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Abstract. We propose a Skew-Symmetric Bilinear (SSB) model to
represent intransitive preferences on subsets of a ground set of items.
More precisely, the SSB model accounts for preference intensities
between pairs of subsets. We provide a procedure to learn the pa-
rameters of the SSB model from a set of known pairwise preferences
between subsets, managing to find a sparse model, and as simple as
possible in terms of the degree of interaction between items. The
SSB model can be viewed as a concise representation of a weighted
tournament on subsets. We study the complexity of determining the
winners according to various tournament rules. Numerical tests on
synthetic and real-world data are carried out.

1 Introduction

A wide range of problems in Artificial Intelligence (AI) can be for-
mulated as subset selection problems, namely to select a subset from
a ground set of items. Examples of such problems include notably
(but are not limited to) feature selection in learning tasks [26, 30],
multiattribute decision making with binary attributes [2, 15], or
course recommendation [34]. The definition of an “optimal” subset
of items requires a formalism for expressing preferences over sub-
sets. Furthermore, this preference model should be able to account
for interactions (synergies) between items, known as the portfolio ef-
fect [8]. For example, on a backpacking trip, even if you prefer to
take a bottle of water rather than an apple, you may prefer to take a
bottle of water and an apple rather than two bottles of water [25].

Various works in AI have tackled this topic of representing pref-
erences over sets. Brafman et al. [5] and Binshtok et al. [3] have
considered a framework in which the items from which sets are built
are associated with attributes, and the values of these attributes are
what distinguish the different items. They define properties based on
properties of items in a set (which makes it possible to express syner-
gies between items in a set), and the preferences over sets are defined
by comparing set properties, e.g., “I would like a set for which the
number of items with such value for such attribute is at least (resp.
at most, equal to) k”. Desjardins and Wagstaff [13, 14] proposed an
alternative attribute-based model in which preferences over the di-
versity of items in a set may be expressed, e.g., “I would like a set
for which the values of the items for such attribute are evenly dis-
persed across the range of possible values” (as would be desirable
for instance in a recommendation list). They also designed learn-
ing methods for their model, as well as optimization methods for
solving the subset selection problem with preferences represented by
their model. Guo and Gomes [25] have presented a non-parametric
method for learning attribute-based preferences over sets, i.e., they

do not assume a pre-defined parameterized preference function over
sets of items. They learn a function which, given a new unseen
ground set of items, predicts the subset of it that minimizes the ex-
pected value of a set similarity loss w.r.t. the optimal subset.

Domshlak and Joachims [15], Bigot et al. [2] and Gilbert et al. [22]
studied a setting in which there is no attribute-based description of
the items. Note that in the first two papers, not sets but binary vectors
are compared, which is formally equivalent. Similarly to the expres-
sion of a Choquet integral in terms of Möbius masses in multicrite-
ria decision making [see e.g., 23], the authors use utility parameters
w(S) to account for synergies between subsets S of items. More pre-
cisely, the utility u(A) of a set A is defined as u(A)=

∑
S⊆A w(S),

and a set A is preferred to a set B if u(A)>u(B). All three works
aim to propose a method for learning such a utility function from a
set of pairwise preference statements. First, Domshlak and Joachims
proposed an SVM approach [11] for this purpose, relying on the ker-
nel trick [36] for the efficiency of the method. For their part, Bigot
et al. gave a probably approximately correct (PAC) method to learn a
compact decomposition of the utility function into parameters w(S).
The method is polynomial-time if a constant bound is known on the
size |S| of the greatest subset S considered in the expression of the
utility function. Finally, Gilbert et al. recently proposed a learning
method that uses both a Gaussian process method [10] to learn the
decomposition into parameters w(S) and a robust ordinal regression
method [24, 28] to predict preferences.

To the best of our knowledge, the question of taking intransitivities
into account in preferences between sets has not been addressed in
the AI literature to date. Yet it is well known that intransitivities in
preferences can occur in many real-world situations, as illustrated by
Condorcet’s paradox in voting (a majority of voters may prefer A
to B, B to C and C to A), which shows that there may be cycles in
strict preferences [21], or by Luce’s example of sugar grains in coffee
[18, 31], which shows that indifference may be intransitive (think of
a sugarless coffee in which you add grains of sugar one by one).

In an attempt to fill this gap, our contributions are the follow-
ing: 1) We propose a new model for representing possibly intran-
sitive preferences over sets (Section 2), largely inspired by the SSB
(Skew-Symmetric Bilinear utility) model proposed by Fishburn [19]
for comparing lotteries in the setting of decision under risk. We adapt
the model to the comparison of sets, and we extend it to account for
synergies between items. 2) We provide a method to learn the model
parameters from a set of observed preference intensities over sets
(Section 3). Our proposed method aims to produce a model as simple
and compact as possible. We then apply it to synthetic and real-world

ECAI 2024
U. Endriss et al. (Eds.)

© 2024 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA240887

3372



data to assess the quality of the learned model. 3) We study the com-
plexity of determining the winning sets according to different rules in
the tournament on sets induced by the SSB model, establishing both
negative (Section 4) and positive complexity results (Sections 5 and
6). We conclude by giving some research directions for future work.

2 The SSB Model with Synergies

We consider a set E of n elements, fromwhich we derive a setA⊆2E

of N subsets. To express preferences on sets, a standard tool is the
linear utility model, i.e., given a weighting function w : E →R, the
value of a set A∈A is u(A)=

∑
e∈A w(e) and A is preferred (resp.

indifferent) to a set B, denoted by A�B (resp. A∼B), iff u(A)>
u(B) (resp. u(A) = u(B)). As mentioned above, we consider in
this work preferences that may present some intransitivities, which
prevent from resorting to the standard utility model.

Example 1. A classic example, often attributed to Armstrong [1] and
reported by Lehrer and Wagner [29], is the following: a child (say
a girl) may receive as a present for her birthday either a bicycle or
a pony and is indifferent between the two options. If a bell is added
to the bicycle, then this yields a better gift than the bicycle alone.
However, the child would still be indifferent between the pony and
the bicycle with a bell. Indeed, the bell is not a sufficient add-on to
justify in her eyes that the bicycle should be preferred to the pony.

