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Abstract. We investigate the problem of fairly dividing a divisible
heterogeneous resource, also known as a cake, among a set of agents
who may have different entitlements. We characterize the existence
of a connected strongly-proportional allocation—one in which every
agent receives a contiguous piece worth strictly more than their pro-
portional share. The characterization is supplemented with an algo-
rithm that determines its existence using O(n·2n) queries. We devise
a simpler characterization for agents with strictly positive valuations
and with equal entitlements, and present an algorithm to determine
the existence of such an allocation using O(n2) queries. We provide
matching lower bounds in the number of queries for both algorithms.
When a connected strongly-proportional allocation exists, we show
that it can also be computed using a similar number of queries.

The full version is available at https://arxiv.org/abs/2312.15326.

1 Introduction

Consider a group of siblings who inherited a land estate, and would
like to divide it fairly among themselves. The simplest procedure for
attaining a fair division is to sell the land and divide the proceeds
equally; this procedure guarantees each sibling a proportional share
of the total land value.

But in some cases, it is possible to give each sibling a much better
deal. As an example, suppose that the land estate contains one part
that is fertile and arable, and one part that is barren but has potential
for coal mining. This land is to be divided between two siblings, one
of whom is a farmer and the other is a coal factory owner. If we give
the former piece of land to the farmer and the latter piece of land to
the coal factory owner, both siblings will feel that they receive more
than half of the total land value. Our main question of interest is:
when is such a superior allocation possible?

We study this question in the framework of cake-cutting. In this
setting, there is a divisible resource called a cake, which can be cut
into arbitrarily small pieces without losing its value. The cake is rep-
resented simply by an interval which can model a one-dimensional
object, such as time. There are n agents, each of whom has a personal
measure of value over the cake. The goal is to partition the cake into
n pieces and allocate one piece per agent such that the agents feel
that they receive a “fair share” according to some fairness notion.

A common fairness criterion—nowadays called proportionality—
requires that each agent i receives a piece of cake that is worth, ac-
cording to i’s valuation, at least 1/n of the total cake value. In his
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seminal paper, Steinhaus [20] described an algorithm, developed by
his students Banach and Knaster, that finds a proportional allocation;
moreover, this allocation is connected—each agent receives a single
contiguous part of the cake. This algorithm is now called the last
diminisher algorithm.

But the guarantee of proportionality allows for the possibility that
each agent receives a piece worth exactly 1/n; when this is the case,
there is little advantage in using a cake-cutting procedure over sell-
ing the land and giving 1/n to each partner. A stronger criterion,
called strong-proportionality or super-proportionality, requires that
each agent i receives a piece of cake worth strictly more than 1/n of
the total cake value from i’s perspective. This raises the question of
when such a strongly-proportional allocation exists.

Obviously, a strongly-proportional allocation does not exist when
all the agents’ valuations are identical, since if any agent receives
more than 1/n of the cake, then some other agent must receive less
than 1/n of the cake. Interestingly, in all other cases, a strongly-
proportional allocation exists. Even when two agents have non-
identical valuations, there exists an allocation in which all n agents
receive more than 1/n of the total cake value from their perspec-
tives [8, 16]. Woodall [27] presented an algorithm for finding such
a strongly-proportional allocation. Barbanel [2] generalized this al-
gorithm to agents with unequal entitlements, and Jankó and Joó [13]
presented a simple algorithm for this generalized problem and ex-
tended it to infinitely many agents.

The problem with all these algorithms is that, in contrast to the last
diminisher algorithm for proportional cake-cutting, they do not guar-
antee a connected allocation. Connectivity is an important practical
consideration when allocating cakes; for example, if the cake is the
availability of a meeting room by time and needs to be allocated to
different teams throughout the day, then a two-hour slot is easier for a
team to utilize than six disjoint twenty-minute slots. Indeed, connec-
tivity is the most commonly studied constraint in cake-cutting litera-
ture [24, 21, 23, 22, 11, 9], and relaxing this constraint may present
each agent instead with a “countable union of crumbs” [21].

Thus, our main questions of interest are:

What are the necessary and sufficient conditions for the ex-
istence of a connected strongly-proportional cake allocation?
What are the query complexities to determine these conditions?

1.1 Our Results

The cake to be allocated, modeled by a unit interval [0, 1], is to be
divided among n agents who may have different entitlements for the
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cake, with the entitlements summing to 1. Each agent receives an
interval of the cake that is disjoint from the other agents’ intervals.
Each agent has a valuation function on the intervals of the cake that is
non-negative, finitely additive, and continuous with respect to length.
In this regard, the value of a single point is zero to every agent, and
we can assume without loss of generality that agents receive closed
intervals of the cake, and that any two agents’ pieces can possibly
intersect at the endpoints of their respective intervals.1 In order to
access agents’ valuations in the algorithms, we allow algorithms to
make eval and (right-)mark2 queries of each agent as in the standard
Robertson-Webb model [17]. More details of our model are provided
in Section 2.

In Section 3, we consider hungry agents—those who have pos-
itive valuations for any part of the cake with positive length. For
agents with equal entitlements, we show that a connected strongly-
proportional allocation exists if and only if there are two agents with
different r-marks for some r ∈ {1/n, 2/n, . . . , (n − 1)/n}, where
an r-mark is a point that divides the cake into two such that the left
part of the cake is worth r to that agent. This implies that the exis-
tence of such an allocation can be decided using n(n − 1) queries.
The proof of sufficiency is constructive, so a connected strongly-
proportional allocation can be computed using O(n2) queries if it
exists. We also prove that any algorithm that decides whether a
connected strongly-proportional allocation exists must make at least
n(n − 1)/2 queries, giving an asymptotically tight bound (within a
factor of 2) of Θ(n2). For agents with possibly unequal entitlements,
we show that a lower bound number of queries to decide whether
a connected strongly-proportional allocation exists is n · 2n−2. To-
gether with a result from Section 4 later on the upper bound number
of queries, this yields a tight bound of Θ(n · 2n) queries.

