationary distributions computed by 100 samples and by 2048 sam-
ples is identical to 0 with a significance level of 0.05. Therefore, it
can be reasonable to use the stationary distribution computed by 100
samples to approximate the real stationary distribution.

3 Method

Based on the game model defined above, the experimental procedure
is introduced in this section, including the values of the model pa-
rameters. Then, we also briefly introduce the equilibrium solver used
in our research, the α-Rank algorithm.

3.1 Experimental Procedure

We work with randomly generated networks and a range of choices
of model parameters. The external asset parameter c is taken from
the set {0, 0.05, · · · , 0.95, 1} while we choose the recovery param-
eter a from {0.1, 0.3, 0.5, 0.7, 0.9}. At the beginning of the exper-
imental procedure, we generate a directed scale-free network with
n = 100 banks according to the algorithm introduced in [5] (with
fixed parameters α = 0.1, β = 0.8, γ = 0.1, δin = δout = 4.5 as
in [3]). Then, we consider the 10 banks with the highest in-degrees,
and mark them as the systemically important banks. We assume that
only they can decide whether to cancel the (partial) debts they claim
and other banks merely join in the clearing process. We do this to
keep the computation time of our experience within feasible bounds,
and it can furthermore be considered a reasonable choice informed
by practice, as according to published information, there are around
100 UK-headquartered banks [21] and circa 10 systemically im-
portant banks in the UK [4]. This setup yields generated networks
that are realistic as they have the typical core-periphery structure
that has been observed in practice. Each directed edge in the scale-
free network represents an inter-bank loan in the banking network.
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The notional amount of an inter-bank loan is the absolute value of
a random number following the standard normal distribution, i.e.,
lij = |z|, z ∼ N(0, 1), ∀i, j ∈ N, i �= j. After the liabilities matrix
L is established, the external asset vector e is determined by L and
c, and this yields our initial banking network (e,L, a).

For each generated banking network, we then run Algorithm 1,
which triggers a default cascade by removing external assets of a
random bank whose out-degree is greater than 5 but less than 10.
This is intended to simulate the collapse of a mid-sized bank (e.g.,
the Silicon Valley Bank’s collapse in 2023 [1]). The algorithm then
computes an equilibrium of the debt cancellation game on the re-
sulting network, with the player set restricted to the 10 systemically
important banks, using the α-Rank algorithm [15]. The computation
of this equilibrium uses the heuristic payoff table which is computed
by Algorithm 1 prior to running α-Rank.

The algorithm outputs various quantities we are interested in for
our analysis: i) the number I of insolvent banks without debt cancel-
lation; ii) the average reduction n∗

r in the number of insolvent banks
as a result of debt cancellation (at equilibrium); iii) a vector N ∗ of
average numbers of players choosing each of the meta-strategies; iv)
the maximum reduction n+

r in the number of insolvent banks among
all meta-strategy cardinality profiles �; and v) the meta-strategy car-
dinality profile N+ where n+

r is attained.
The experimental procedure captured by Algorithm 1 will then be

repeated 100 times for each combination of the two parameters, with
different random banking networks, to further reduce the impact of
randomness.

Algorithm 1 Experimental procedure
Input: banking network (e,L, a)
Parameter: meta-strategy space S
Output: I, n∗

r ,N ∗, n+
r ,N+

1: Randomly remove external assets of a mid-sized bank, yielding
updated external asset vector e′.

2: Clear (e′,L, a) using GA, and denote the number of insolvent
banks by I .

3: for each entry � of N do

4: for k in {1, 2, · · · , 100} do

5: Randomly select a meta-strategy profile sk(�), such that
|skj (�)| = �j for all j ∈ {1, 2, 3}

6: Calculate strategy matrix F (s) using (3)
7: Calculate cancellation matrix D(F ) using (1)
8: Cancel debts according to D(F )
9: Update L to L(D)′ using (2)

10: Clear (e′,L(D)′, a) using GA and obtain N k(�, j) for all
j ∈ {1, 2, 3} using (4). Denote the number of insolvent
banks by Ik(�)

11: end for

12: Set N (�, j) =
∑100

k=1 N k(�, j)/100, ∀j ∈ {1, 2, 3}
13: Set I(�) =

∑100
k=1 I

k(�)/100
14: end for

15: Compute equilibrium π of the game induced by N using the α-
Rank algorithm.

