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Abstract. We study the friendship-based online coalition forma-
tion problem, in which agents that appear one at a time should be
partitioned into coalitions, and an agent’s utility for a coalition is the
number of her neighbors (i.e., friends) within the coalition. Unlike
prior work, agents’ friendships may be uncertain. We analyze the
desirability of the resulting partition in the common term of opti-
mality, aiming to maximize the social welfare. We design an online
algorithm termed Maximum Predicted Coalitional Friends (MPCF),
which is enhanced with predictions of each agent’s number of friends
within any possible coalition. For common classes of random graphs,
we prove that MPCF is optimal, and, for certain graphs, provides the
same guarantee as the best known competitive algorithm for settings
without uncertainty.

1 Introduction

For the social dinner at ECAI 2024, the organizers have reserved
the best banquet venue of the city. When you arrive, you see multi-
ple tables of various capacities that have been set to accommodate
the participants, yet some seats are already taken. You would like to
share your table with some friends you have not seen in a long time.
However, you face uncertainty about your friendships due to shifts in
collaborations and the virtual nature of recent years. Given this un-
certainty, the organizers would like to ensure that each attendee is as-
signed to a table with as many of his friends as possible, so he would
have a good experience during the event. A similar scenario was con-
sidered by Bilò et al. [17]. Additional real-life examples include aca-
demic research [2] and international unions [39], where agents per-
form activities in coalitions rather than on their own. Such scenarios
fall within the phenomenon of coalition formation, which is noticed
in our social, economic, and political life.

In this paper, we introduce and explore a model capturing such
real-life situations. A popular framework for studying coalition for-
mation is that of hedonic games [32], which disregards externalities,
i.e., agents’ utilities depend solely on the coalition they are part of.
The outcome of such games is a set of disjoint coalitions (hereafter,
partition). In our model, agents’ friendships may be represented by
an unweighted and undirected graph, where an agent’s utility for a
coalition is the number of her neighbors (i.e., friends) within the
coalition, i.e., the agent’s degree in the graph induced by the coali-
tion. As in our example, there are many contexts where it is more
realistic to assume that coalitions may have a limited physical space
and agents arrive over time. Thus, we assume an upper bound on the
size of each coalition. Then, a central authority (i.e., an online al-
gorithm) has to immediately and irrevocably decide whether to add
an arriving agent into an existing coalition or to create a new one
containing, at this moment, only her.

Unlike prior works where arriving agents are assumed to reveal
their exact friendships with previously disclosed agents [24, 25, 37],
we consider cases where friendships are uncertain, and design an on-
line algorithm augmented with a coalitional friends predictor, i.e., an
oracle that predicts an agent’s number of friends within a given coali-
tion. Not only that such a predictor is simple and easy to interpret,
it is also useful: Vertices’ degree information has been previously
employed in heuristic and approximation algorithms for other graph
problems (e.g., maximum independent set [38]). Since an agent’s de-
gree is simply her frequency in the union of all edges, a predictor can
also be readily attained via estimation methods of elements’ frequen-
cies in a dataset, as used for certain data analysis problems [40].

The quality of a partition has been measured by various solu-
tion concepts, such as stability and optimality [21]. In this paper,
we explore the objective of maximizing the (utilitarian) social wel-
fare, defined as the sum of the agents’ utilities from a given partition.
We study a simple algorithm called Maximum Predicted Coalitional
Friends (MPCF), which assigns agents to coalitions greedily with re-
spect to the predictor. For general graphs, MPCF returns a partition
with a high social welfare even when the predictions are slightly off.
For illustrating MPCF’s good performance, we follow a vast trend
of research on average-case analysis (see, e.g., [41, 49]), and ana-
lyze MPCF also under a very natural and common random graph
model: the Chung-Lu-Vu (CLV) model [26], which generalizes the
well-known Erdős-Rényi model [35]. When the expected degree of
each agent in the subgraph induced by any coalition is used as a
prediction, we prove that MPCF stochastically dominates any other
algorithm for graphs drawn from the CLV model and analyze its ex-
pected social welfare. For deterministic graphs, we also show that
MPCF has the same competitive ratio as the best known algorithm
introduced by Flammini et al. [37]. Surprisingly, our work illustrates
that uncertainty about the agents’ preferences gives rise to an optimal
algorithm for a very natural random graph model, unlike scenarios
without uncertainty where the best known algorithm by Flammini et
al. [37] is only almost optimal.

2 Related Work

Our research can be viewed as additively separable hedonic games
(ASHGs) [18], where preferences are binary and symmetric un-
der the restriction that each coalition’s size is bounded. In ASHGs,
agents’ preferences are encoded using weighted graphs, while coali-
tion evaluation is based on the summation of members’ valuations
within the coalition. Hedonic games, introduced by Dreze and Green-
berg [32], have since been extended to various solution concepts
like stability and fairness [9, 55]. Designing computationally feasi-
ble classes of hedonic games is a major concern, resulting in differ-
ent representations. Cardinal hedonic games like ASHGs, based on
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weighted graphs [10, 18], offer space efficiency compared to ordinal
representations [19, 33]. ASHGs encompass friend-oriented hedonic
games [30], where friends and enemies are distinguished through two
possible weights. We focus on a subclass of these games, where an
agent can express for any other agent if she is a neutral or a friend.

Partitions in hedonic games are typically measured in terms of sta-
bility and optimality. While in [12, 18] properties guaranteeing the
existence of stable partitions in ASHGs were supplied, their com-
putational aspects were studied in [6, 11]. Unlike most prior stud-
ies on friend-oriented hedonic games that focus on stability notions
[16, 22, 42, 45, 47], we consider measures of optimality. Specifically,
in our work we concentrate on maximizing social welfare, as also
studied in offline settings [8, 23, 34, 51]. In fact, Levinger et al. [46]
explain why our problem is already computationally hard in offline
setting, and they thus provide poly-time approximation algorithms.
Bilò et al. [17] show that social welfare is hard to approximate even in
a restricted offline variant of our problem with fixed-size coalitions,
which they complement with poly-time approximation algorithms. In
online settings, Flammini et al. [37] study social welfare maximiza-
tion in cases similar to standard symmetric ASHGs, where agents
arrive along with their incident edges. Bullinger and René [24] also
explored a similar setup, and recently they examined whether various
stability notions can be attained in such online settings [25]. Cohen
and Agmon [28] study a coalitional variant of online task allocation,
where each coalition is given a task and evaluated on its members’
skills, yielding a multi-dimensional utility structure, unlike our work.