In Section 4, we consider agents who are not necessarily hungry.
The characterization from Section 3 for hungry agents with equal
entitlements does not work for non-hungry agents, which motivates
us to find another characterization by considering permutations of
agents. We show that a connected strongly-proportional allocation
exists if and only if there exists a permutation of agents such that
when the agents go in the order as prescribed by the permutation
and make their rightmost marks worth their entitlements to each of
them one after another, the mark made by the last agent does not
reach the end of the cake. This result holds regardless of the agents’
entitlements. While an algorithm to determine this condition requires
n ·n! queries, we show that this number can be reduced by a factor of
2ω(n) to n · 2n−1 via dynamic programming. We also prove a lower
bound number of queries of Ω(n · 2n) to determine this condition,
even for agents with equal entitlements. Therefore, for agents who
are not necessarily hungry, we also obtain a tight bound of Θ(n ·
2n), whether the entitlements are equal or not. A connected strongly-
proportional allocation can be computed using O(n · 2n) queries if
it exists.

Table 1 summarizes of our results from Sections 3 and 4. All omit-
ted proofs can be found in the full version of our paper [14].

1.2 Further Related Work

A weaker fairness notion of proportionality is well-studied in cake-
cutting literature. It is known that a connected proportional alloca-
tion always exists for agents with equal entitlements and such an

1 This is often assumed in cake-cutting literature; see e.g. Procaccia [15].
2 We choose right-mark instead of the usual left-mark for convenience. Our

algorithms still work if only left-mark queries are available (together with
eval). See the full version of our paper [14] for a more detailed explanation.

Table 1. Number of queries required to decide the existence of a connected
strongly-proportional allocation of a cake for n agents, and to compute one

if it exists.

hungry agents general agents

equal entitlements Θ(n2) (Thm 3.5) Θ(n · 2n) (Thm 4.5)

possibly unequal

entitlements
Θ(n · 2n) (Thm 3.7) Θ(n · 2n) (Thm 4.5)

allocation can be computed using Θ(n log n) queries [20, 10, 26].
Cseh and Fleiner [7] presented an algorithm that finds a possi-
bly non-connected proportional allocation for agents with general
entitlements—in particular, their algorithm uses a finite but un-
bounded number of queries when agents have irrational entitlements.
In contrast, we show that a connected strongly-proportional alloca-
tion may not exist, and such an allocation can be computed (if it ex-
ists) using Θ(n ·2n) queries. A number of works studied the number
of cuts required for a proportional allocation, rather than the number
of queries [18, 6].

A parallel line of work studied a stronger fairness notion of super
envy-freeness: it requires, in addition to strong-proportionality, that
each agent values the piece of every other agent at strictly less than
1/n the total cake value [3, 25, 5].

2 Preliminaries

Let the cake be denoted by C = [0, 1]. The cake is to be allocated
to a set of agents denoted by [n] := {1, . . . , n}. A piece of cake is
a finite union of closed intervals of the cake. An allocation of C is a
partition of C into n pairwise-disjoint3 pieces of cake (X1, . . . , Xn)
such that C = X1 � · · · � Xn; Xi is the piece allocated to agent i.
An allocation is connected if Xi is a single interval for each i ∈ [n].

The preference of each agent i is represented by a valuation func-
tion Vi such that Vi(X) is the value of the piece X ⊆ C to agent i.
Each valuation function Vi is defined on the algebra over C gener-
ated by all intervals of C, and is non-negative (i.e., Vi(X) ≥ 0 for all
X ⊆ C in the algebra), finitely additive (i.e., Vi(X∪Y ) = Vi(X)+
Vi(Y ) for all disjoint X,Y ⊆ C in the algebra), and normalized to
one (i.e., Vi(C) = 1). We assume that Fi(x) := Vi([0, x]) is a
continuous function on C, and hence Vi({x}) = 0 for all x ∈ C.
Therefore, Fi is a non-decreasing function on C with Fi(0) = 0,
Fi(1) = 1, and Vi([x, y]) = Fi(y) − Fi(x). An agent i is hungry
if Vi(X) > 0 for all intervals X ⊆ C with positive length; this is
equivalent to the condition that Fi is strictly increasing.

Each agent i has an entitlement wi > 0 of the cake such that∑
i∈[n] wi = 1. Let w denote (w1, . . . , wn). We say that agents

have equal entitlements if wi = 1/n for all i ∈ [n]. For each subset
N ⊆ [n] of agents, define wN =

∑
i∈N wi. Note that w∅ = 0 and

w[n] = 1. We say that agents have generic entitlements if wN �= wN′

for all distinct N,N ′ ⊆ [n].
A (cake-cutting) instance consists of the set of agents, their valua-

tion functions (Vi)i∈[n], and their entitlements w.
Given an instance, an allocation (X1, . . . , Xn) is proportional

(resp. strongly-proportional) if Vi(Xi) ≥ wi (resp. Vi(Xi) > wi)
for all i ∈ [n]. For agents with equal entitlements, a proportional
(resp. strongly-proportional) allocation requires every agent to re-
ceive a piece of cake with value at least (resp. greater than) 1/n.