16: Calculate n∗
r =

∑
� π�(I − I(�))

17: Calculate N ∗ =
∑

N�
π�N (�, ·)

18: Calculate n+
r = max�(I − I(�))

19: Calculate N+ = argmax�(I − I(�))
20: return I, n∗

r ,N ∗, n+
r ,N+

3.2 α-Rank

In principle, the α-Rank algorithm presents a discrete-state imitation
dynamics, where the logistic selection function defines the imitation
protocol and the transition probabilities between pure strategy pro-
files are given based on the imitation protocol. Specifically, the im-
itation protocol is defined as the fixation probability ρiσ,τ (s) which
describes in the evolutionary population i, how likely all the mem-
bers playing the original strategy σ copy the mutant strategy τ so
that τ takes over the whole population, while the strategies played
by other evolutionary populations s−i are fixed. The fixation proba-
bility is given by

ρiσ,τ (s) =

{
1−e

−α(u(τ,s−i)−u(σ,s−i))

1−e
−mα(u(τ,s−i)−u(σ,s−i))

u(τ, s−i) �= u(σ, s−i),
1
m

u(τ, s−i) = u(σ, s−i),

where u(σ, s−i) and u(τ, s−i) capture i’s payoffs playing strategy σ
and τ , respectively, m is the number of members in each population,
and α is the ranking intensity which controls the selection strength
(see [15] for more details). Based on this fixation probability, we de-
fine a Markov chain where a transition probability is assigned to each
pair of pure strategy profiles (σ, s−i) and (τ, s−i). In principle, the
stationary distribution of this Markov chain forms predictions about
the very long-run dynamics of the evolutionary populations.

However, in practice, it may not be straightforward to determine a
high enough ranking intensity to guarantee a single stationary distri-
bution of the Markov chain in some cases. To solve this problem, we
replace the above definition of fixation probability with the following
one from OpenSpiel [11]:

ρiσ,τ (s) =

⎧⎨
⎩

ε if u(τ, s−i) < u(σ, s−i)
0.5 if u(τ, s−i) = u(σ, s−i)
1− ε if u(τ, s−i) > u(σ, s−i)

(5)

where ε ∈ (0, 0.5] represents the minimal fixation probability, and
we set ε = 0.01 in our work. The modified definition can be con-
sidered an approximation of the original definition where ranking
intensity α → ∞. Note that these fixation probabilities need to be
multiplied by a normalising factor μ to yield valid transition prob-
abilities. More importantly, as the transition probability between a
strategy profile and each of its mutant strategy profiles is not less than
με, the Markov chain is irreducible (i.e., every state has a positive
probability to be visited). Therefore, there will be a unique stationary
distribution which captures the evolutionary stable probability distri-
bution over all strategy profiles (i.e., the equilibrium of the game).
In addition, (5) has the specific property that the fixation probability
between two strategies depends on the rank difference between their
payoffs rather than the payoff difference. Therefore, small deviations
in payoffs will not alter the fixation probabilities, which provides a
strong argument in favour of our approach of using the heuristic pay-
off table to approximate the real stationary distribution.

4 Results and Evaluation

In this section, we present the experimental results and evaluate the
equilibria of the empirical games by analysing the strategy choice of
banks, game dynamics, the effects of debt cancellations and the price
of anarchy.

4.1 Strategy Choice

We analyse the equilibria computed through the α-Rank algorithm
in Algorithm 1, resulting from our experiments. Figure 2 shows the
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(a) a = 0.1. (b) a = 0.3. (c) a = 0.5. (d) a = 0.7. (e) a = 0.9.

Figure 2. Average usage of all meta-strategies at equilibrium under varying choices of external asset parameter c and recovery parameter a.

(a) a = 0.1. (b) a = 0.3. (c) a = 0.5. (d) a = 0.7. (e) a = 0.9.

Figure 3. Average usage of all meta-strategies in the optimal strategy profile under varying choices of external asset parameter c and recovery parameter a.

average number of systemically important banks (hereinafter banks)
choosing each of the meta-strategies at equilibrium in the banking
networks generated, under varying choices of external asset parame-
ter c and recovery parameter a. From Figure 2, we observe that the
usage of each of the meta-strategies is dependent on c but seems to be
essentially independent of a. In general, the number of banks partic-
ipating in debt cancellations with low probability (i.e., S1) is always
greater than the sum of those reducing debts with medium and high
probability (i.e., S2 and S3).