In contrast, we aim at maximizing social welfare in online hedonic
games when agents’ friendships (and thus their utilities) are uncer-
tain (i.e., edges are not revealed). Cohen and Agmon [27] were the
first to consider agents’ uncertainty about friendships, yet in offline
settings under the restricted Erdős-Rényi model [35]. However, we
consider the most general setting of uncertain friendships, while ex-
hibiting our algorithm’s good performance under the Chung-Lu-Vu
(CLV) model [26] that generalizes the Erdős-Rényi model. Our re-
sults also provide a major contribution compared to prior work on
online coalition formation. For non-negative utilities, the greedy al-
gorithm by Flammini et al. [37] is only almost optimal when agents
reveal upon arrival their valuations to previously arrived agents.
However, in our new setting where valuations are not revealed, our
algorithm is optimal for the very natural CLV random graph model.

Our work is also closely related to a recently popular trend of aug-
menting online algorithms with predictions, with the aim of bypass-
ing the worst-case lower bounds of online problems caused by the
uncertainty of the future. Though the idea of using advice to obtain
semi-online algorithms is not new [20], Munoz and Vassilvitskii [52]
propose to use a predictor oracle for improving revenue optimization
in auctions by setting a good reserve (or minimum) price, and Lyk-
ouris and Vassilvitskii [48] consider the online caching problem with
predictions. These works led to a series of learning augmented re-
sults in various fields (e.g., clustering [31], ski-rental [3]). To the best
of our knowledge, we are the first to introduce predictions to online
coalition formation problems, including a scheme that is stochasti-
cally optimal for realistic and natural random graphs.

Predictions about agents’ utilities have been proven to yield sig-
nificantly improved approximations in other problems. For instance,
Banerjee et al. [13, 14] augment online fair division problems with
predictions about each agent’s value for all items. Similarly to a re-
cent work on online bipartite matching by Aamand et al. [1], we
also use predictions derived from agents’ expected degrees. How-
ever, in the above works agents or items arrive along with their inci-
dent edges, while in ours edges they are not revealed. Further, while

they use predictions about an agent’s utility from the full graph, the
oracle used by our MPCF algorithm predicts an agent’s utility from
the subgraph induced by a given coalition. Moreover, the algorithm
by Aamand et al. [1] greedily matches an arriving agent with a mini-
mum predicted degree neighbor that is yet to be covered. In contrast,
MPCF assigns an arriving agent to a coalition with maximum pre-
dicted number of friends that has the minimum total expected degree
among such coalitions. In other graph problems, other kinds of pre-
dictions have also been used (See, e.g., [4, 43]).

3 Online Partitioning of Friends

We consider the problem of partitioning a finite set N = {1, . . . , n}
of n agents within an undirected social network G = (N,E) into
coalitions, where an agent benefits from the arrival of another agent
into her coalition so long as they are neighbors (i.e., friends). Agent
i’s preferences can thus be succinctly represented by a (binary) car-
dinal utility function vi : N → {0, 1} with vi(i) = 0 that satisfies
vi(j) = 1 if agent j �= i is a friend of agent i (i.e., (i, j) ∈ E);
otherwise, vi(j) = 0. We denote by Ni the set of coalitions agent
i belongs to, i.e., Ni = {C ⊆ N : i ∈ C}. Agent i’s utility can
be additively aggregated to preferences over each coalition C ∈ Ni

via vi(C) =
∑

j∈C vi(j). Such representation allows us to compare
agents’ utilities such that a certain cardinal value expresses the same
intensity of a preference for all agents. In fact, our model corresponds
to additively separable hedonic games (ASHGs) with symmetric and
binary preferences [23].

An outcome is thus a partition π of N into disjoint coalitions,
where |π| denotes the number of its coalitions. Let π(i) be the coali-
tion C ∈ π such that i ∈ C. Hence, for a partition π, π(i) �i π

′(i)
iff vi(π) ≥ vi(π

′), where vi(π) = vi(π(i)) is the utility i receives
from a partition π. We focus on real-life scenarios where the size of
each coalition is bounded. For instance, regarding our banquet ex-
ample, each table can accommodate a limited number of employees.
Hence, for a positive integer α, we consider partitions π that are α-
bounded, i.e., |C| ≤ α for every coalition C ∈ π. We assume that
α ≥ 2 as the case α = 1 is trivial. We denote byΠα the collection of
all α-bounded outcomes. For an integer n > 0, we henceforth denote
[n] := {1, . . . , n} where [0] = {0}.

We evaluate the quality of partitions by measures of optimality.
We regard partitions that maximize the (utilitarian) social welfare,
which is defined as the sum of all agents’ utilities for that partition.
Formally, for a coalition C ⊆ N , let SW(C) =

∑
i∈C vi(C) be

the social welfare of C. The social welfare of a partition π is then
SW(π) =

∑
C∈π SW(C) =

∑
i∈N vi(π). Hence, a partition π is

welfare-optimal if it maximizes the social welfare amongst all possi-
ble partitions, i.e., π ∈ argmaxπ′∈Πα

SW(π′).
In our online model, agents appear one at a time in the order

1, . . . , n. At each time t, an online algorithm A shall produce a par-
tial partition πt of the agents who arrived until time t, without any
knowledge regarding future agents. Upon the arrival of agent t, A
should immediately and irrevocably decide whether to insert her to
an existing coalition in πt−1 or create a new coalition {t}. For an
integer α ≥ 2, the central goal of an online algorithm A is thus
computing a welfare-optimal α-bounded partition πn. As the num-
ber of agents is not known upfront, from the perspective of an online
algorithm, it may be possibly infinite. Prior research considered sce-
narios where friendships are revealed upon arrival [24, 25, 37]. See
[29, Appendix A] for a sample instance in such settings.

Unlike prior studies, and unless stated otherwise, we consider that
agents do not know their edges to previously arrived agents. Thus,
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Algorithm 1 Maximum Predicted Coalitional Friends

1: Initialize an empty partition π ← ∅.
2: while an online agent t ∈ N arrives do

3: Set π′ = {C ∈ π : |C| < α ∧ ϕt(C) > 0}.
4: if |π′| > 0 then

5: Set S = argmaxC∈π′ ϕt(C) and add agent t to a coali-
tion C ∈ argminC′∈S

∑
i∈C′ ϕi(N) (ties broken randomly).