This problem can be modeled by considering a set of three ele-
ments E = {P,B, b}, in which P , B and b correspond to Pony, Bi-
cycle and bell respectively, and three subsets A1={P}, A2={B},
and A3={B, b}, defining the alternative set A={A1, A2, A3}. The
preferences of the child are then A1 ∼ A2, A1 ∼ A3 and A3 � A2.

Note that the preferences of Example 1 are incompatible with the
linear utility model. Indeed, the first two preference statements would
imply u(A2)=u(A1)=u(A3) and we would obtain A2∼A3, con-
tradicting the last preference statement. One possibility to overcome
this incompatibility is, instead of using a univariate function u asso-
ciating a utility u(A) to each A ∈ A, to resort to a bivariate func-
tion ϕ(A,B) reflecting the intensity of preference of A overB, with
ϕ(A,B)> 0 (resp. ϕ(A,B)= 0) if A�B (resp. A∼B). It is then
possible to have ϕ(A1, A2)=0, ϕ(A1, A3)=0 and ϕ(A3, A2)>0,
which accounts for the preferences of Example 1. More specifically,
we may consider the following formula for ϕ:

ϕ(A,B) =
∑
e∈A

w(e)−
∑
e∈B

w(e) +
∑
e1∈A

∑
e2∈B

ψ(e1, e2) (1)

where the parameters ψ(e1, e2) reflect the intensity of preference of
having e1 (in A) “against” e2 (in B). In line with this interpretation,
the function ψ is skew-symmetric, i.e., ψ(e2, e1)=−ψ(e1, e2).

Example 2. To account for the preferences in Example 1, we can
set w(P ) =w(B) = 5, w(b) = 1, ψ(b, P ) =−1 and ψ(e1, e2) = 0
otherwise. The value ψ(b, P )=−w(b) reflects that the bell is not an
add-on compared to a pony. We have then ϕ(A1, A2) = 5 − 5 = 0,
ϕ(A1, A3)=5− (5 + 1) + 1=0 and ϕ(A3, A2)=(5 + 1)− 5=1.

Nevertheless, this is not fully satisfying as, by adding A4={P, b}
toA, we obtain ϕ(A4, A2)=(5+1)−5>0. Put another way, a pony
with a bell would be preferred to a bike while we would want to be
indifferent. Setting ψ(b, B)=−1 is not a solution because we would
then have ϕ(A3, A2) = (5 + 1) − 5 − 1 = 0. A way to overcome
this is to introduce synergy terms of the form w(S), which yields the
following formula for ϕ:

ϕ(A,B) =
∑
S⊆A

w(S)−
∑
S⊆B

w(S) +
∑
e1∈A

∑
e2∈B

ψ(e1, e2).

Example 3. Following on from Example 2, we can set w({B, b})=
1, w({P, b}) = 0, and w(b) = 0 instead of 1 to obtain A1 ∼ A2,
A1∼A3, A3�A2 and A4∼A2. This change in parameters1 allows
us to express that a bell is an add-on to a bike but not to a pony.

But then A1 is preferred to A4, i.e., a pony alone is preferred to a
pony with a bell, even though he who can do more can do less. This
can be solved by a further change in the formula of ϕ:

ϕ(A,B) =
∑
S⊆A

w(S)−
∑
S⊆B

w(S) +
∑

S1⊆A

∑
S2⊆B

ψ(S1, S2).

The parameters ψ(S1, S2) enable us to express exactly that adding a
bell to a bike is not enough to create a preference over a pony.

Example 4. Following on from Example 3, we can set w(P ) = 5,
w(B)=5, w({B, b})=1, ψ({B, b}, P )=−1, and all other param-
eters equal to 0 to obtain the exact set of preferences we want.

Connection to tournament theory. The preferences expressed by
function ϕ on a set A = {A1, . . . , AN} of alternatives define a
weighted tournament2 (A,Φ), where Φ is the skew-symmetric ma-
trix defined by Φij = ϕ(Ai, Aj) if i �= j, else 0. This tournament
can be represented by a valued digraph G=(V,E, v) where V =A,
E = {(Ai, Aj) : Φij > 0}, and v(Ai, Aj) = Φij ∀(Ai, Aj)∈E. In
other words, there is one vertex per alternative and an edge from Ai

to Aj iff Ai�Aj , valued by the preference intensity of Ai over Aj .

Example 5. Back to the example: if we set A=2E\{∅}, and we de-
fine ϕ by setting w(B)=w(P )=5, w({B, b})=1, ψ(P, {B, b})=
1, and ψ({P,B, b}, P )=1, we obtain the tournament in Figure 1.

{P}
{b}

{B}

{P, b}
{P,B}

{B, b}

{P,B, b}

6

11

6
6

1

6

55

5

10
56

5

1

5 5

Figure 1. The tournament obtained in Example 5.

As seen in Examples 1 to 5, many model parameters remain at 0.
Hence, to keep the representation sparse, we circumscribe the set of
parameters of the model to a subset θ= {S1, . . . , St}⊆ 2E \{∅}, to
finally obtain the SSB model (with synergies) on sets we propose to
consider in this paper. In the following, we assume that the parame-
ters ψ(Si, Sj) (with i and j in {1, . . . , t}) are stored in a matrix Ψ
defined by Ψij = ψ(Si, Sj) if i �= j and 0 otherwise. Furthermore,
we abbreviate w(Si) by ωi and we denote by Iθ(A) the indices of
subsets Si∈θ included in A, i.e., Iθ(A)={i∈{1, . . . , t} :Si⊆A}.
Definition 1. Given a set E of elements, a set θ = {S1, . . . , St} ⊆
2E \{∅}, a vector ω encoding a weighting function w : θ→R and a
matrix Ψ encoding a skew-symmetric bivariate function ψ : θ2 →R,
the preference intensity of A over B according to the SSB model is

ϕθ,ω,Ψ(A,B) =
∑

i∈Iθ(A)

ωi −
∑

i∈Iθ(B)

ωi +
∑

i∈Iθ(A)

∑
j∈Iθ(B)

Ψij .

In the next section, given a skew-symmetric matrix M obtained
from a set of known preference intensities between sets in A, we
investigate how to learn the parameters of an SSB model accounting
for the weighted tournament (A,M).