On the other hand, Figure 3 shows the average number of banks
choosing each of the meta-strategies at the optimal solution, i.e., the
strategy profile minimising the number of insolvent banks. Differ-
ently from the equilibrium strategy profiles, here the banks are more
likely to reduce debts to rescue more insolvent banks. However, in
both situations, with the increase in c, the numbers of banks using
each of the meta-strategies get closer together. The main reason is
that with the growth of c, the size of the default cascade triggered by
the default of a single bank becomes increasingly smaller (see Fig-
ure 4(a) below). For c = 1, there even is no such cascade at all, as
all banks other than the one explicitly targeted have sufficient exter-
nal assets to repay their liabilities. Note that there are no differences
between the three meta-strategies for a bank that has no arc coming
in from an insolvent bank. As a result, if c is large enough, some
banks will have no insolvent debtors and thus will choose any of the
meta-strategies equiprobably, leading to an evenly distributed state.

Considering the difference in strategy choice at equilibrium and
the optimal situation, we are interested in understanding better why
the banks are not always willing to cooperate in rescuing insolvent
banks at equilibrium, even if it benefits the whole banking system.
To answer this question, we analyse the banks’ incentives and game
dynamics in the next subsection.

4.2 Dynamics Analysis

Since the inter-bank liabilities are independent, creditor banks can
address the liabilities of different debtor banks separately. There-
fore, we can divide a complicated banking network into independent
games, each containing only one insolvent bank. To further simplify
the analysis, we focus on two typical cases.

Homogeneous banking network. First of all, we consider a simple
homogeneous banking network. Let i denote the only insolvent bank,
and its total assets and total liabilities are denoted by Ai and Li, re-
spectively, satisfying 0 < Ai < Li. Let m denote the number of
creditor banks of i, each of which can potentially cancel some of i’s
debts. Among these banks, m1 is the number of banks which intend
to rescue i by removing part of its liabilities and m2 = m−m1 is the
number of banks which do not cancel any debts. In a homogeneous
banking network, the liabilities of i to all creditors are identical, de-
noted by lim, thus

∑m
k=1 lik = mlim = Li. If i is solvent after the

debt cancellation process, we will get the following clearing equation

m1λim1 +m2λim2 = Ai

where λim1 and λim2 represent the actual payments of i to the banks
reducing debts and to the banks which do not cancel any debts, re-
spectively. Clearly, m1 ≥ 1 because there must be at least one bank
which removes part of debts to rescue i. Let d denote the cancellation
proportion, we have λim1 = lim(1− d) and λim2 = lim, so

m1lim(1− d) + (m−m1)lim = Ai

d =
Li −Ai

m1lim
.

Therefore, creditor banks’ incoming payments are

λim1 = lim − Li −Ai

m1
, λim2 = lim.
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Clearly, λim1 < λim2 , independent of m1, which indicates that the
cancellation strategy is dominated by the non-cancellation strategy,
so banks naturally prefer not to cancel any debts. Thus, in equilib-
rium, m1 will be the least value such that i is saved even if the banks
choosing the cancellation strategy give up all the debts they claim
(i.e., d = 1). The critical value of the above clearing equation is

m∗
1 = m−

⌊
Ai

lim

⌋
, m∗

2 =

⌊
Ai

lim

⌋
, (6)

where m∗
1 indicates the minimum number of banks reducing debts

for successful rescue of i.
Consider now a solution (m′

1,m
′
2) to the above system where

m′
1 < m∗

1 and m′
2 > m∗

2. Even though the banks choosing the
cancellation strategy remove all i’s liabilities to them, bank i is still
insolvent. In this case, the equations turn into

m′
1λ

′
im1

+m′
2λ

′
im2

= aAi

m′
1(1− 1) +m′

2λ
′
im2

= aAi

λ′
im2

=
aAi

m′
2

where m′
2 ≥ 1 because i must be solvent if all banks agree to reduce

its debts. Therefore, creditor banks’ incoming payments are

λ′
im1

= 0, λ′
im2

=
aAi

m′
2

. (7)

Again, λ′
im1

< λ′
im2

, independent of m′
2, which indicates that the

cancellation strategy is still dominated by the non-cancellation strat-
egy. This will naturally lead to a state where, in case i is not rescued,
no bank uses the cancellation strategy.

However, at the point of critical value, the cancellation strategy can
bring a higher payoff than the non-cancellation strategy. Specifically,
recall that in (6), we have λim1 → lim when Ai → Li. On the other
hand, according to (6) and (7), for the minimum m′

2 = m∗
2 + 1,

λ′
im2

=
aAi

m∗
2 + 1

=
aAi⌊

Ai

lim

⌋
+ 1

< alim.