6: else Create a new coalition {t} and add it to π.
7: Output: The partition π.

agents do not reveal them upon arrival. In many practical scenarios,
it is more realistic to assume that agents have some knowledge about
their social connections rather than being completely ignorant. In our
banquet example, many companies use social network analysis soft-
ware to visualize and analyze relationships among employees, which
can identify clusters of employees who frequently interact, indicating
potential friendships (though those friendships are not certain). For
such cases, we thus consider online algorithms augmented with a
"coalitional friends predictor" ϕi : 2

N → R≥0 for each agent i ≥ 2,
which are possibly stochastic, inferred from additional knowledge
about the graph or machine-learned from past data. We use such no-
tation to stress that the predictors can operate on any coalition, but in
practice they only operate on subsets of previously disclosed agents.
Intuitively, the predictor captures agent i’s uncertainty on her friend-
ships: it is an oracle that, given any coalition C ⊆ N , predicts the
number of agent i’s friends within C. In particular, ϕi(N) predicts
agent i’s degree in the full graph. For the predictor to be well-defined,
we assume that ϕi(C) =

∑
j∈C ϕi({j}) for any coalition C ⊆ N .

4 Maximizing Social Welfare

In this section, we present our online algorithm called Maximum Pre-
dicted Coalitional Friends (MPCF), which assigns agents to coali-
tions greedily with respect to the predictor. OurMPCF algorithm (Al-
gorithm 1) uses the predictors to greedily assign an arriving agent t to
a coalition C ∈ πt−1 of size less than α that contains the maximum
predicted number of friends, yielding the maximum positive increase
in the current partition’s welfare. If multiple such coalitions exist, the
algorithm assigns agent t to the coalitionC whose total predicted ex-
pected degree within the entire graph is minimal, i.e., C minimizes∑

i∈C ϕi(N). Intuitively, coalitions with low total degrees should
be filled as early as possible as we will have more chances to assign
agents to coalitions with higher total degrees. If no such coalition
exists, then MPCF creates a new singleton coalition {t}.

As an algorithm, MPCF is simple, but our main novelty is the anal-
ysis of its behaviour with respect to the quality and choice of the pre-
dictors. For general graphs, we show in Section 4.1 that MPCF main-
tains a high social welfare even when the predictors are noisy. For
depicting its good performance, we prove in Section 4.2 that MPCF
is optimal for a very natural random graph model and analyze its ex-
pected social welfare. In the sequel, we denote the coalition to which
agent i is assigned by an online algorithm A as Ai(G). For brevity,
we hereafter denote MPCF by A�.

4.1 Robustness of MPCF to Noisy Predictors

Generally, we would like the algorithm to perform well when the
predictions are decent (or even accurate), yet maintain reasonable
performance even when the predictions are slightly noisy. For gen-
eral graphs, we thus show that MPCF will return a partition with a

high social welfare even when the predictions are slightly off. For-
mally, consider two coalitional friends predictors ϕ = (ϕi)i∈N
and ϕ′ = (ϕ′i)i∈N . Given any pair of agents j �= i, note that
ϕi({j}) and ϕ′i({j}) predict whether agents i and j are friends or
not, where a higher prediction may indicate a stronger potential for
friendship. However, for each agent i, ϕi and ϕ′i may disagree upon
their predictions of agent i’s friendship with any other agent j (i.e.,
ϕi({j}) �= ϕ′i({j}) may hold) and thus induce different orderings
on the agents who arrived before agent i. Note that the ordering is
done by sorting the agents who arrived before agent i based on the
predictions of friendship with agent i in descending order. Hence, let
Δ(ϕi, ϕ

′
i) be the minimal set of agents that should be removed such

that the two predictors ϕi and ϕ′i will induce the same ordering over
the remaining agents in [i− 1].

Let Δ(ϕ,ϕ′) := ∪i∈NΔ(ϕi, ϕ
′
i). Next, we give an upper bound

on the difference between the social welfares incurred by executing
MPCF with the predictors ϕi and ϕ′i. Our derivation of the upper
bound leverages the fact that the removal of a single agent in the
graph cannot yield a better social welfare, as proven in Lemma 1.

Lemma 1. Let G = (N,E) be a graph and consider an agent
j ∈ N . For each agent i, consider a coalitional friends predic-
tor ϕi. Then, MPCF with predictors ϕi when executed on G′ =
(N \ {j}, E) will yield a partition whose social welfare is at most
the one incurred when executed on G.

Proof. Let NG(i) be the neighborhood of any agent i ∈ N in
the graph G, only including agents that are not in a coalition of
size α upon the arrival of agent i. We will prove by induction that
NG′(i) ⊆ NG(i) for any agent i. In base case where the first agent
arrives (i.e., agent 1), if j /∈ NG(1), then NG′(1) = NG(1); other-
wise, NG′(i) = NG(i) \ {j}.

For the inductive step, assume that i > 1 and NG′(h) ⊆ NG(h)
for any agent h < i. We assume by contradiction that there exists
an agent h′ such that h′ ∈ NG′(i), but h′ /∈ NG(i). Hence, prior to
agent i’s arrival, h′ was assigned by MPCF when executed onG to a
coalition that is of size α at time i, but not when MPCF was executed
on G′. Let C be the coalition to which agent h′ was assigned when
MPCF was executed on G. Since h′ ∈ NG′(i), it must be that h′ ∈
NG(f) for any f ∈ C since when MPCF was executed on G′ it
has not yet assigned h′ at time i and h′ ∈ NG(f) for any f ∈ C.
Let C′f be the coalition to which each agent f ∈ C was assigned
whenMPCFwas executed onG′. SinceMPCF had to decide whether
to assign agent f to coalition C or coalition C′f when executed on
G′, it must be that either ϕf (C

′
f ) > ϕf (C) or ϕf (C

′
f ) = ϕf (C)

and
∑

f ′∈C′
f
ϕf ′(N) <

∑
f ′′∈C ϕf ′′(N). Further, by the inductive

hypothesis, for each f ∈ C, each f ′ ∈ C′f and f ′′ ∈ C with f ′, f ′′ ∈
NG′(f) also satisfy f ′, f ′′ ∈ NG(f). Thus, since MPCF assigned
agent f to coalition C instead of coalition C′f , we infer that either
ϕf (C

′
f ) < ϕf (C) or ϕf (C

′
f ) = ϕf (C) and

∑
f ′∈C′

f
ϕf ′(N) >∑

f ′′∈C ϕf ′′(N). This constitutes a contradiction.
Note that each agent’s utility from a given partition can be at most

her number of friends in the graph. Thus, since |NG′(i)| ≤ |NG(i)|
by our proof above, we infer the desired statement in Lemma 1.