Algorithms can make eval and mark queries of each agent in the
Robertson-Webb model. More specifically, for each agent i ∈ [n],

3 As mentioned in Section 1.1, two pieces of cake are also considered disjoint
if their intersection is a subset of the endpoints of their respective intervals.
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value r ∈ [0, 1], and points x, y ∈ C with x ≤ y, EVALi(x, y)
returns Vi([x, y]), and MARKi(x, r) returns the rightmost (largest)
point z ∈ C such that Vi([x, z]) = r (such a point exists due to the
continuity of the valuations); if Vi([x, 1]) < r, then MARKi(x, r)
returns ∞.

For i ∈ [n] and r ∈ [0, 1], a point x ∈ C is an r-mark of agent i
if Vi([0, x]) = r. While the point returned by MARKi(0, r) is an
r-mark of agent i, the converse is not true since MARKi(0, r) only
returns the rightmost r-mark of agent i. However, when agent i is
hungry, then the r-mark is unique, and the two notions coincide. Let
T denote the subset {1/n, 2/n, . . . , (n−1)/n} of C—we shall con-
sider r-marks for r ∈ T in Section 3.1.

3 Hungry Agents

We begin with the simpler case where all agents are hungry. We first
state a result which finds a connected strongly-proportional alloca-
tion of a cake for hungry agents using a small number of queries
when given a connected proportional allocation in which one agent
has a strongly-proportional piece. The proof proceeds by slightly
moving the boundary between two adjacent agents’ pieces such that
an agent j who received exactly wj eventually gets a slightly larger
piece.

Lemma 3.1. Let an instance with n hungry agents be given. Suppose
that we are given a connected proportional allocation (X1, . . . , Xn)
such that Vi(Xi) > wi for some i ∈ [n]. Then, there exists a con-
nected strongly-proportional allocation, and such an allocation can
be computed using O(n) queries.

Proof. First, we find the values of Vj(Xj) for all j ∈ [n]. If
Vj(Xj) > wj for all j ∈ [n], then we are done. Otherwise, there
exist two distinct agents i, j ∈ [n] with neighboring pieces such that
Vi(Xi) > wi and Vj(Xj) = wj . By slightly moving the boundary
between Xi and Xj , we can get a new allocation in which agents
i and j each receives a piece worth more than wi and wj respec-
tively. To formally describe the process of moving the boundary, we
consider two complementary cases.

Case 1: Xi is to the left of Xj . Denote Xi = [z1, z2] and
Xj = [z2, z3]. Let y = MARKi(z1, wi); note that y ∈ (z1, z2)
since Vi(Xi) > wi. Let y∗ be the midpoint of y and z2. Adjust the
two agents’ pieces such that agent i now receives [z1, y∗] and agent
j now receives [y∗, z3]; see Figure 1 for an illustration.

z1 y y∗ z2 z3

worth wi to agent i worth wj to agent j

agent i’s new piece agent j’s new piece

Figure 1. Agent i’s and j’s new pieces in the proof of Lemma 3.1.

Since [z1, y
∗] � [z1, y] and the latter is worth wi to hungry agent

i, the new piece, [z1, y∗], is worth more than wi to agent i. Likewise,
since [y∗, z3] � [z2, z3] and the latter is worth wj to hungry agent j,
the new piece, [y∗, z3], is worth more than wj to agent j.

Case 2: Xi is to the right of Xj . Denote Xj = [z1, z2] and Xi =
[z2, z3]. Let y = MARKi(z2, Vi(Xi) − wi); note that y ∈ (z2, z3)
since Vi(Xi) > wi. Let y∗ be the midpoint of z2 and y. Adjust the
two agents’ pieces such that agent j now receives [z1, y∗] and agent
i now receives [y∗, z3].

Since [z1, y∗] � [z1, z2] and the latter is worth wj to hungry agent
j, the new piece, [z1, y∗], is worth more than wj to agent j. Likewise,

since [y∗, z3] � [y, z3] and the latter is worth wi to hungry agent i
(due to additivity, we have Vi(y, z3) = Vi(z2, z3)−Vi(z2, y) = wi),
the new piece, [y∗, z3], is worth more than wi to agent i.

In both Case 1 and Case 2, only agent i’s and j’s pieces change; all
of the other agents’ pieces do not change. All in all, one additional
agent j receives more than wj of the cake. Proceeding this way at
most n−1 times yields a connected strongly-proportional allocation.

Finding the values of all Vj(Xj) at the beginning requires n
queries, while the adjustment of the boundaries between two agents’
pieces requires a constant number of queries, so the total number of
queries is in O(n).

We present the results separately for agents with equal entitle-
ments and agents with possibly unequal entitlements. For n hun-
gry agents with equal entitlements, we state in Section 3.1 a simple
necessary and sufficient condition for the existence of a connected
strongly-proportional allocation. We provide an asymptotically tight
bound of Θ(n2) for the number of queries needed by an algorithm
to determine the existence of such an allocation, as well as to com-
pute one such allocation if it exists. For agents with possibly unequal
entitlements, we show in Section 3.2 that a lower bound number
of queries needed to decide the existence of a connected strongly-
proportional allocation is in Ω(n · 2n).

3.1 Equal Entitlements

Recall that T = {1/n, 2/n, . . . , (n − 1)/n}. Our condition uses a
particular set of r-marks: those with r ∈ T .