1 To alleviate the notations, the braces are omitted for singletons.
2 Strictly speaking, we consider weak tournaments, as we may haveAi �=Aj
for which ϕ(Ai, Aj)=0. For brevity, we omit the term “weak”.
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3 Learning the Parameters of an SSB Model

We first give a constructive way to find an SSB model to account for
a set of observed preference intensities over subsets. Indeed, while
we have seen that the SSB model induces a weighted tournament on
the alternative set A, we now show conversely that, given a skew-
symmetric matrix M defining a weighted tournament (A,M), there
always exists an SSB model ϕ such that (A,Φ)=(A,M).

Theorem 1. Let E be a set of n elements, A={A1, . . . , AN}⊆ 2E

be an alternative set, and (A,M) be a weighted tournament on A.
Without loss of generality, assume that AN =∅ if ∅∈A.

Let N ′ = 2n−1. By setting θ = 2E \{∅} = {S1, . . . , SN′} with
Si =Ai ∀i∈ {1, . . . , N−1A(∅)} (where 1A(∅) = 1 if ∅ ∈A, else
0), and for i∈{1, . . . , N ′} and j∈{1, . . . , N ′}

ωi =

⎧⎨
⎩

∑
k∈IA(Si)

(−1)|Si\Ak|MkN if ∅∈A,

0 otherwise,
(2)

Ψij =
∑

k∈IA(Si)

∑
l∈IA(Sj)

(−1)|Si\Ak|+|Sj\Al|Mkl, (3)

where IA(S)={k∈{1, . . . , N} : Ak⊆S}, we obtain that:

∀Ap, Aq ∈ A, ϕθ,ω,Ψ(Ap, Aq) = Mpq.

Proof. This is a generalization of the Möbius transform of a capacity
function [see e.g., 23] to the case of a binary function. Let us first
assume that ∅ �∈ A. We consider the extended tournament (A′,M ′)
whereA′={A1, . . . , AN , AN+1, . . . , AN′}=2E\{∅}withAi=Si

∀i∈{N+1, . . . , N ′},M ′
ij =Mij for i, j∈{1, . . . , N}, andM ′

ij =0
otherwise. As ωi=0 for i∈{1, . . . , N ′}, we have by Definition 1:

ϕθ,ω,Ψ(Ap, Aq) =
∑

i∈Iθ(Ap)

∑
j∈Iθ(Aq)

Ψij

=
∑

i∈Iθ(Ap)

∑
j∈Iθ(Aq)

∑
k∈IA(Si)

∑
l∈IA(Sj)

(−1)|Si\Ak|+|Sj\Al|Mkl

=
∑

i∈IA′ (Ap)

∑
j∈IA′ (Aq)

∑
k∈IA′ (Si)

∑
l∈IA′ (Sj)

(−1)|Si\Ak|+|Sj\Al|M ′
kl

where we have used Equation 3 on the second line, and the fact that
A′ = θ and M ′

kl =0 when k or l does not belong to {1, . . . , N} on
the third line. As [k ∈ IA′(Si) and i∈ IA′(Ap) ⇔ Ak ⊆ Si =Ai ⊆
Ap], and [l∈ IA′(Sj) and j ∈ IA′(Aq) ⇔ Al ⊆Sj =Aj ⊆Aq], the
coefficient of each term M ′

kl in this formula can be written:∑
Si

∑
Sj

(−1)|Si\Ak|+|Sj\Al| for Ak⊆Si⊆Ap and Al⊆Sj ⊆Aq

=
∑

Si:Ak⊆Si⊆Ap

(−1)|Si\Ak|(
∑

Sj :Al⊆Sj⊆Aq

(−1)|Sj\Al|).

The binomial theorem states that (x+ y)n=
∑n

t=0

(
n
t

)
xn−tyt. Tak-

ing x=1 and y=−1, we know that
∑n

t=0

(
n
t

)
(−1)t=(1− 1)n=0

for n∈N∗. Noting that the expression within the parentheses in the
above formula is equal to

∑|Aq\Al|
t=0

(|Aq\Al|
t

)
(−1)t =0 (by the pre-

vious argument with n = |Aq \Al|), we deduce that the coefficient
of M ′

kl is 0 for l �= q (so that Al �=Aq). Similarly, we can show that
the coefficient of M ′

kl is also 0 for k �= p. The only exception is the
case (k, l) = (p, q), for which the coefficient of M ′

pq is (−1)0 = 1.
Thus ϕθ,ω,Ψ(Ap, Aq) =M ′

pq =Mpq for p, q ∈ {1, . . . , N}, which
concludes the proof in the case where ∅ �∈A.

When ∅∈A, we apply the same proof with θ′ = θ ∪ {∅} and the
following formula:

ϕθ,ω,Ψ(Ap, Aq) =
∑

i∈Iθ′ (Ap)

∑
j∈Iθ′ (Aq)

Ψij .

Once the parameters Ψij that satisfy this formula are determined
for i, j ∈ {1, . . . , N}, the expression of ϕθ,ω,Ψ(Ap, Aq) as stated
in Definition 1 can indeed be recovered by setting ωi = ΨiN for
i ∈ {1, . . . , N ′}, and keeping unchanged the values Ψij for i, j ∈
{1, . . . , N ′}\{N} because ϕθ,ω,Ψ(Ap, Aq) can be rewritten as:∑

i∈Iθ(Ap)

ΨiN +
∑

i∈Iθ(Aq)

ΨNi +
∑

i∈Iθ(Ap)

∑
j∈Iθ(Aq)

Ψij .

The parameter ωi=ΨiN is equal to:∑
k∈IA(Si)

∑
l∈IA(∅)

(−1)|Si\Ak|+|∅\Al|Mkl =
∑

k∈IA(Si)

(−1)|Si\Ak|MkN

Hence, we obtain formulas for parameters ωi and Ψij that corre-
spond to Equations 2 and 3 in Theorem 1.

Theorem 1 shows how to construct an SSB model to account for
a set of observed preferences over subsets. Sadly, it uses θ = 2E \
{∅} and thus yields a model with a possibly prohibitive number of
parameters. We now investigate how to learn a sparser representation.