In Theorem 2, we provide our upper bound:

Theorem 2. Let A�
ϕ(G) be the partition generated by MPCF with a

predictor ϕ on a graph G. Then, SW(A�
ϕ(G)) − SW(A�

ϕ′(G)) ≤
|Δ(ϕ,ϕ′)|(2α− 3) for any pair of predictors ϕ and ϕ′.

Proof. Let A�
ϕ(G) be the partition generated by MPCF with a pre-

dictor ϕ on a graph G. Let G−Δ(ϕ,ϕ′) = (N−Δ(ϕ,ϕ′), E−Δ(ϕ,ϕ′))
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be the graph resulting from the removal of the agents in Δ(ϕ,ϕ′),
where N−Δ(ϕ,ϕ′) = N \ Δ(ϕi, ϕ

′
i) and E−Δ(ϕ,ϕ′) = E ∩

(N−Δ(ϕ,ϕ′) ×N−Δ(ϕ,ϕ′)). By invoking Lemma 1 inductively:

SW(A�
ϕ′(G)) ≥ SW(A�

ϕ′(G−Δ(ϕ,ϕ′))) (1)

Next, let degG(i) be agent i’s actual degree in the graph G. Con-
sider an agent j ∈ Δ(ϕ,ϕ′). Note that agent j can receive at most
a utility of min(degG(j), α − 1). Thus, upon the removal of agent
j, the utility corresponding to each of agent j’s neighbors reduces
by at most 1, and thus the partition’s social welfare can decrease
by at most min(degG(j), α − 1) + (min(degG(j), α − 1) − 1) =
2min(degG(j), α−1)−1. By invoking those arguments recursively
for each agent j ∈ Δ(ϕ,ϕ′), we have:

SW(A�
ϕ(G)) ≤ SW(A�

ϕ(G−Δ(ϕ,ϕ′)))+

+
∑

j∈Δ(ϕ,ϕ′)

[2min(degG(j), α− 1)− 1] ≤

≤ SW(A�
ϕ(G−Δ(ϕ,ϕ′))) + |Δ(ϕ,ϕ′)|(2α− 3)

(2)

Note that SW(A�
ϕ(G−Δ(ϕ,ϕ′))) = SW(A�

ϕ′(G−Δ(ϕ,ϕ′))) since
removing the agents in Δ(ϕ,ϕ′) yields that the predictors ϕ and
ϕ′ induce the same set of predicted friends for each agent, and thus
SW(A�

ϕ(G)) ≤ SW(A�
ϕ′(G−Δ(ϕ,ϕ′))) + |Δ(ϕ,ϕ′)|(2α − 3) by

(2). Combined with (1), we conclude the desired upper bound.

Given any other predictor ϕ′, we infer that MPCF will still in-
cur a high social welfare for a small enough value of |Δ(ϕ,ϕ′)|,
which is upper bounded by the number of mispredicted friends of
each agent. In the next section, we show that when MPCF is optimal
under the CLV model when MPCF uses predictors that return the ex-
pected number of each agent’s friends within a given coalition. This
implies that, so long as ϕ’s number of mispredicted friends for each
agent i is small, MPCF remains still near-optimal.

4.2 Optimality of MPCF for the CLV Model

For depicting MPCF’s good performance and effectively analyzing
it, we consider the natural Chung-Lu-Vu (CLV) random graph model
[26] that generates graphs with arbitrary expected degree sequences,
generalizing the well-studied known i.i.d. model (see, e.g., [36]). Our
analysis stresses the applicability of our algorithm to practical graphs
since the CLV model can generate graphs with power law distributed
degrees, exhibited by many real-world graphs, e.g., Internet topol-
ogy [26]. By Newman et al. [53], one can obtain a fairly accurate
model of many social networks by using the Molloy-Reed method
[50], which samples a graph from a family of random graphs with
degrees distributed following a power law with exponential cutoff.

Formally, for a sequence p = (p1, . . . , pn) ∈ [0, 1]n, we con-
sider the random graph Gp in which each pair of agents i �= j
are friends with probability pipj and these events are mutually in-
dependent. This model corresponds to the setting where agents pick
their edges with probabilities proportional to p which describes the
relative distribution over the agents. Within this model, for each
agent i we use the coalitional friends predictor that returns the ex-
pected number of agent i’s friends within a coalition C ⊆ [i], i.e.,
ϕi(C) = pi

∑
j∈C pj . Under this choice of predictors, we next show

that the social welfare of the partition returned by MPCF stochasti-
cally dominates the social welfare incurred by any other algorithm
A, i.e., MPCF is optimal for graphs within the CLV model. First, we
treat the case that an algorithmA may leave an agent i in a singleton

coalition even when her neighborhood is non-empty. Specifically, we
prove in Lemma 3 that an agent having no friends hinders the social
welfare of the partition generated by MPCF compared to the case
where his neighborhood is non-empty.

Lemma 3. Under the CLV model, let p ∈ [0, 1]n be a weight vec-
tor. For any agent i, let p−i ∈ [0, 1]n−1 be obtained from p by
removing its ith entry. Then, for each agent j �= i and any k ≥ 0,
P[SW(A�(Gp)) ≥ k] ≤ P[SW(A�(Gp−i)) ≥ k − vi(A�

i (Gp))]
and P[vj(A�

j (Gp)) ≥ k] ≤ P[vj(A�
j (Gp−i)) ≥ k − 1].

Proof. Let i ∈ N . Note that an instance graph G−i of Gp−i can
be obtained from an instance graph G = (N,E) the graph Gp as
follows. First, N−i := N \ {i} is the vertices set of the graph G−i.
For each j �= i, recalling that Fj is agent j’s set of friends (i.e., her
neighborhood) in the graph G, then agent j’s neighborhood in the
graph G−i is Fj \ {i}. It readily follows that the resulting graph is
indeed distributed according to Gp−i .
We prove the result by showing that for any instance G of Gp, if

SW(A�(G)) ≥ k, then SW(A�(G−i)) ≥ k−vi(A�
i (Gp)). Equiv-

alently, it suffices to show that SW(A�(G−i)) ≥ SW(A�(G)) −
vi(A�

i (G)). We prove this by induction on the number of agents n.
The case n = 0 is trivial. Thereby, we assume that n > 0 and that
the result inductively holds for smaller values of n. Let πt and π−i

t

be the partition generated by MPCF on G and G−i (respectively) at
time t. We proceed by the following cases:

1. If agent i resides in a singleton coalition under MPCF (i.e., {i} ∈
πn at the end of the execution), then she does not contribute to
the social welfare of the partition πn returned by MPCF. Since the
graphsG andG−i are the same except for agent i and her incident
edges, we infer that SW(A�(G)) = SW(πn) = SW(π−i

n ) =
SW(A�(G−i)).