Theorem 3.2. Let an instance with n hungry agents with equal en-
titlements be given. Then, a connected strongly-proportional alloca-
tion exists if and only if there exist two distinct agents i, j ∈ [n] and
r ∈ T such that the r-mark of agent i is different from the r-mark of
agent j.

Proof. Since the agents are hungry, there is exactly one r-mark of
agent i for each r ∈ [0, 1] and i ∈ [n].

(⇒) We prove the contraposition. Suppose that for each r ∈ T ,
every agent has the same r-mark. Every agent also has the same 0-
mark of 0 and the same 1-mark of 1. For each t ∈ {0, . . . , n}, denote
the common t/n-mark by zt.

Consider now any connected allocation, which is represented by
n−1 cuts on the cake. For each t ∈ [n−1], denote the t-th cut from
the left by xt; also denote x0 = 0 and xn = 1. Each agent receives
a piece [xt−1, xt] for some t ∈ [n], and every such piece is allocated
to some agent.

Since x0 = z0 and xn = zn, there must be some t ∈ [n] for which
xt−1 ≥ zt−1 and xt ≤ zt. This means that the piece [xt−1, xt]
is contained in the interval [zt−1, zt]. Let i denote the agent who
receives the piece [xt−1, xt]. Then, agent i’s value for her piece is

Vi([xt−1, xt]) ≤ Vi([zt−1, zt])

= Vi([0, zt])− Vi([0, zt−1])

= t/n− (t− 1)/n = 1/n,

so the allocation is not strongly-proportional. This holds for any con-
nected allocation; therefore, no connected strongly-proportional al-
location exists.

(⇐) Suppose that there exist two distinct agents i, j ∈ [n] and
r ∈ T such that the r-mark of agent i is different from the r-mark of
agent j. We shall construct a connected strongly-proportional allo-
cation by first constructing a connected proportional allocation such
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that at least one agent receives a piece with value more than 1/n,
then use Lemma 3.1 to construct a strongly-proportional one.

Let t ∈ [n−1] be the integer such that r = t/n. Let iL be an agent
with the leftmost (smallest) r-mark among all the agents, and iR be
an agent with the rightmost (largest) r-mark among all the agents (if
there are multiple agents with the same leftmost or rightmost r-mark,
we can choose an agent arbitrarily in each case). Denote the leftmost
r-mark by zL and the rightmost r-mark by zR. Note that zL < zR,
since there are agents with different r-marks.

Since there are n agents, there are n r-marks (possibly some of
them are equal) in the interval [zL, zR]. Let x ∈ [zL, zR] be the t-th
r-mark from the left. Then, there exists a partition of the agents into
two subsets N1 and N2 such that

• |N1| = t, and the r-mark of all agents in N1 is at most x, and
• |N2| = n− t, and the r-mark of all agents in N2 is at least x.

Every agent in N1 values [0, x] at least r, and every agent in N2

values [x, 1] at least 1− r; see Figure 2 for an illustration.

0 1zL zR

x

agents in N1 agents in N2

Figure 2. The r-marks of all the agents in the proof of Theorem 3.2. The
point x is at one of the r-marks and divides agents into N1 and N2.

Next, we consider any connected proportional cake-cutting algo-
rithm as a black box (e.g., last diminisher). We apply the algorithm
on [0, x] and N1 such that every agent in N1 receives a connected
piece with value at least 1/t of her value of [0, x], and apply the
algorithm on [x, 1] and N2 such that every agent in N2 receives a
connected piece with value at least 1/(n − t) of her value of [x, 1].
We show that this allocation (of C = [0, 1]) is proportional. For an
agent in N1, since she values [0, x] at least r = t/n, the piece she
receives has value at least (1/t)r = 1/n. Likewise, for an agent in
N2, since she values [x, 1] at least 1− r = (n− t)/n, the piece she
receives has value at least (1/(n− t))(1− r) = 1/n.

Now, we show that agent iL or iR (or both) receives a piece with
value strictly more than 1/n. If x = zR, then we claim that agent
iL receives such a piece. Since the r-mark of agent iL is at zL < x,
we have iL ∈ N1. Since agent iL is hungry, the piece [0, x] is worth
more than r to her, and so the piece she receives has value more than
(1/t)r = 1/n. Otherwise, x < zR, and a similar argument shows
that agent iR receives such a piece.

Having established a connected proportional allocation in which
at least one agent receives more than 1/n, we apply Lemma 3.1 to
obtain a connected strongly-proportional allocation.

It is interesting to compare the condition in Theorem 3.2 with the
one for non-connected allocations. In both cases, a disagreement be-
tween two agents is sufficient for allocating all n agents more than
their fair share. However, in the non-connected case, the disagree-
ment can be in an r-mark for any r ∈ (0, 1) (see the discussion in
Section 1), whereas in the connected case, the disagreement should
be in an r-mark for some r ∈ T ; the r-marks for other values of r
are completely irrelevant.

It is clear from Theorem 3.2 that we can decide whether a con-
nected strongly-proportional allocation exists for hungry agents with
equal entitlements by checking the t/n-marks of all of the n agents

for all t ∈ [n− 1]. This is described in Algorithm 1. The number of
queries used in the algorithm is at most n(n− 1).

Algorithm 1 Determining the existence of a connected strongly-
proportional allocation for n hungry agents with equal entitlements.

1: for t = 1, . . . , n− 1 do

2: zt ← MARK1(0, t/n) � agent 1’s t/n-mark
3: for i = 2, . . . , n do

4: if MARKi(0, t/n) �= zt then return true
5: end for

6: end for

7: return false

Theorem 3.3. Algorithm 1 decides whether a connected strongly-
proportional allocation exists for n hungry agents with equal entitle-
ments using at most n(n− 1) queries.