To put it formally, given a set θ = {S1, . . . , St} ⊆ 2E \ {∅}, we
outline a method to derive an SSB model (i.e., learn ω and Ψ) from
a set of m weighted preferences R= {(Ak, Bk, pk) : 1≤ k≤m},
where (A,B, p)∈Rmeans that we have observed thatA is preferred
to B with intensity p. We assume that R is noise free, in the sense
that a possible incompatibility of the model with R comes from the
parameter set θ used and not from errors in the observed preferences.

As θ is fixed beforehand, and since we have no guarantee that a
given θ yields a model ϕθ,ω,Ψ that can account perfectly for pref-
erences in R, we introduce a gap variable εA,B for each preference
(A,B, p) in R [see e.g., 11]. We obtain the following constraints:∑

i∈Iθ(A)

ωi −
∑

i∈Iθ(B)

ωi +
∑

i∈Iθ(A)

∑
j∈Iθ(B)

Ψij = p+ εA,B (4)

for all (A,B, p) ∈ R. We add the following set of constraints to
ensure that Ψ is skew-symmetric:

Ψij = −Ψji for all (i, j)∈{1, . . . , t}2. (5)

Let PR
θ be the polyhedron defined by Constraints 4–5 on [ω,Ψ, ε].

Learning a compact model. To compute a specific model, fol-
lowing the approach proposed by [22] to implement Occam’s razor
principle, we define objectives that are lexicographically minimized
over PR

θ . We first aim to minimize the sum of gap variables εA,B :

Lε =
∑

(A,B)∈R

εA,B

Compactness involves minimizing non-zero parameters, requiring
loss functions for both additive (ω) and bilinear (Ψ) parameters. We
opt for the L1 loss function, defined for ω (left) and Ψ (right) by:

Lω =
t∑

i=1

|ωi| LΨ =
t∑

i=1

t∑
j=1

|Ψij |

Moreover, prioritizing the use of additive coefficients over bilinear
ones, given their expressive yet less versatile nature, demands sep-
arate minimization objectives in a lexicographic order, starting with
the loss on gap variables. This yields the following procedure:

1. Compute L∗
ε = min

[ω,Ψ,ε]∈PR
θ

Lε.

2. Compute L∗
ω = min

[ω,Ψ,ε]∈PR
θ

Lω s.t. Lε = L∗
ε .

3. Compute [ω∗,Ψ∗] = argmin
[ω,Ψ,ε]∈Pp

θ

LΨ s.t. Lε = L∗
ε and Lω = L∗

ω .

We now present the results of numerical tests on synthetic and
real-world data. The code is available online [33].
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Numerical tests on synthetic data. The tests were conducted with
n=6. We consider two types of synthetic instances, the Gaussian in-
stances and the SSB instances. Let [E ]k={A : A⊆E , 1≤|A|≤k}.
The set of alternatives is A = [E ]k (for a given k) in Gaussian in-
stances, and A= 2E in SSB instances. For both types of instances,
to define a weighted tournament on A, a weighted undirected graph
of vertex set A is first generated using the Erdös-Rényi model [17],
where each edge is included in the graph with probability p. The dif-
ference lies in the generation of edge weights. In Gaussian instances,
the weight Mij of each edge {Ai, Aj} (i < j) is randomly drawn
using a normal distribution: Mij ∼ N (0, 1). In SSB instances, the
weight is the value of a randomly drawn SSB function (common to
all edges):Mij =ϕθ,ω,Ψ(Ai, Aj), where θ=[E ]k, ωi∼N (0, 1) and
Ψij ∼N (0, 1). We call k the degree of the SSB model. In both cases
(Gaussian and SSB), edges are directed according to the sign of Mij

(from Ai to Aj if Mij >0, otherwise the converse).
Our experiments on synthetic data aim to measure how well an

SSB model of degree d can replicate the arc weights for both types of
instances. For this purpose, we use a variant of the r2 score, namely
the score 1−(

∑
i<j |Mij−Φ̂ij |)/

∑
i<j |Mij | (the closer to 1, the

better the fit), where Φ̂ is the learned SSB model. This score is aver-
aged over 10 randomly drawn instances for each instance type and tu-
ple (p, k, d), with p∈{0.1, 0.6}, k∈{2, . . . , 5} and d∈{1, . . . , k}.

The results are presented in Figure 2. The top (resp. bottom) dia-
grams are obtained for Gaussian (resp. SSB) instances with p=0.1
(left) and p=0.6 (right). As expected, increasing the density of the
graph (with p) complicates the representation task, as witnessed by
the Gaussian instances with p=0.1 and d≥ 3, for which the scores
do not exceed 0.1. Nevertheless, as soon as the weightsMij are func-
tions ofAi andAj (SSB instances), even low-degree SSB model can
replicate them very satisfactorily, as witnessed by the scores that are
all greater than 0.8 for d≥2 in the bottom diagrams, even if p=0.6
(dense graph). Overall, the SSBmodel demonstrates good replication
power for the synthetic data considered, as can be seen by consider-
ing the rows d=3 in the different diagrams.

Figure 2. Mean scores on synthetic data with n = 6.

Numerical tests on real-world data. The tests were conducted on
Kaggle data [9] from 81,272 online games of “League of Legends”
(Season 8). The data were gathered using Riot’s public API [35].

In this video game, each player selects a character from one of five
distinct classes and engages in combat as two teams of five individ-
uals. Each team must comprise a character from each class, ensuring
a balanced composition. The meta-game, a term that players use to
describe the current strategic trends and power balances among char-
acters, is often quantified by the “win rate”—a metric that reflects the
probability of winning a game when selecting a particular character.

Yet, only considering win rates between individual characters has
its limits. It fails to account for synergies between the characters and
overlooks the nuanced strength dynamics that emerge when certain
characters face off against one another. Our tests aim precisely to
assess the benefits of using an SSB model to explain win rates be-
tween character combinations and to compare the relative impact of
interaction parameters w(S) (with |S| ≥ 2) and bilinear parameters
ψ(ei, ej) in the explanatory power of the SSB model.