2. Assume that agent i resides in a non-singleton coalition. Thus, let
C ∈ πn be the non-singleton coalition in which agent i resides.
Let vi(C) be agent i’s degree in the subgraph of G induced by
coalition C. Up until agent i’s arrival, MPCF executed similarly
on both G and G−i. Specifically, πi−1 = π−i

i−1. Upon agent i’s
arrival, MPCF assigns agent i toC when executed onG, i.e., πi =
{C′}

C �=C′∈π−i
i

∪ {C ∪ {i}}. The following cases are possible:
(a) If no agent j ∈ C has any other friend in the graph G, then

MPCF will perform similarly on both G and G−i from time
instant i onward. Namely, πn = {C′}

C �=C′∈π−i
n

∪ {C ∪ {i}}.
Then: SW(A�(G)) = SW(πn) = SW(π−i

n ) + vi(C) =
SW(A�(G−i)) + vi(A�

i (G)).

(b) Assume that there is some agent j ∈ C with a friend j′ > i in
the graph G. We pick agent j′ as the first friend of agent j that
arrives after agent i. We distinguish between two cases:

i. If j′ has no other friend apart for j, then MPCF will incur
the same social welfare at time j′ for both G and G−i since
these graphs are the same except for agent i and her inci-
dent edges. Namely, SW(πj′) = SW(π−i

j′ ) as agent j′ is
assigned to agent j’s coalition, which is of size less than α
after removing agent i. Further, by the induction hyposthesis:
SW(πn \ πj′) ≤ SW(π−i

n \ π−i
j′ ) + vi(C). We thus infer:

SW(A�(G)) = SW(πn) = SW(πj′) + SW(πn \ πj′) ≤
SW(π−i

j′ )+SW(π−i
n \π−i

j′ )+vi(C) = SW(π−i
n )+vi(C) =

SW(A�(G−i)) + vi(A�
i (G)).

ii. Assume that j′ has at least one other friend j′′ �= j. We dis-
tinguish between two cases:
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A. If j′′ > j′, then, without loss of generality, we can pick
agent j′′ as the next arriving friend of agent j′. Thus, MPCF
will incur the same social welfare at time j′ for both G and
G−i as these graphs are the same except for agent i and her
incident edges, i.e., SW(πj′) = SW(π−i

j′ ). The proof pro-
ceeds in a manner identical to the previous case (case 2.b.i).

B. Assume that j′′ < j′. Let C̃ ∈ πj′−1 such that j′′ ∈ C̃. If
|C̃| = α, then agent j′ cannot be assigned to C̃ regardless of
the number friends she has within C̃. In that case, the proof
proceeds as in case 2.b.i. Thus, we assume |C̃| < α. If j′

has more friends within C̃ than within C, then MPCF will
assign j′ to C̃ at time j′. If j has no friends other than j′,
then MPCF will perform similarly on both G and G−i from
time instant j′′ onward and the proof proceeds as in case 2.a.
If j has another friend other than j′, then the proof proceeds
by recursively considering the cases 2.a.i-ii.

We proved that SW(A�(G−i)) ≥ SW(A�(G))− vi(A�
i (Gp)),

as desired. The proof that P[vj(A�
j (Gp)) ≥ k] ≤

P[vj(A�
j (Gp−i)) ≥ k − 1] for each agent j �= i and for any

k ≥ 0 follows from similar arguments.

Next, we show that another appealing property of MPCF is its ca-
pability of leveraging the density of a graph for attaining a higher so-
cial welfare. First, we require some terminology. Given two weight
vectors p,p′ ∈ [0, 1]n, we say that p′ dominates p if pi ≤ p′i for
every agent i. This indicates that a graph distributed asGp′ is denser
than a graph distributed as Gp. Further, we require the following:

Definition 1. (Probability for an Agent’s Neighborhood) Given some
subset of agents S ⊆ N and a weight vector p ∈ [0, 1]n, we let
Pi

p(S) be the probability that the neighborhood of agent i is exactly
the set S within Gp. Notice that Pi

p(S) solely depends on p and
satisfies Pi

p(S) =
∏

j∈S pipj
∏

j∈N\S(1− pipj).

In Theorem 4, we prove that the social welfare of the partition
generated by MPCF for a given graph is stochastically dominated by
the social welfare obtained for a denser one:

Theorem 4. (MPCF’s Optimality for Density Exploitation) Un-
der the CLV model, let p,p′ ∈ [0, 1]n be s.t. p′ dominates p. Then,
P[SW(A�(Gp)) ≥ k] ≤ P[SW(A�(Gp′)) ≥ k] for any k ≥ 0.

Proof. We only provide the proof for P[SW(A�(Gp)) ≥ k] ≤
P[SW(A�(Gp′)) ≥ k] for any k ≥ 0. The proof is by induction
on the number of agents n. The base case n = 1 is trivial since
SW(A�(Gp)) = SW(A�(Gp′)) = 0 with probability 1. Hence,
the probabilities of reaching a social welfare of at least k is the same
for both weight vectors p and p′.