Next, we show an asymptotically tight lower bound for the num-
ber of queries required to decide the existence of such an allocation
for hungry agents. The idea behind the proof is that we must check
the t/n-marks of all the agents and all t ∈ [n − 1]; otherwise, we
can craft two instances—one with the t/n-marks coinciding, and the
other with some t/n-marks not coinciding—that are consistent with
the information obtained by the algorithm and yet give opposite re-
sults. Doing this check requires at least n(n− 1)/2 queries, as each
query provides information on at most two points.

Theorem 3.4. Any algorithm that decides whether a connected
strongly-proportional allocation exists for n hungry agents with
equal entitlements requires at least n(n− 1)/2 queries.

Proof. Suppose by way of contradiction that some algorithm decides
the existence of a connected strongly-proportional allocation for n
hungry agents with equal entitlements using fewer than n(n − 1)/2
queries. We assume that for all i ∈ [n], r ∈ [0, 1] and x ∈ C,
EVALi(0, x) returns the value x and MARKi(0, r) returns the point
r. We make the following adjustments to the algorithm: whenever
the algorithm makes an EVALi(x, y) query, it is instead given the
answers to MARKi(0, x) = x and MARKi(0, y) = y, and whenever
the algorithm makes a MARKi(x, r) query, it is instead given the
answers to MARKi(0, x) = x and MARKi(0, x+ r) = x+ r.4 This
means that every query made by the algorithm provides the algorithm
only with information on at most two r-marks of some agent and
no other information that cannot be deduced from these r-marks.
Note that the algorithm can still deduce the values of EVALi(x, y)
and MARKi(x, r) by taking the difference between the two answers
given, which means that the information provided to the algorithm
after the adjustment is a superset of the information provided to the
algorithm before the adjustment.

The answers given to the algorithm are consistent with the in-
stance where every agent’s valuation is uniformly distributed over
the cake—in which case there is no connected strongly-proportional
allocation of the cake by Theorem 3.2—and so the algorithm should
output “false”. However, we shall now show that the information
provided to the algorithm is also consistent with an instance with
a connected strongly-proportional allocation. This means that the al-
gorithm is not able to differentiate between the two, resulting in a
contradiction.

Since fewer than n(n− 1)/2 queries were made by the algorithm,
fewer than n(n − 1) r-marks (for r ∈ (0, 1)) of all the agents are

4 Assuming x+ r ≤ 1; otherwise, MARKi(0, x+ r) = ∞.
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known. In particular, there exists an agent i ∈ [n] such that fewer
than n − 1 r-marks of agent i are known, and hence there exists
t ∈ [n − 1] such that the t/n-mark of agent i is not known. We
now modify agent i’s valuation function slightly from the uniform
distribution. Let ε ∈ (0, 1/n) be a number such that every known r-
mark of agent i is of distance more than ε from t/n. Let the t/n-mark
of agent i to be at t/n+ε. Construct agent i’s valuation function such
that its distribution between all known r-marks of agent i (including
the new t/n-mark) is uniform within the respective intervals—note
that this construction is valid and unique since these known r-marks
are strictly increasing in r. Let the other agents’ valuation functions
be uniformly distributed on the whole cake. Then, agent i’s t/n-mark
is different from every other agents’ t/n-mark. By Theorem 3.2, this
instance admits a connected strongly-proportional allocation of the
cake, forming the desired contradiction.

Theorems 3.3 and 3.4 show that the number of queries required
to determine the existence of a connected strongly-proportional allo-
cation for n hungry agents with equal entitlements is in Θ(n2). The
same can be said for computing such an allocation—we can modify
Algorithm 1 using the details in the proof of Theorem 3.2 to output
a connected strongly-proportional allocation of the cake instead, if
such an allocation exists.

Theorem 3.5. The number of queries required to decide the exis-
tence of a connected strongly-proportional allocation for n hungry
agents with equal entitlements, or to compute such an allocation if it
exists, is in Θ(n2).

3.2 Possibly Unequal Entitlements

We now consider hungry agents who may not necessarily have equal
entitlements. Since the entitlement of a subset of agents may not be a
multiple of 1/n, we cannot use the condition in Theorem 3.2 which
uses r-marks for r ∈ T . This requires us to devise a more gen-
eral condition to determine the existence of a connected strongly-
proportional allocation, which can be checked using O(n · 2n)
queries. Since the condition also works for non-hungry agents, we
defer the discussion to Section 4.1 (see Theorems 4.2 and 4.3).

We now show an asymptotically-tight lower bound for the case
when agents may have unequal entitlements. We show an even
stronger result: for every vector of generic entitlements, the number
of queries required to decide the existence of a connected strongly-
proportional allocation is in Ω(n · 2n). The proof uses an adversarial
argument similar to the one in Theorem 3.4.

Theorem 3.6. Let w be any vector of generic entitlements. Then, any
algorithm that decides whether a connected strongly-proportional
allocation exists for n hungry agents with entitlements w requires
at least n · 2n−2 queries.

Proof. Since the entitlements are generic, we can arrange the 2n dif-
ferent subsets of agents in strictly increasing order of their entitle-
ments, i.e., we label the subsets of [n] as N1, . . . , N2n such that
wN1 < · · · < wN2n

. Note that N1 = ∅ and N2n = [n], giving
wN1 = 0 and wN2n

= 1.
Let d = min2n−1

k=1 (wNk+1 − wNk ) be the smallest gap between
entitlements of different agent subsets. For each k ∈ {2, . . . , 2n−1},
define Ik = [wNk , wNk + d/2]. Note that, by the choice of d, all
the Ik are pairwise disjoint.