Therefore, for any given recovery parameter a ∈ (0, 1), there exists
an Ai such that λim1 > λ′

im2
. However, note that the latter strict

inequality does not always hold for given a and Ai. In other words,
the ultimate result is either all banks do not cancel any debts, or m∗

1

banks remove part of i’s debts at equilibrium, depending on the val-
ues of a and Ai.

Polarised banking network. Secondly, we consider a banking net-
work where i is the only insolvent bank, and there is a single bank
(denoted by j) claiming a large enough inter-bank liability lij with a
further k banks claiming identical small liabilities lik, satisfying

lij + klik = Li, lij → Li.

In this situation, Ai < lij ; therefore, i cannot survive even though
the k banks give up all the debts they claim unless j participates in
the debt cancellation.

If j agrees to reduce i’s debts, the following equation holds

λij + k1λik1 + k2λik2 = Ai

where k1 represents the number of banks removing part of liabilities
and k2 the number of banks which do not cancel any debts, satisfying

k1, k2 ≥ 0, k1 + k2 = k. Let d denote the cancellation proportion,
we have λij = lij(1− d), λik1 = lik1(1− d) and λik2 = lik2 , so

lij(1− d) + k1lik(1− d) + k2lik = Ai

d =
Li −Ai

lij + k1lik

Therefore, creditor banks’ incoming payments are

λij = lij · Ai − k2lik
Li − k2lik

, λik1 = lik · Ai − k2lik
Li − k2lik

, λik2 = lik.

Clearly, λik1 < λik2 , so for the k banks, the cancellation strategy
is always dominated by the non-cancellation strategy. Therefore, at
equilibrium, k1 = 0 and only j reduces i’s debts. In this case, banks’
incoming payments become

λij = Ai − klik, λik = lik.

On the other hand, if j does not reduce i’s debts, i is not rescued,
and a solution (k′

1, k
′
2) is attained that satisfies

λ′
ij + k′

1λ
′
ik1

+ k′
2λ

′
ik2

= aAi

λ′
ij + k′

1(1− 1) + k′
2λ

′
ik2

= aAi

Creditor banks’ incoming payments are in this case given by

λ′
ij = aAi · lij

lij + k′
2lik

, λ′
ik1

= 0, λ′
ik2

= aAi · lik
lij + k′

2lik
.

Again, λ′
ik1

< λ′
ik2

, so a state will emerge where the k banks do not
cancel i’s debts. In this case, banks’ incoming payments become

λ′
ij = aAi · lij

Li
, λ′

ik = aAi · lik
Li

.

Since lij → Li, we have λij → Ai and λ′
ij → aAi. Therefore, for

a given a ∈ (0, 1), we have λij > λ′
ij , indicating that j will always

reduce i’s debts to rescue it. Nevertheless, note that in this situation,
only one bank reduces debts.

To summarise the analysis in this subsection: in a homogeneous
banking network, either no bank cancels debts, or some cooperate
in rescuing the insolvent bank. In a polarised banking network, only
the bank claiming the majority of the debts of the insolvent bank
will reduce its liabilities. We may consider these as two extremes,
in the sense that the emerging strategic behaviour in other financial
networks falls somewhere in between these cases. We further ob-
serve that under both extremes, either no debts are cancelled, or an
as-small-as-possible number of banks claiming large enough debts
remove some at equilibrium. The incentive and game dynamics anal-
yses in this subsection explain why it is difficult for creditor banks
to cooperate in rescuing insolvent banks, consistent with the experi-
mental results shown in Section 4.1 at a higher level.

4.3 Effects Analysis

We proceed to quantitatively analyse the impact of debt cancellations
at equilibrium. Figure 4 shows the number of insolvent banks before
debt cancellations and the reduction in defaults at equilibrium and
in optimal cases. From Figure 4(a), we can see that when external
asset parameter c = 0, implying a state in which there are no surplus
external assets in the banking network, a financial shock caused by
removing a bank’s necessary external assets will trigger a large-scale
default cascade and cause a number of banks to default. In this case,
the size of the default cascade significantly depends on the value of
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(a) Before debt cancellations (b) Equilibrium rescues (c) Optimum rescues (d) Price of Anarchy

Figure 4. Average number of banks in various profiles and PoA with different external asset parameters c and recovery parameters a.

the recovery parameter a. When a = 0.1, over half of the banks are
in default, and when a = 0.9, about a quarter of the banks cannot
repay their debts. On the other hand, when c ≥ 0.5, implying a state
in which the banks hold some surplus external assets, the size of the
default cascade is usually small and the recovery parameter will have
a minor impact on that. In general, with the increase in external asset
parameter c, the number of insolvent banks decreases dramatically
as the surplus external assets can be used to repay liabilities in case
banks cannot receive sufficient incoming payments. In addition, for
any given c, with the increase in recovery parameter a, the number
of insolvent banks declines, because the losses caused by a default
cascade to the creditor banks become smaller.