In the induction step, assume that n > 0 and the result holds for
n − 1 agents. Let p−n = (p1, . . . , pn−1) ∈ [0, 1]n−1 be obtained
from p by removing its last entry corresponding to agent n. Then:

P[SW(A�(Gp)) ≥ k] = Pn
p (∅)P[SW(A�(Gp−n)) ≥ k]+

+
∑

∅�=S⊆N

Pn
p (S)P[SW(A�(Gp−n)) ≥ k − vn(A�

n(Gp))] (3)

A similar equality is satisfied when substituting p by p′.
Let q = pnp−n = (p1pn, . . . , pn−1pn) and q′ = p′np

′
−n =

(p′1p
′
n, . . . , p

′
n−1p

′
n), which are the probabilities that agent n has an

edge to agents i and i′ in Gp and Gp′ (respectively). Since p′ domi-
nates p, q′ also dominates q. Thus, for each agent i ∈ [n − 1], we
can write 1 − q′i = (1 − ri)(1 − qi) for some ri ∈ [0, 1]. For each

agent i ∈ [n − 1], let Xi and Yi be independent Bernoulli variables
with P[Xi = 1] = qi and P[Yi = 1] = ri. Further, let Zi be the
Bernoulli variable that equals 1 if eitherXi = 1 or Yi = 1, and 0 oth-
erwise. Then, we have thatP[Zi = 1] = q′i. LetM = {i ∈ [n−1] :
Xi = 1} andM ′ = {i ∈ [n−1] : Zi = 1}. Note thatM ⊆ M ′. For
any T ⊆ [n−1], the following then holds:Pn

p′(T ) = P[M ′ = T ] =∑
S⊆T P[M = S]P[M ′ = T |M = S] =

∑
S⊆T Pn

p (S)Δ(S, T ),
where Δ(S, T ) := P[M ′ = T |M = S]. Observe that for any
S ⊆ [n− 1], it holds that

∑
T⊇S Δ(S, T ) = 1. Indeed, conditioned

onM = S, it holds that S ⊆ M ′ with probability 1. Combined with
(3), we can write P[SW(A�(Gp′)) ≥ k] as:

P[SW(A�(Gp′)) ≥ k] = Pn
p′(∅)P[SW(A�(Gp′

−n
)) ≥ k]+

+
∑

∅�=T⊆N

Pn
p′(T )P[SW(A�(Gp′

−n
)) ≥ k − vn(A�

n(Gp))] =

= Pn
p′(∅)P[SW(A�(Gp′

−n
)) ≥ k] +

∑
∅�=T⊆N

∑
S⊆T

Pn
p (S)Δ(S, T )·

·P[SW(A�(Gp′
−n

)) ≥ k − vn(A�
n(Gp))] =

= Pn
p (∅)Δ(∅, ∅)P[SW(A�(Gp′

−n
)) ≥ k]+

+Pn
p (∅)

∑
∅�=T⊆N

Δ(∅, T )P[SW(A�(Gp′
−n

)) ≥ k − vn(A�
n(Gp))]+

+
∑

∅�=S⊆N

Pn
p (S)

∑
T⊇S

Δ(S, T )P[SW(A�(Gp′
−n

)) ≥ k − vn(A�
n(Gp))]

(4)
where the last steps follow by interchanging summations in the sec-
ond term, and splitting into the cases S = ∅ and S �= ∅.

Note that if S �= ∅ and S ⊆ T , then, by MPCF, p′−n dominates
p′n(A, S) since the minimum weight corresponding to a neighbor in
T cannot be larger than a neighbor in S. Further, since p′ dominates
p, then p′i(A, S) dominates pi(A, S) for each agent i (up to an ap-
propriate permutation). By the induction hypothesis, we infer that for
S �= ∅ and T ⊇ S the following hold:

P[SW(A�(Gp′
−n

)) ≥ k] ≥ P[SW(A�(Gp−n)) ≥ k] (5)

Further, by Lemma 3 and the induction hypothesis, we obtain:

P[SW(A�(Gp′
−n

)) ≥ k − vn(A�
n(Gp))] ≥

≥ P[SW(A�(Gp′
−n

)) ≥ k] ≥ P[SW(A�(Gp−n)) ≥ k]
(6)

Applying the bounds (5)-(6) to (4), we infer:

P[SW(A�(Gp′)) ≥ k] ≥
≥ Pn

p (∅)Δ(∅, ∅)P[SW(A�(Gp−n)) ≥ k]+

+Pn
p (∅)

∑
∅�=T⊆N

Δ(∅, T )P[SW(A�(Gp−n)) ≥ k]+

+
∑

∅�=S⊆N

Pn
p (S)

∑
T⊇S

Δ(S, T )·

·P[SW(A�(Gp−n)) ≥ k − vn(A�
n(Gp))]

(7)

By combining the first two terms in (7) while using since∑
T⊇S Δ(S, T ) = 1 for any S ⊆ [n− 1] and (3), we conclude:

P[SW(A�(Gp′)) ≥ k] ≥ Pn
p (∅)P[SW(A�(Gp−n)) ≥ k]+

+
∑

∅�=S⊆N

Pn
p (S)P[SW(A�(Gp−n)) ≥ k − vn(A�

n(Gp))] =

= P[SW(A�(Gp)) ≥ k]

(8)
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We are now ready to proven our main result in Theorem 5 about
MPCF’s optimality under the CLV model:

Theorem 5. (MPCF’s Optimality for Welfare Maximization) In
the CLV model, let p ∈ [0, 1]n be a weight vector and let A be an
online algorithm for our problem. Then, for any k ≥ 0:

1. For any agent i: P[vi(Ai(Gp)) ≥ k] ≤ P[vi(A�
i (Gp)) ≥ k].

2. P[SW(A(Gp)) ≥ k] ≤ P[SW(A�(Gp)) ≥ k].

Proof. We begin with proving part (1), i.e., P[vi(Ai(Gp)) ≥ k] ≤
P[vi(A�

i (Gp)) ≥ k] for any agent i and k ≥ 0. Let i ∈ N . The proof
is by induction on the number of agents n. The base case n = 0
is trivial since vi(Ai(Gp)) = vi(A�

i (Gp)) = 0 with probability
1 as both algorithms will generate an empty partition. Hence, the
probabilities of attaining at least k friends for agent i is the same for
both algorithms (i.e., the inequality holds with equality).