Suppose by way of contradiction that some algorithm decides
the existence of a connected strongly-proportional allocation for n

hungry agents with generic entitlements using fewer than n · 2n−2

queries. We follow the construction in the proof of Theorem 3.4
where we modify the algorithm such that every query returns infor-
mation on at most two r-marks of some agent, and these informa-
tion are consistent with the instance where every agent’s valuation is
uniformly distributed over the cake. Therefore, the algorithm should
output “false”. We shall now show that the information provided to
the algorithm is also consistent with an instance with a connected
strongly-proportional allocation. This means that the algorithm is not
able to differentiate between the two, resulting in a contradiction.

Since fewer than n · 2n−2 queries were made by the algorithm,
there exists an agent i ∈ [n] such that at most 2n−2−1 queries about
the r-marks of agent i (for r ∈ (0, 1)) are made. Since each query re-
turns information on at most two r-marks, at most 2n−1−2 r-marks
of agent i are known. There are 2n−1 − 1 non-empty subsets Nk of
[n] that do not contain agent i, so there exists k ∈ {2, . . . , 2n − 1}
such that i /∈ Nk and no known r-mark of agent i is in the interval
Ik. Let w = wNk . Let the w-mark of agent i be at w + d/4. Con-
struct agent i’s valuation function such that its distribution between
all known r-marks of agent i (including the new w-mark) is uniform
within the respective intervals—note that this construction is valid
and unique since these known r-marks are strictly increasing in r.
Let the other agents’ valuation functions be uniformly distributed on
the whole cake.

We show that a connected strongly-proportional allocation exists.
The leftmost pieces are allocated to agents in Nk in any arbitrary or-
der, where every agent j ∈ Nk receives a piece of length wj . Agent
i receives the piece [w,w + wi]. Finally, the remaining cake is al-
located to the remaining agents such that every agent j receives a
piece of length wj . Note that every agent j ∈ [n] \ {i} receives a
piece worth exactly wj , since their valuation functions are uniform.
The value of [w + d/4, w + wi] is wi to agent i, so agent i’s piece
[w,w + wi] � [w + d/4, w + wi] is worth more than wi to hungry
agent i. Therefore, the allocation is proportional (and clearly con-
nected) with agent i receiving a piece strictly greater than wi. By
Lemma 3.1, a connected strongly-proportional allocation of the cake
exists, forming the desired contradiction.

Using the results from Theorem 3.6 and from Theorem 4.3 later,
we get a tight bound for hungry agents with possibly unequal entitle-
ments.

Theorem 3.7. The number of queries required to decide the exis-
tence of a connected strongly-proportional allocation for n hungry
agents, or to compute such an allocation if it exists, is in Θ(n · 2n).

The lower bound in Theorem 3.6 is derived from the number of
different values of wNk . In particular, a lower bound number of
queries is

1

2

n∑

i=1

|{wN : ∅ �= N ⊆ [n], i /∈ N}|. (1)

For generic entitlements, each term in the sum equals 2n−1 − 1,
so we get roughly the lower bound of n · 2n−2 in Theorem 3.6. In
contrast, for equal entitlements, each term in the sum equals n − 1,
so we get the lower bound of n(n− 1)/2 in Theorem 3.4.

For entitlements that are neither generic nor equal, the resulting
lower bound is between these two extremes. It is an interesting open
question to find an algorithm with a query complexity matching the
lower bound in (1) in these intermediate cases. The main difficulty in
extending our algorithm for equal entitlements (Algorithm 1) to un-
equal entitlements is due to the step in Theorem 3.2 where we used
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a black-box algorithm for proportional cake-cutting (such as last di-
minisher) to divide a part of the cake among the agents in N1 and
the other part among the agents in N2. Such a black box algorithm
does not exist for unequal entitlements, since a connected propor-
tional allocation might not even exist for unequal entitlements in the
first place.

4 General Agents

We now consider the general case where agents need not be hun-
gry. Recall that the condition we developed in Theorem 3.2 involves
checking for the coincidence of r-marks of all the agents for r ∈ T .
However, there are some difficulties in generalizing the condition for
non-hungry agents, even for equal entitlements. The proof of The-
orem 3.2 relies crucially on the fact that an r-mark of an agent is
unique, which may not be true for non-hungry agents. In fact, the set
of r-marks of agent i is a non-empty closed interval (though possibly
the singleton set [x, x] = {x}). There is a natural generalization of
the condition for two agents which we state as Proposition 4.1 below.

Proposition 4.1. Let an instance with two agents with equal entitle-
ments be given. Then, a connected strongly-proportional allocation
exists if and only if the intervals of 1/2-marks of the two agents are
disjoint.5

We provide the proof of Proposition 4.1, as well as a discussion
of why the condition cannot be generalized to three or more agents,
in the full version of our paper [14]. This inspires us to find another
condition that characterizes the existence of a connected strongly-
proportional allocation.

In Section 4.1, we generalize the condition from Theorem 3.2 for
n non-hungry agents, regardless of whether they have equal entitle-
ments or not. We show that this condition can be checked by an algo-
rithm using O(n · 2n) queries. Now, the result in Theorem 3.6 says
that the lower bound number of queries needed for an algorithm to
determine the existence of a connected strongly-proportional alloca-
tion for n hungry agents with generic entitlements is Ω(n · 2n)—we
show in Section 4.2 that this lower bound also applies to (not neces-
sarily hungry) agents with equal entitlements.