For this purpose, we leverage data from the game to build a
weighted tournament T =(A,M) on characters and pairs of charac-
ters, whereMij reflects the win rate of a team comprisingAi against
a team comprising Aj . The set E corresponds to the characters. Note
that not all subsets of E of size 1 or 2 are feasible due to the distinct
classes of characters. Formally, we have A=[E ]1 ∪ (∪i �=j{{e, e′} :
e ∈ Xi, e′ ∈ Xj}), where Xi is the set of characters of class i. In
the definition of the tournament, we restrict ourselves to the 5 most
played characters for each class i (|Xi|=5 for i∈{1, . . . , 5}). The
Kaggle dataset synthesizes the results of numerous games that were
played online between various teams of 5 characters, from which we
derive the weightsMij as follows. LetWij be the win rate computed
from the data by examining the outcomes of games between teams
comprising Ai against teams comprising Aj , viewed as an estimate
of the binomial probability pij that the former wins against the latter.
We use the Wilson score interval [37] to produce a 90% confidence
interval [αij , βij ] for pij . An arc from Ai to Aj (resp. Aj to Ai) of
weight Mij =Wij − 0.5 (resp. Mji=0.5−Wij) is included in T if
αij >0.5 (resp. βij <0.5), otherwise there is no arc between them.

From this tournament, we learn 1) an SSB model where θ= [E ]1
(that we call 1-SSB model), 2) a linear additive model that corre-
sponds to a degenerate SSB model where θ= [E ]1 and Ψ is the null
matrix (1-ADDmodel), and 3) an SSBmodel with θ=[E ]2 and a null
Ψmatrix (2-ADDmodel). The 1-ADDmodel involves n parameters,
while the 2-ADD and 1-SSB models involve n(n+1)/2 parameters.
Players and game designers widely use the 1-ADD model. However,
it does not account for the synergies and antagonisms between char-
acters. The 1-SSB (resp. 2-ADD) model only accounts for antago-
nisms (resp. pairwise synergies).

The obtained scores (with the same formula as for synthetic data)
are given in Table 1. We can see that model 1-ADD performs poorly,
which may indicate that its failure to account for synergies and in-
transitivities significantly restricts its ability to fit the data. In con-
trast, model 2-ADD achieves a good score. Nonetheless, its inability
to achieve a score of 1 shows that it cannot perfectly fit the tour-
nament data without incorporating intransitivities via bilinear coeffi-
cients (which would be sufficient becauseA involves only singletons
and pairs). Model 1-SSB shows the best performance. In the remain-
der of the paper, devoted to studying the complexity of determining
the winning sets in a tournament induced by an SSB model, we show
that it also provides some computational complexity advantages.

Learned Model 1-SSB 1-ADD 2-ADD
Scores 0.94 0.16 0.80

Table 1. Scores on real-world data from League of Legends.
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4 Negative Complexity Results

This section studies the problem of finding an “optimal” alternative
in A given an SSB model. As the SSB model induces a tournament
on A, which is combinatorial in nature, determining an optimal sub-
set raises the question of the complexity of implementing a weighted
tournament solution on a tournament (implicitly) defined by the SSB
model. A weighted tournament solution [for a review, see e.g., 6] is
a function γ that associates to a weighted tournament (X,M) a non-
empty subset of alternatives γ(X,M)⊆X , called the choice set. We
call TOURNAMENT-ALL/ONE-γ (resp. SSB-ALL/ONE-γ) the prob-
lem of computing all/one alternative(s) of γ(X,M) in a weighted
tournament (resp. a tournament defined by an SSB model).3

TOURNAMENT-ALL/ONE-γ
INPUT: A weighted tournament (X,M), where X is a set of
alternatives and M is a skew-symmetric matrix.
OUTPUT: All/one alternative(s) of γ(X,M).

SSB-ALL/ONE-γ
INPUT: An element set E , an alternative setA⊆2E , a parameter
set θ⊆ 2E \{∅}, a weight vector ω ∈Q|θ|, and a bilinear coeffi-
cient matrix Ψ∈Q|θ|×|θ| that yield a tournament T =(A,Φ).
OUTPUT: All/one alternative(s) of γ(A,Φ).

Several comments need to be made to clarify the complexity analyses
in the sequel. Note that in the SSB-ALL/ONE-γ problem, the size of
the input depends on the way the alternative set A is represented
and on the size of θ. If A is represented explicitly, the size of the
input may be as large as 2n while it can be polynomial in n when
represented implicitly (typically, by linear constraints, e.g.,A∈A iff
|A|=k for parameter k). In the latter case, the number of alternatives
in γ(A,Φ)may hence be non-polynomial in the input size. However,
this may not preclude the polynomiality of the SSB-ALL-γ problem
as a compact representation of γ(A,Φ) may be achievable.

We start with the following result showing that, even when A
is represented explicitly, the problem of computing a solution in a
weighted tournament defined by an SSB model is at least as hard as
its version in a regular weighted tournament.

Theorem 2. If no specific assumption is made on θ, ω and Ψ, then
problem SSB-α-γ is at least as hard as problem TOURNAMENT-α-
γ for α∈{ALL,ONE}.

Proof. We show that there is a polynomial-time reduction from
TOURNAMENT-α-γ to SSB-α-γ for α ∈ {ALL,ONE}. Given a
weighted tournament (X,M), let n ∈ N∗ be such that 2n ≥ |X|>
2n−1. We define a set E of n elements and an alternative set A⊆2E

such that |A|= |X|, and consider the weighted tournament (A,M).
Note that, in this way, there is a one-to-one correspondence between
alternatives in X and alternatives in A. Theorem 1 showed that, by
setting θ=2E \{∅}, we can find ω and Ψ such that:

∀Ai, Aj ∈ A, ϕθ,ω,Ψ(Ai, Aj) = Mij .

Computing ωi for all Si∈θ and Ψij for all Si, Sj ∈θ can be done in
polynomial time in |A| by using Equations 2 and 3. Indeed, there are
O(2n)≡O(|X|) values ωi (resp.O(2n ·2n)≡O(|X|2) valuesΨij)
to compute, each of which is a weighted sum of O(|X|) operands
(resp. O(|X|2) operands) Mkl. The weight of each summand is 1
or −1 according to the parity of the exponent, which is computed in
O(n) because the exponent is upper bounded by n.