For the induction step, we assume that n > 0 and that the result
holds for n−1 agents. Without loss of generality, we assume that i �=
n. Otherwise, we could choose an agent j �= n and consider agent
j instead of agent n in the sequel. Let p−n ∈ [0, 1]n−1 be obtained
from p by removing its last entry which corresponds to agent n, i.e.,
p−n = (p1, . . . , pn−1). If agents i and n are not friends, then n
will not affect the number of agent i’s friends within her assigned
coalition under both algorithms, regardless of whether n joins her
coalition or not. Hence, the induction hypothesis yields the required:

P[vi(Ai(Gp)) ≥ k] =
∑
S⊆N

Pn
p (S)P[vi(Ai(Gp−n)) ≥ k]

≤
∑
S⊆N

Pn
p (S)P[vi(A�

i (Gp−n)) ≥ k] = P[vi(A�
i (Gp)) ≥ k]

(9)

Now, assume that agents i and n are friends. If the coalition to which
agent i is assigned by A is of size α at time n− 1, then agent n will
not affect the number of agent i’s friends within her assigned coali-
tion under A as agent n cannot be assigned to that coalition. Thus,
the proof in that case follows from arguments similar to (9). Assume
that the coalition to which agent i is assigned byA is of size less than
α at time n− 1. If agent n is assigned to agent i’s coalition underA,
then removing agent n from the graph will decrease vi(Ai(Gp)) by
1. By the induction hypothesis and Lemma 3:

P[vi(Ai(Gp)) ≥ k] =

=
∑
S⊆N

Pn
p (S)P[vi(Ai(Gp−n)) ≥ k − 1] ≤

≤
∑
S⊆N

Pn
p (S)P[vi(A�

i (Gp−n)) ≥ k − 1] ≤

≤ P[vi(A�
i (Gp)) ≥ k] ·

∑
S⊆N

Pn
p (S) = P[vi(A�

i (Gp)) ≥ k]

(10)

where the last equality is due to
∑

S⊆N Pn
p (S) = 1.

If agent n is not assigned to agent i’s coalition under A, then re-
moving agent n from the graph will not affect vi(Ai(Gp)). By the
induction hypothesis and Lemma 3:

P[vi(Ai(Gp)) ≥ k] =
∑
S⊆N

Pn
p (S)P[vi(Ai(Gp−n)) ≥ k]

≤
∑
S⊆N

Pn
p (S)P[vi(A�

i (Gp−n)) ≥ k] ≤

≤ P[vi(A�
i (Gp)) ≥ k + 1] ·

∑
S⊆N

Pn
p (S) =

= P[vi(A�
i (Gp)) ≥ k + 1] ≤ P[vi(A�

i (Gp)) ≥ k]

(11)

where we used the equality
∑

S⊆N Pn
p (S) = 1 and the last in-

equality follows from the observation that the event {vi(A�
i (Gp)) ≥

k + 1} is a subset of the event {vi(A�
i (Gp)) ≥ k}, and thus

P[vi(A�
i (Gp)) ≥ k + 1] ≤ P[vi(A�

i (Gp)) ≥ k].
We proceed with proving part (2), i.e., P[SW(A(Gp)) ≥ k] ≤

P[SW(A�(Gp)) ≥ k] for any k ≥ 0. The proof is by induction
on the number of agents n. The base case n = 0 is trivial since
SW(A�(Gp)) = SW(A�(Gp)) = 0 with probability 1 as both al-
gorithms will generate an empty partition. Hence, the probabilities of
reaching a social welfare of at least k is the same for both algorithms
(i.e., the inequality holds with equality).

For the induction step, we assume that n > 0 and that the result
holds for n− 1 agents. Recall that p−n ∈ [0, 1]n−1 can be obtained
from p by removing its last entry which corresponds to agent n,
i.e., p−n = (p1, . . . , pn−1). We consider the probability that algo-
rithmA generates a partition with a social welfare of at least k. since
P[vi(Ai(Gp)) ≥ k] ≤ P[vi(A�

i (Gp)) ≥ k] for each agent i and for
any k ≥ 0, observe that P[SW(A�(Gp−n)) ≥ k−vn(An(Gp))] ≤
P[SW(A�(Gp−n)) ≥ k − vn(A�

n(Gp))]. By that observation and
the induction hypothesis, we conclude the desired:

P[SW(A(Gp)) ≥ k] = Pn
p (∅)P[SW(A(Gp−n)) ≥ k]+

+
∑

∅�=S⊆N

Pn
p (S)P[SW(A(Gp−n)) ≥ k − vn(An(Gp))] ≤

≤ Pn
p (∅)P[SW(A�(Gp−n)) ≥ k]+

+
∑

∅�=S⊆N

Pn
p (S)P[SW(A�(Gp−n)) ≥ k − vn(A�

n(Gp))]

= P[SW(A�(Gp)) ≥ k]

(12)

Theorem 5 proves that MPCF is optimal for the CLVmodel. It also
indicates that even if some online algorithm A satisfies Theorem 4,
MPCF still exploits the graph’s density better than A by Theorem 5.
Though optimality only holds when the predictions are each agent’s
expected number of friends within a given coalition, MPCF is still
near-optimal if the predictions are noisy due to Theorem 2.

4.2.1 The Expected Social Welfare of MPCF

We herein analyze the expected social welfare incurred by MPCF
under the CLV model for n ≥ 3, in both the asymptotic and the non-
asymptotic case. Our first main result within this model is a set of
equations that describe the social welfare incurred by MPCF. First,
we consider the set I of the agents in Gp that are assigned to single-
ton coalitions by MPCF. Let G+

p = (N,E+
p ) be the graph obtained

from Gp as follows: If pipj > 0 for a pair of agents i �= j, then
(i, j) ∈ E+

p . Let c� be the number of coalitions in A�(Gp) with ex-
actly � agents. We prove the following relation between the partition
returned by MPCF and the graph G+

p :

Lemma 6. Under the CLV model, let p ∈ [0, 1]n and let I be
the agents in the graph Gp that are assigned to singleton coali-
tions by MPCF. Then, I is an independent set of G+

p . Further, each
coalition C ∈ A�(Gp) is connected in G+

p and SW(A�(Gp)) ≤∑α
�=1 �(�−1)c�. Since n−|I| = ∑α

�=2 �c�, then SW(A�(Gp)) ≤
(α− 1)(n− |I|).
Proof. Assume, towards contradiction, that the partition generated
byGp contains two isolated agents i < j with pipj > 0. Then, when
j appears, MPCF adds agent j to the coalition {i}, which contradicts
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the fact that j is isolated. Thus, I is an independent set of G+
p . Next,

note that when an agent i is inserted to an existing coalition C, there
exists at least one agent j ∈ C such that pipj > 0 by Algorithm
1. Hence, C’s social welfare is at most |C|(|C| − 1), yielding that
SW(A�(Gp)) ≤ ∑α

�=1 �(�− 1)c�.