4.1 Upper Bound

Our condition requires agents to mark pieces of cake one after
another in a certain order. We explain this operation more pre-
cisely. Let σ : [n] → [n] be a permutation of agents, and let
x ∈ C and r1, . . . , rn ∈ [0, 1]. The agents proceed in the or-
der σ(1), . . . , σ(n). Agent σ(1) starts first and makes a mark at
x1 = MARKσ(1)(x, rσ(1)), the rightmost point such that [x, x1] is
worth rσ(1) to her. Then, agent σ(2) continues from x1, and makes a
mark at x2 = MARKσ(2)(x1, rσ(2)), the rightmost point such that
[x1, x2] is worth rσ(2) to her. Each agent σ(i) repeats the same
process of making a mark at xi = MARKσ(i)(xi−1, rσ(i)) such
that [xi−1, xi] is the largest possible piece worth rσ(i) to her. We
shall overload the definition of MARK and define6 MARKσ(x, r) as
the point xn resulting from this sequential marking process, where
r = (r1, . . . , rn). If [xi−1, 1] is worth less than rσ(i) to agent σ(i)
at any point, then MARKσ(x, r) is defined as ∞. This operation is
described in Algorithm 2. Note that each MARKσ(x, r) operation
requires at most n (MARKi) queries.
5 Unlike for pieces of cake where “disjoint” means finite intersection, we

revert to the standard definition of “disjoint” to mean empty intersection for
intervals involving r-marks.

6 The subscript of MARK here is a permutation σ, not an agent number.

Algorithm 2 Computing MARKσ(x, r) for n agents.
1: x0 ← x
2: for i = 1, . . . , n do

3: xi ← MARKσ(i)(xi−1, rσ(i))
4: if xi = ∞ then return ∞
5: end for

6: return xn

Our necessary and sufficient condition for n (possibly non-hungry)
agents requires us to check whether the point MARKσ(0,w) is less
than 1 for some permutation σ. The point MARKσ(0,w) is deter-
mined when agents go in the order as prescribed by σ and make their
rightmost marks worth their entitlements to each of them one after
another. The idea behind the proof is that starting from the agent who
receives the rightmost piece in σ and going leftwards, each agent is
able to move the boundaries of her piece such that she receives a
small piece of cake with positive value ε from the right and gives
away a small piece of cake with value ε/2 to the agent on the left,
thereby increasing the value of her piece by a positive value ε/2.

Theorem 4.2. Let an instance with n agents be given. Then, a con-
nected strongly-proportional allocation exists if and only if there ex-
ists a permutation σ : [n] → [n] such that MARKσ(0,w) < 1.

The condition in Theorem 4.2 reduces to the condition in Theo-
rem 3.2 for hungry agents with equal entitlements, i.e., when w =
(1/n, . . . , 1/n). In particular, when every agent has the same r-mark
for each r ∈ T , then each of the n marks made in the MARKσ(0,w)
operation coincides at some xi ∈ T ∪{1} for every permutation, and
so MARKσ(0,w) = 1 for all σ. This corresponds to the case where
no connected strongly-proportional allocation exists.

We can determine whether the condition in Theorem 4.2 holds by
checking all permutation σ to see whether the point MARKσ(0,w)
is less than 1 for some σ. Since there are n! possible permutations of
[n] and each MARKσ operation requires at most n queries, the total
number of queries required in the algorithm is at most n · n!.

However, we can reduce the number of queries to n · 2n−1 by
dynamic programming. Our approach is similar to the method used in
Aumann et al. [1]—in their work, they iteratively find a value k such
that there exists a connected allocation where every agent receives at
least k, while here we require every agent i to receive a connected
piece with value strictly more than wi.

We now describe our algorithm. For every subset N ⊆ [n], our
algorithm caches the best mark bN obtained by the subset of agents.
The best mark bN is the leftmost point possible over all permutations
of the agents in N when the agents go in the order as prescribed
by the permutation and make their rightmost marks worth their en-
titlements to each of them one after another. The algorithm aims to
compute this point for every N .

The best mark for the empty set of agents is initialized as b∅ =
0. Thereafter, for every k ∈ [n], we assume that the best mark for
every subset of k − 1 agents is calculated earlier and cached. We
now need to find bN for every subset N ⊆ [n] with k agents. The
last agent to make the best mark for N could be any of the agents
i ∈ N . Therefore, for each i ∈ N , we retrieve the best mark for
N \ {i}, which is bN\{i} and has been cached earlier, and let agent
i make the rightmost mark such that the cake starting from bN\{i} is
worth wi to her. By iterating through all i ∈ N , we find the leftmost
such point and cache this point as bN . When k = n, we obtain b[n],
which is the best MARKσ(0,w) over all permutations σ. Therefore,
the algorithm returns “true” if b[n] < 1, and “false” otherwise. This
implementation reduces the number of queries by a factor of 2ω(n).
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Agent 1 0 a1/(n− 2)

· · ·
(total: n− 2 identical copies)

0 a1/(n− 2) 0 1− a1 0
...

...
...

...
...

...
...

...
Agent n− 1 0 an−1/(n− 2) 0 an−1/(n− 2) 0 1− an−1 0

Agent n 1/n 0 1/n 0 1/n 0 1/n

Figure 3. Construction of the cake used in the proof of Theorem 4.4.