3 For complexity reasons, the parameters ω and Ψ are from now on assumed
to be rational numbers.

In the previous result, the SSB-tournament did not necessarily pro-
vide a compact formulation of the tournament. By compact formula-
tion, we mean that the size of the representation of A and the size of
θ are polynomial in the number n of elements in E .

Regarding the representation of A, we focus on the two following
cases, that we call the complete and partition cases:

• The case A=2E , i.e., each subset of E is a valid alternative (as in
the SSB instances of synthetic data), for its simple definition.

• The case A = {{e1, . . . , ep} : (e1, . . . , ep) ∈ X1 × . . . × Xp},
where X1, . . . , Xp is a partition of E , i.e., Xi ∩Xj = ∅ and⋃p

i=1 Xi = E (as in our real-world data), which occurs for in-
stance in the configuration of complex products [4, 7].

Regarding θ, a particular case in which its size is polynomial in n
occurs when θ only contains sets of cardinalities upper bounded by a
constant. This is likely to happen in practice as we expect synergies
to appear between small groups of elements. Let [E ]k = {S : S ⊆
E , 1≤|S|≤k} contain all non-empty sets of elements of size lower
than or equal to k. When k is a small constant, the parameters θ, ω,Ψ
characterizing the SSB model provide a compact representation of
the tournament matrix Φ.

Unfortunately, we show that computing an alternative in the choice
set for most tournament solutions is hard in the complete case for θ=
[E ]k with a constant k≥2, namely tournament solutions which refine
Top Cycle. The Top Cycle (TC) is a well-known tournament solution
that returns the unique smallest dominant set of alternatives, i.e., a
set Y ⊆X of alternatives such that each alternative in Y is preferred
to all alternatives in X\Y . TC is a weak tournament solution in the
sense that most tournament solutions γ are such that γ(X,M) ⊆
TC(X,M) [see 6, p. 76], abbreviated by γ⊆TC in the sequel. We
have the following negative result, which is a direct consequence of
a result by Fishburn and LaValle [20]:

Theorem 3. For k ≥ 2 a fixed constant, θ = [E ]k, and γ ⊆ TC,
there is no polynomial-time algorithm to solve SSB-ONE-γ in the
complete case, unless P =NP .

Proof. Fishburn and Lavalle [20, p.189] have proven that, given a
weighting function w : [E ]2 → Q, determining A ⊆ E that maxi-
mizes

∑
S∈[E]2 w(S)IA(S), where IA(S) = 1 if S ⊆A and 0 oth-

erwise, is an NP-hard problem. Indeed, we can easily make a re-
duction from the NP-complete maximum independent set problem.
This corresponds to the special case of SSB-ONE-γ where A=2E ,
θ = [E ]2, ω encodes w, and Ψ is the null matrix. Note that in this
case the alternatives in TC(A,Φ) are exactly the ones maximizing∑

S∈θ w(S)IA(S). As k is a constant, it takes a polynomial time in
n to set θ = [E ]k and w(S) = 0 for |S| > 2 (Ψ is the null matrix).
Thus the reduction is polynomial-time.

Due to Theorem 3, to establish positive complexity results, we re-
strict our attention to the case in which θ=[E ]1. Hence, ϕ may have
bilinear coefficients Ψij but no synergy terms and writes as Equa-
tion 1. Considering the complete and partition cases to represent A
will make it possible to give tractability results for two well-known
weighted tournament solutions: the Borda set and the essential set.4

5 Computing the Borda Set

The first specific weighted tournament solution we consider is the
Borda set, which adapts the Copeland set to the weighted case [12].
4 Our intuition is that, for many other tournament rules, even in these re-
stricted settings, the choice set (winners of the tournament) is hard to deter-
mine because a concise representation of it is required.
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Given a weighted tournament T =(X,M), this weighted tournament
solution assigns to each alternative Ai ∈X a score BordaT (Ai) =∑

j Mij (the Borda score) and returns the set BordaSet(T ) =
argmaxA∈X BordaT (A) of alternatives of maximal score.

For a tournament T =(A,Φ), the Borda score of A∈A is:

BordaT (A) =
∑
B∈A

ϕθ,ω,Ψ(A,B).

Using the structure underlying function ϕθ,ω,Ψ, we now show that
problem SSB-ALL-BORDA can be solved in polynomial-time in the
complete and partition cases when θ=[E ]1. Indeed, we can compute
in polynomial-time, not only one solution of the Borda set, but a
compact representation of the Borda set itself.

Theorem 4. SSB-ALL-BORDA can be solved in time5 O∗(n2) in
the complete and partition cases when θ = [E ]1. The Borda set is
characterized by values C(i) ∀i∈E defined by:

• Complete case: C(i) = 2ωi +
∑

j∈E Ψij .

• Partition case: C(i) = (
p∏

t=1

|Xt|)ωi +
∑
j∈E

(
∏

t∈[p]:j �∈Xt

|Xt|)Ψij .

This yields an implicit compact formulation of the Borda set:

• Complete case: BordaSet(T )={A : C>0 ⊆ A ⊆ C≥0}, where
C>0={i ∈ E : C(i) > 0} and C≥0={i ∈ E : C(i) ≥ 0}.

• Partition case: BordaSet(T )=
∏p

t=1 argmaxi∈Xt C(i).

Proof. Let E = {1, . . . , n}. Consider an SSB induced tournament
T =(A,Φ), with θ=[E ]1 = {S1, . . . , Sn} with Si = {i}. Denoting
byAj the set {A∈A :j∈A}, we rewrite the Borda score as follows:

BordaT (A) =
∑
B∈A

ϕθ,ω,Ψ(A,B)

=
∑
B∈A

(
∑
i∈A

ωi −
∑
j∈B

ωj +
∑
i∈A

∑
j∈B

Ψij)

=
∑
B∈A

∑
i∈A

ωi −
∑
B∈A

∑
j∈B

(ωj −
∑
i∈A

Ψij)

=
∑
i∈A

|A|ωi −
∑
j∈E

|Aj |(ωj −
∑
i∈A

Ψij)

=
∑
i∈A

|A|ωi +
∑
i∈A

∑
j∈E

|Aj |Ψij −
∑
j∈E

|Aj |ωj

=
∑
i∈A

(|A|ωi +
∑
j∈E

|Aj |Ψij

︸ ︷︷ ︸
C(i)