Figure 4(b) and Figure 4(c) show the reductions in the number
of insolvent banks at equilibrium and at the optimum, respectively.
From Figure 4(b), we recognise that debt cancellations effectively
rescue insolvent banks and weaken the damage of default cascades,
even though few banks reduce debts at equilibrium. For each recov-
ery parameter a, with the increase in the external asset parameter c,
the number of rescued banks first increases and then decreases, so
there exists a peak. In general, an increase in a appears to move the
peak towards smaller c. The main reason for these phenomena is that
according to the results shown in Section 4.1, a hardly influences
strategy choice, so there will be a similar number of banks joining
in the debt cancellation at the same level of c. As stated above, the
higher the a, the smaller the losses caused by a default cascade, so
the lower the debt cancellation proportion. Therefore, it can be more
likely for the participant banks to save the insolvent banks success-
fully, which raises the number of rescued insolvent banks up. In addi-
tion, Figure 4(c) indicates that most insolvent banks can be rescued
under the optimum, for many of the parameter choices. Generally,
the larger the size of the default cascade, the more insolvent banks
can receive rescues at the optimum. However, with the increase in
a, the ratio of the rescued banks to the total insolvent banks can be
higher for the same reason mentioned above.

Comparing Figures 4(b) and 4(c), we observe a big difference be-
tween the equilibrium versus optimum performances. To measure the
performance at equilibrium, we calculate its price of anarchy (PoA),
given by

PoA =

{
n∗r
n+
r

if n+
r > 0,

1 otherwise,

where n∗
r and n+

r are defined in Algorithm 1 as number of banks
rescued at equilibrium and optimum, respectively. Figure 4(d) shows
the average PoA of repetitive experiments for 100 times. From Figure
4(d), we see that the recovery parameter a has an important impact
on the PoA, especially when the banking network is short of surplus

external assets. Specifically, when the external asset parameter c is
small, the PoA under larger a is significantly higher than the PoA
under a smaller a. With the increase in c, the PoA keeps increas-
ing and the gaps between the PoAs at different levels of a become
smaller, converging to the same value at around c = 0.5. Neverthe-
less, the average PoA never exceeds 0.8 in any of our experiments,
and this quantifies the empirical loss of performances due to selfish-
ness to at least 20%, indicating that the performances of selfish debt
cancellations are not perfect.

5 Conclusion

Our research studied debt cancellation as an inter-bank rescue strat-
egy for the banking system to “self-heal” in an incentive-compatible
way, and to what extent selfish debt cancellations can reduce sys-
temic risk caused by default cascades.

The experimental results show that the average number of banks
participating in debt cancellations with low probability is always
greater than the sum of those reducing debts with medium and high
probability in the equilibrium situation. On the other hand, in the
optimal situation, banks are more likely to reduce debts to rescue
more insolvent banks. To explain this difference, we analysed the in-
centives and game dynamics and concluded that for any independent
debt cancellation games, either no debts are cancelled, or an as-small-
as-possible number of banks claiming large enough debts are willing
to remove some at equilibrium.

Our results indicate that debt cancellation can indeed save insol-
vent debtor banks and reduce systemic risk when the banks act ac-
cording to an equilibrium strategy profile which is compatible with
the incentives of the individual banks, although there are usually only
a few banks joining in the debt cancellations. In further analysis, we
also find that although the recovery parameter hardly influences the
strategy choice, it can have an impact on the effects of the debt can-
cellations by affecting the rescue difficulty. Finally, we calculated the
price of anarchy to measure the overall performance of the equilib-
ria, finding that when the banks in the system are short of money, the
performance of the equilibria increases with the recovery parameter.
In addition, although the PoA keeps increasing with the growth of
external assets, it never exceeds 0.8 in any of our experiments.

An important limitation of our work is that only non-cooperative
games are considered and the communication among banks is ig-
nored. Therefore, one direction for future work is to extend the cur-
rent model to a cooperative game model, where banks can form
a binding coalition and distribute payoffs. This attempt can simu-
late the real-world financial market from another view, leading to a
deeper insight into how cancelling debts can reduce systemic risk.
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