This algorithm is described in Algorithm 3. The correctness of
the algorithm relies on the statement in Theorem 4.2 and the fact
that b[n] in the algorithm is less than 1 if and only if there exists a
permutation σ : [n] → [n] such that MARKσ(0,w) < 1. For each
k ∈ [n], there are

(
n
k

)
subsets N with cardinality k, and for each

N , each of the |N | = k agents makes a mark query—this means
that k

(
n
k

)
queries are made. Hence, the total number of queries is∑n

k=1 k
(
n
k

)
= n · 2n−1 by a combinatorial identity.

Algorithm 3 Determining the existence of a connected strongly-
proportional allocation for n agents.

1: b∅ ← 0
2: for k = 1, . . . , n do

3: for each subset N ⊆ [n] with |N | = k do

4: bN ← ∞
5: for each agent i ∈ N do

6: y ← MARKi(bN\{i}, wi)
7: if y < bN then bN ← y � this finds the “best” bN
8: end for

9: end for

10: end for

11: if b[n] < 1 then return true else return false

Theorem 4.3. Algorithm 3 decides whether a connected strongly-
proportional allocation exists for n agents using at most n · 2n−1

queries.

4.2 Lower Bound

Theorem 3.6 provides a lower bound for hungry agents with unequal
entitlements; we shall now prove a similar lower bound for general
agents with equal entitlements.

At a high level, the technique used is similar to that in the proofs
of Theorems 3.4 and 3.6: we use an adversarial argument where we
construct an instance with agents having uniform valuations on the
cake such that no strongly-proportional allocation exists, but tweak
the valuations slightly depending on the queries made. However, the
details from the proof of Theorem 3.4 cannot be used directly since
the existence of a connected strongly-proportional allocation is not
solely dependent on the r-marks for r ∈ T for non-hungry agents
[14], and the details from the proof of Theorem 3.6 cannot be used
directly since Theorem 3.6 requires the entitlements to be generic.

Instead, we construct the following instance with n ≥ 3 agents.
The cake is divided into 2n − 1 parts. The odd parts (i.e., the 1st,
3rd, . . . , (2n − 1)-th parts) are non-valuable to agents 1 to n − 1,
and worth 1/n each to agent n. The even parts (i.e., the 2nd, 4th, . . . ,
(2n−2)-th parts) are valuable to agents 1 to n−1, and non-valuable
to agent n. For i ∈ [n − 1], agent i’s first n − 2 valuable parts (i.e.,
the 2nd, 4th, . . . , (2n − 4)-th parts) are worth ai/(n − 2) each to
agent i for some carefully selected ai, and the last valuable part (i.e.,
the (2n − 2)-th part) is worth 1 − ai to agent i. See Figure 3 for an
illustration.

Consider a connected strongly-proportional allocation with equal
entitlements. Agent n’s piece has to include pieces from at least two
consecutive odd parts in order for her value to be greater than 1/n.
By a clever choice of ai for i ∈ [n−1], we force these two odd parts
to be the rightmost odd parts. This leaves the remaining 2n− 4 parts
for agents 1 to n − 1. Removing all the non-valuable parts for these
agents, the remaining valuable parts of the cake are worth ai to agent
i ∈ [n − 1]. Divide all valuations and entitlements by ai for each
i ∈ [n − 1]. Then, this is equivalent to a cake with value 1 to every
agent such that each agent’s entitlement is w′

i = 1/nai. If we select
the ai’s carefully such that

∑
i∈[n−1] w

′
i = 1 and the entitlements

w′
i’s are generic, then we can invoke Theorem 3.6 to show that the

lower bound number of queries is in Ω(n · 2n).

Theorem 4.4. Any algorithm that decides whether a connected
strongly-proportional allocation exists for n agents with equal en-
titlements requires Ω(n · 2n) queries.

The upper bound from Theorem 4.3 and the lower bound from
Theorem 4.4 imply that the number of queries required to determine
the existence of a connected strongly-proportional allocation is in
Θ(n · 2n), even for agents with equal entitlements. The same tight
bound also holds for computing such an allocation if it exists.

Theorem 4.5. The number of queries required to decide the exis-
tence of a connected strongly-proportional allocation for n agents,
or to compute such an allocation if it exists, is in Θ(n · 2n), even for
agents with equal entitlements.

5 Conclusion

We have studied necessary and sufficient conditions for the existence
of a connected strongly-proportional allocation on the interval cake
(Theorems 3.2 and 4.2). We have shown that computing this con-
dition requires Θ(n · 2n) queries even for agents with equal enti-
tlements (Theorem 4.5) or hungry agents with generic entitlements
(Theorem 3.7), and Θ(n2) for hungry agents with equal entitlements
(Theorem 3.5). The same bounds hold for the computation of such
an allocation if it exists.

A natural question that arose from our work is whether there is
an algorithm that (asymptotically) attains the lower bound in (1) for
hungry agents with entitlements that are neither generic nor equal.

Additionally, our work can be extended in the following ways:

• Chores. Chore-cutting is a variant of cake-cutting in which agents
have negative valuations for every piece of the cake.

• Beyond the unit interval. We can consider cakes with more com-
plex topologies, such as graphical cakes [4], tangled cakes [12],
two-dimensional cakes [19], and pies [14].

• Envy-freeness. It is known that, in every cake-cutting instance,
a connected envy-free allocation exists [21, 23]. What condi-
tions are necessary and sufficient for the existence of a connected
strongly-proportional allocation that is also envy-free?
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