)−
∑
j∈E

|Aj |ωj

︸ ︷︷ ︸
cst

where C(i) denotes the contribution of element i ∈ E to the Borda
Score of alternative A ∈ A, and with the last summand being a
constant cst independent of A. This yields the formula for C(i)
given in Theorem 4, with the exception that a 2n−1 multiplicative
factor is omitted for the complete case. Hence, finding an alter-
native A maximizing Bordat(A) amounts to solving the problem
maxA∈A

∑
i∈A C(i). The mathematical expressions of the sets of

alternatives maximizing this sum are given in the statement of the
theorem. These expressions provide a compact representation of the
Borda set in the complete and partition cases. The values C(i) can
all be computed in time O∗(n2). Indeed, note that in the partition
case, the term

∏
t∈[p] |Xt| can be computed in time O∗(n), which

then makes it possible to compute values
∏

t∈[p]\{l} |Xt| for l ∈ [p]

in O∗(n) time. These precomputations can be used to compute each
C(i) in O∗(n) time. Moreover note that, in both cases, one element
of the Borda set can then be computed in time O∗(n).
5 We use the symbol ∗ in O∗ to indicate that we omit the logarithmic terms
induced by the arithmetic operations in the complexity formula.

6 Computing the Essential Set

The essential set [16] generalizes the bipartisan set solution concept
[27] to weak tournaments. It is defined as the unique largest possible
support of a Nash equilibrium in mixed strategies [12] when viewing
the matrix M of a (weighted) tournament T = (X,M) as a two-
player symmetric zero-sum game. In the following, we denote by
EssentialSet(T ) the essential set of a tournament T .

In a mixed strategy π, each alternative Ai is played with a prob-
ability πi, where πi ≥ 0 for i ∈ {1, . . . , N} and

∑N
i=1 πi = 1. Let

sp(π) be the indices of the alternatives in the support of π, i.e., the
set {i ∈ {1, . . . , N} : πi > 0}. From a complexity viewpoint, the
size of π is O(|sp(π)|). Let Δ(X) be the set of mixed strategies
over X . Given π ∈Δ(X), a best response to π is a mixed strategy
ρ∈Δ(X) that maximizes

∑
j∈sp(ρ)

∑
i∈sp(π) ρjπiMji (i.e., the ex-

pected value obtained when ρ is played against π). It is well known
that a best response can always be found as a pure strategy, i.e., an
alternative A ∈ X; hence we focus here on best responses in pure
strategies. Moreover, in a two-player symmetric zero-sum game, a
mixed strategy π is part of a Nash equilibrium iff its best response
yields a value of 0. To summarize, the essential set corresponds to
the maximal support of a mixed strategy π∈Δ(X) for which:

∀Aj ∈ X,
∑

i∈sp(π)

πiMji ≤ 0.

In our SSB setting, this corresponds to the maximal support of a
mixed strategy π ∈ Δ(A) for which:

∀Aj ∈ A,
∑

i∈sp(π)

πiϕθ,ω,Ψ(Aj , Ai) ≤ 0.

This mixed strategy π induces the essential set defined as:

EssentialSet(A,Φ) = {Ai ∈ A : i ∈ sp(π)}.
As a warm-up, we first study the simpler issue of computing the set

BRT (π) of best responses in pure strategies to a given mixed strategy
π in a weighted tournament T =(A,Φ) when θ = [E ]1.

SSB-ALL/ONE-BESTRESPONSE

INPUT: A set of elements E , a set of alternatives A⊆ 2E , a pa-
rameter set θ⊆2E\{∅}, a weight vector ω∈Q|θ|, a bilinear coef-
ficient matrix Ψ∈Q|θ|×|θ| that yield a tournament T =(A,Φ),
and a mixed strategy π defined on A.
OUTPUT: All/one alternative(s) of BRT (π).

Theorem 5. SSB-ALL-BESTRESPONSE can be solved in time
O∗(n2|sp(π)|) in the complete and partition cases when θ = [E ]1.
The set BRT (π) is characterized by values C(i, π) of having element
i∈E in the alternative in response to π:

∀i ∈ E , C(i, π)=ωi +
∑

t∈sp(π)

∑
j∈At

πtΨij .

This yields an implicit compact formulation of the set BRT (π):

• Complete case: BRT (π)={A : C>0(π) ⊆ A ⊆ C≥0(π)}, where
C>0(π)={i∈E:C(i, π)>0} and C≥0(π)={i∈E:C(i, π)≥0}.

• Partition case: BRT (π)=
∏p

t=1 argmaxi∈Xt C(i, π).

Proof. Let E = {1, . . . , n}. Consider an SSB induced tournament
T =(A,Φ), with θ=[E ]1={S1, . . . , Sn} with Si={i}. Consider a
mixed strategy π∈Δ(A). Solving the problem is equivalent to find-
ing an alternative in argmaxA∈A ϕθ,ω,Ψ(A, π), where the defini-
tion of the SSB function is extended by linearity to mixed strategies:
ϕθ,ω,Ψ(A, π)=

∑
t∈sp(π) πtϕθ,ω,Ψ(A,At).
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For A∈A:

ϕθ,ω,Ψ(A, π) =
∑
j∈A

ωj −
∑

t∈sp(π)

∑
i∈At

πtωi +
∑
j∈A

∑
t∈sp(π)

∑
i∈At

πtΨji

=
∑
j∈A

(ωj +
∑

t∈sp(π)

∑
i∈At

πtΨji)

︸ ︷︷ ︸
C(j,π)

−
∑

t∈sp(π)

∑
i∈At

πtωi

︸ ︷︷ ︸
cst

(6)
where the second summand is a constant cst which only depends on
π. As a result:

BRT (π) = argmax
A∈A

∑
j∈A

C(j, π).

This yields the compact representation of BRT (π) given in the state-
ment of the theorem for the complete and partition cases. Note that
each value C(j, π) for j ∈ E can be computed in O∗(n|sp(π)|).
Once computed the values C(j, π) for j ∈E , in both cases, an alter-
native in BRT (π) can be computed in time O∗(n) .

We now return to the problem SSB-ALL-ESSENTIAL.