We next show how to compute |I| for a symmetric variant of the
CLV model for n ≥ 3, where we consider the random graph Gd pa-
rameterized by the number of agents n and a vector d = {di}i∈[n],
with di denoting the expected degree of agent i. Any pair of agents
i �= j with the same expected degree d are friends with probability
d/n. As in the previous section, we can analyze MPCF when the pre-
dictions for each agent i are given by the expected number of agent
i’s friends within a coalition C ⊆ N , i.e., ϕi(C) = |{j ∈ C :
dj = di}| · di/n. Let Y d

t be the number of agents with expected de-
gree d who are in singleton coalitions by MPCF after agent t arrives.
{Y d

t }t∈[n] is a Markov chain whose expected evolution is:

E[Y d
t+1 − Y d

t ] = −
(
1−

(
1− d

n

)Y d
t
)
Πd′≤d

(
1− d′

n

)Y d′
t

(13)

The first term is the probability that at least one isolated agent with
expected degree d is a friend of agent t + 1, and the second term
is the probability that agent t + 1 has no isolated friend with lower
expected degree (which would have been prioritized). Letting kd

t =
− log(1− d/n) and Zd

t = −kd
t · Y d

t , (13) can be simplified as:

E[Zd
t+1 − Zd

t ] = kd
t (1− eZ

d
t )Πd′<de

Zd′
t (14)

Following Kurtz [44] and many subsequent works (See, e.g., [1]),
these Markov chains can be approximated by the solution of the fol-
lowing system of differential equations:

dzd(t)

dt
= kd

t (1− ez
d(t))Πd′<de

zd(t) (15)

As kd
t is independent of time t, there is a constant kd s.t. kd

t ≡ kd.
Similarly to [1, Theorem 6.1], the solution zd(t) approximates the
number of isolated agents with expected degree d at time t via
−zd(t)/kd. Letting {δf}�f=1 be the unique expected degrees, we ob-
tain that |I| can be approximated by the quantity

∑�
f=1 −zδf (t)/kd.

As SW(A�(Gp)) ≤ (α−1)(n−|I|) by Lemma 6, we conclude that
the solution to (15) thus gives an approximate upper bound in terms
of {δf}�f=1 on SW(A�(Gp)) for the non-asymptotic case, which is
exact in the asymptotic case where n → ∞:

Theorem 7. (Upper Bound on MPCF’s Expected Social Welfare)
The expected social welfare of the partition generated by MPCF
when executed on Gp approaches (α− 1)(n+

∑�
f=1 z

δf (n)/kδf )

as n → ∞, where {zδf (n)}�f=1 are the solution to the system (15).

In [29, Appendix B], we give a similar system for the general CLV
model, whose solution can be similarly derived for cases such as the
symmetric CLV model, and discuss its solvability. Now, we analyze
MPCF’s expected social welfare for Erdős-Rényi model [35], a sub-
class of the CLV model where all edges in a random graph Gp inde-
pendently appear with the same probability p ∈ [0, 1]. Each agent’s
expected degree is the same and equals to d := np. For a wide range
of the parameters n, α, p, we give in Theorem 8 an exact expression
for MPCF’s expected social welfare (up to a small additive error):

Theorem 8. (MPCF’s Expected Social Welfare for Erdős-Rényi

Graphs) Let p ∈ [0, 1] and n, α ∈ N. Assume that p = o(log n)/n

and p ≥ 1/n1+o(1). Denote Mi := vi(A�
i (Gp)). Then:

E[Mi] = n+ α− ln(epα + epn − 1))

p
± n1/2+o(1) (16)

In particular, |Mi − E[Mi]| = O(
√
n log n) with high probabil-

ity dependent on n. Further, E[SW(A�(Gp))] =
∑

i∈[n] E[Mi] =

n2 + αn− n ln(epα+epn−1))
p

± n1.5+o(1).

Proof. (Sketch) For any 0 ≤ � ≤ n − 1, we denote T� as the num-
ber of agents j such that when agent j arrives, the coalition to which
agent i is assigned by MPCF has a social welfare of � thus far. Fur-
ther, let ñi be minimal such that

∑
�<ñi

E[T�] ≥ α. In [29, Appendix
D], we first prove that |ñi − E[Mi]| ≤ n1/2+o(1). Thus, to conclude
the proof, we then show that ñi satisfies the bound in the theorem.
Specifically, we first prove that ñi ≥ n+α− ln(epα+epn−1)

p
, which

provides the lower bound for (16). For the upper bound, we show
that ñi ≤ n+α− ln(epα+epn−1))

p
+2no(1). Hence, combining both

bounds with |ñi − E[Mi]| ≤ n1/2+o(1) yields (16).

Remark 1. (Deterministic Graphs) By Flammini et al. [37, Theo-
rem 3.8], for undirected and unweighted graphs, no deterministic
online algorithm has a competitive ratio better than α − 1. For a
restricted CLV model where weights are binary (i.e., pi ∈ {0, 1} for
any agent i), the resulting graph is deterministic and is exactly G+

p .
In that case, MPCF is equivalent to the strictly α-competitive greedy
algorithm devised by Flammini et al. [37, Theorem 3.9]. Therefore,
we infer that MPCF on deterministic graphs is almost optimal and
achieves a strict competitive ratio of α.

5 Conclusions and Future Work

We have explored an online variant of partitioning agents in an undi-
rected social network into coalitions of a bounded size. We gave the
first results for maximizing social welfare in online hedonic games
where algorithms have access to (possibly machine-learned) predic-
tions, capturing the uncertainty regarding agents’ friendships. When
friendships are uncertain, our MPCF algorithm is optimal in terms
of social welfare maximization for a vast family of natural random
graphs. Our results can be seen as evidence that predictions are a
promising tool for improving algorithms in online hedonic games,
even if predictions are slightly noisy. Unexpectedly, our findings
also reveal that uncertainty regarding agents’ preferences leads to
an optimal algorithm in a highly natural and common random graph
model. This contrasts with scenarios without uncertainty, where the
best known algorithm by Flammini et al. [37] is only nearly optimal.

Our work opens the way for many future studies that will lead to
further advancements in online coalition formation. Immediate direc-
tions are exploring other classes of hedonic games in online settings,
such as fractional hedonic games [10] and modified fractional hedo-
nic games [54]. Studying other models of uncertainty and other types
of predictions are also interesting directions for future research. It is
also appealing to examine scenarios where assignments may be post-
poned, agents may be reassigned after each arrival, or both. Future
research also warrants extending our work to solution concepts, such
as envy-freeness [7, 15]. As our work follows a welfarist approach,
another appealing direction is considering alternative welfare func-
tions, such as the egalitarian welfare which is defined as the mini-
mum across the agents’ utilities [5].
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