Theorem 6. A concise representation of the essential set in problem
SSB-ALL-ESSENTIAL can be computed in polynomial time in the
complete and partition cases when θ=[E ]1.

Proof. Let π∗ denote a mixed Nash equilibrium of maximal support
for the game defined by matrix Φ. The maximal support sp(π∗) is
unique by convexity of the set of mixed Nash equilibria: it is the
union of their supports. The essential set of T =(A,Φ) is:

EssentialSet(A,Φ) = {At∈A : t∈sp(π∗)},
whose size may be exponential in n=E . Let S=∪t∈sp(π∗)At ⊆ E ,
let T = ∩t∈sp(π∗)At ⊆ E and pi =

∑
t∈sp(π):i∈At

πt denote the
probability that i is part of a set sampled by a mixed strategy π. The
idea of the proof is to solve a sequence of at most 2n Linear Programs
(LP) in variables pi to determine the elements in S and T . Each LP
can be solved in polynomial time by using an interior point method
[32], as there are only n= |E| variables pi (while there would have
been 2n variables if the LP had been expressed in variables πt). The
essential set then corresponds to {A : T ⊆A⊆S}, thus is concisely
expressed by S and T . For space reasons, we only give the proof in
the complete case (the proof in the partition case is similar).

We first need to define the LP in variables pi allowing us to deter-
mine a mixed Nash equilibrium. Given A∈A, from Equation 6, we
can express ϕθ,ω,Ψ(A, π) in function of probabilities p1, . . . , pn:∑

j∈A

(ωj +
∑

t∈sp(π)

∑
i∈At

πtΨji)−
∑

t∈sp(π)

∑
i∈At

πtωi

=
∑
j∈A

(ωj +
∑
i∈E

∑
t∈sp(π):i∈At

πtΨji)−
∑
i∈E

∑
t∈sp(π):i∈At

πtωi

=
∑
j∈E

(ωj +
∑
i∈E

piΨji)

︸ ︷︷ ︸
C(j,π)

1A(j)−
∑
j∈E

pjωj

If A ∈ BRT (π), then the contribution of j ∈ E in ϕθ,ω,Ψ(A, π) is
max{0, C(j, π)}, i.e., 0 if j �∈A and ωj+

∑
i∈E Ψjipi>0 if j∈A.

The value ϕθ,ω,Ψ(A, π) thus corresponds to the optimum of the LP:

min
y

∑
j∈E

(yj − pjωj)

ωj +
∑
i∈E

Ψjipi ≤ yj ∀j ∈ E ,

yj ≥ 0 ∀j ∈ E .

because yj =max{0, C(j, π)} at the optimum. As the value of any
symmetric zero-sum game is 0, a set of values pi ∈ [0, 1] defining a
mixed Nash equilibrium satisfy the following set C of constraints:

(C)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
i∈E

(yi − piωi) ≤ 0

ωj +
∑
i∈E

Ψjipi ≤ yj ∀j ∈ E ,

yj ≥ 0 ∀j ∈ E ,
pi∈ [0, 1] ∀i ∈ E .

(7)

Constraint 7 ensures that the values of variables pi define a mixed
Nash equilibrium. Indeed, from any mixed Nash equilibrium π we
can induce values pi =

∑
t∈sp(π):i∈At

πt and yj = max{0, ωj +∑
i∈E Ψjipi} that are feasible for C. The converse is also true, as

from any feasible solution (p, y), we can build a mixed Nash equi-
librium π using the following greedy procedure:
1. Sort the elements i ∈ E in increasing order of probabilities pi,

to obtain a permutation (σ(1), σ(2), . . . , σ(n)) of E s.t. pσ(i) ≤
pσ(i+1). Let p̂=(pσ(1), pσ(2), . . . , pσ(n));

2. If p̂ has no strictly positive element then return π, complementing
with the ∅ to obtain a valid mixed strategy with

∑N
t=1 πt=1.

3. Let i be the first index such that p̂i > 0; let l be the index such
that Al={σ(j) : i≤j≤n}. Add Al to π with πl= p̂i; update p̂ by
subtracting πl to the elements of indices i to n. Come back to 2.

At the end of this greedy algorithm (after at most n iterations), we
obtain a mixed strategy π such that |sp(π)| ≤ n + 1,

∑
t πt = 1,

and pi=
∑

t:i∈At
πt. This last point is due to an invariant argument:

at each iteration of the method we have pi = p̂σ−1(i) +
∑

t:i∈At
πt,

and at termination p̂ is a null vector.
Computing S (resp. T ) amounts to find all i∈E such that pi > 0

(resp. pi = 1) in at least one (resp. all) feasible solution (p, y) for
C: S = {i : max pi > 0 for (p, y) ∈ C} and T = {i : min pi =
1 for (p, y)∈C}. Thus, finding S and T requires to solve 2n LPs.

We now show that the essential set corresponds to {At :T ⊆At⊆
S}, i.e., if T ⊆At ⊆ S then there exists a mixed Nash equilibrium
π such that t ∈ sp(π). The previous 2n LPs result in a sequence
of 2n optimal solutions (yi, pi) (when maximizing pi) and (yi, pi)
(when minimizing pi). By convexity of the feasible set for C, we can
consider a linear combinations of these solutions (e.g., with weights
1/2n) to obtain a feasible solution (y, p) for C in which {i : pi >
0} = S, and {i : pi = 1} = T . Then, we can adapt the previous
greedy procedure to generate from p a mixed Nash equilibrium π s.t.
t∈sp(π). It consists in adding the following preliminary step:
0. AddAt with probability πt=min({pi : i∈At}∪{1−pj :j �∈At})

to π, subtract πt to each value pi, with i∈At.

7 Future Work

This work paves the way for different research questions. First, it
would be interesting to have a more complete picture of the complex-
ity of finding the best alternatives. This could be obtained by study-
ing more tournament solutions or other domain restrictions. More-
over, more work on the learning procedure should be undergone, no-
tably to better account for noise in the preference data. For instance,
one could design a Bayesian approach for this purpose, where the
prior parameters would favor simpler models (e.g., with few interac-
tions, and as additive as possible). Last, finding additional real-world
datasets on which our model could yield an increased descriptive
power is a worthwhile research direction, e.g., by looking at sports
competitions or participatory budgeting.
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