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Abstract. We address the problem of designing interpretable algo-
rithms for image classification. Modern computer vision algorithms
implement classification in two phases: feature extraction - the en-
coding - that relies on deep neural networks (DNN), followed by a
task-oriented decision - the decoding - often also using a DNN. We
propose to formulate this last phase as an argumentative DialoguE
Between two agents relying on visual ATtributEs and Similarity to
prototypes (DEBATES). DEBATES represents the combination of
information provided by two encoders in a transparent and inter-
pretable way. It relies on a dual process that combines similarity
to prototypes and visual attributes, each extracted from an encoder.
DEBATES makes explicit the agreements and conflicts between the
two encoders managed by the two agents, reveals the causes of un-
intended behaviors, and helps identify potential corrective actions to
improve performance. The approach is demonstrated on two prob-
lems of fine-grained image classification.

1 Introduction
Over the past decade, deep learning techniques have become in-
dispensable for implementing computer vision functions, giving
rise to algorithms that are sometimes considered to surpass human
skills [37, 14].

The work presented in this paper aims to introduce a higher level
of transparency in decision algorithms that involve deep neural net-
work components. Transparency, a desirable property of explainable
Artificial Intelligence [4], refers to the ability to understand how al-
gorithms arrive at their decisions.

Most modern computer vision algorithm architectures follow an
encoder/decoder pattern. The encoder is frequently trained using a
(very) large dataset, whereas the decoder is task-specific and some-
times just a linear decision function. Most of the design effort is con-
centrated on the encoder component, assuming it can extract useful
information with minimal adaptation for various tasks. This is the
spirit of the so-called foundation models [6].

Encoders based on foundation models are learned on large
amounts of data to increase versatility and generalization. However,
they can still exhibit unintended behaviors [25, 42] that can lead to
critical hazards. These bad behaviors are challenging to predict and
understand due to neural architectures’ complexity, size, and opacity.

One key issue is, therefore, to enhance the transparency of algo-
rithms that involve such models while maintaining their high perfor-
mance. To address this question, we propose to focus on one of the
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Figure 1: Simplified sketch of DEBATES for classifying an image
of a bird. A first agent proposes a label based on a similarity to
a prototype. The other agent counters using an attribute. This ex-
ample shows an unintended behavior, as the first agent appears bi-
ased towards flying birds, thus confounding the Laysan and Sooty
classes. A potential corrective action is to assess and correct the
classes’ conditional diversity concerning the bird’s pose.

simplest but fundamental tasks in computer vision, image classifi-
cation, with two research directions: implementing a dual encoding
process and constructing a decoder to handle this duality.

The first reason for using a dual encoding process is to enhance its
reliability through redundancy and complementarity. The output of
each encoder can be checked or reinforced by the other, leading to a
more relevant encoding and a more trustworthy decision. The second
reason is based on its analogy to human cognition. The concept of
dual processes has a long history in psychological research [16] and
was popularised by Daniel Kahneman’s book [20]. In his book, he
introduced to a broad audience the system 1 - intuitive / system 2 -
deliberative duality for high-level cognitive functions, although the
instantiation of this duality is still controversial [30, 15].

For image classification, the two encoders that will be used repre-
sent two levels of data analysis: a global similarity to image proto-
types – which can be seen as implementing a fast system 1 process
– and a set of local visual attribute detectors – system 2-like reason-
ing – both relying on pre-trained neural networks. These encoders
are typically adapted to a fine-grained classification problem such as
CUB-200 [41].
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To represent how the decoder manages the dual encoding process,
we use a formal argumentation-based dialog [5] between two agents.
It provides a rigorous and standardised logic-based formalism to ex-
plicit potential conflicts and agreements when processing informa-
tion by exchanging propositions and arguments. To the best of our
knowledge, we present the first application of this formalism to a
computer vision task with the purpose of explainability.

The role of our DEBATES method is to clarify the different steps
of the image classification process and potentially help to identify
the source of unintended behaviors or errors that can be corrected
in a subsequent phase by modifying the algorithm features and the
database. Figure 1, for example, illustrates a small dialog that reveals
conflicts between attributes and similarities with prototypes, as well
as possible biases and possible corrective actions.

The four main contributions of our work are to:

• propose a new transparent algorithm for image classification,
• able to handle a dual encoding strategy: similarity to prototypes

and attribute detection,
• expressed as a formal argumentation-based dialog representing

conflict resolution and agreements
• and demonstrate its ability to help identify unintended behaviors

for further correction on CUB-200 [41] and Flowers 102 [31]
datasets.

The paper is organised the following way: Section 2 discusses the
related work, Section 3 describes the components needed to imple-
ment the dual encoding image classification, Section 4 shows on a
detailed simulation how DEBATES can be analysed and how it ex-
plains the reasoning underlying the classification, Section 5 formal-
izes the structure of the dialog, Section 6 defines simple policies for
choosing arguments and propositions and Section 7 demonstrates the
capacity of DEBATES to suggest corrective actions on a problem of
bird classification (CUB-200 [41]) and flower classification (Flowers
102 [31]).

2 Related work
Our work addresses two questions: the development of transparent
algorithms and the representation of information processing as a di-
alog, both applied to image classification.

Transparent image classification Transparent algorithms are typ-
ically opposed to post-hoc explainability strategies such as feature at-
tribution, counterfactual examples, attention heatmaps, or dissecting
concepts [4].

In image classification, most transparent architectures adhere to a
three-step bottleneck pattern [7, 21, 26]. This pattern involves en-
coding the image with a single DNN, mapping it to a representation
space (referred to as the “bottleneck”) that is expected to be inter-
pretable, and finally decoding it to make the prediction, which is also
expected to be interpretable. The primary distinctions between these
approaches lie in the nature of the representation space (symbol,
prototype image, text, clusters of samples), how it is calculated (su-
pervised or unsupervised learning, utilization of a generative model,
etc.), and how it is employed for prediction (linear function, decision
tree, nearest neighbor or prototype, etc.). Readers are encouraged to
refer to [32] for an extensive recent review.

Our work draws inspiration from two classical approaches for the
representation space: a symbolic description of the image using a
fixed vocabulary of visual attributes as in the Concept Bottleneck
Model (CBM) [21] and a description by similarity to global proto-
types as proposed in [24]. Note that in DEBATES, we do not use
prototypes of local patches as in ProtoPNet [9] but transfer the idea

of local geometric patterns to the detection of visual attributes.
In contrast to the aforementioned approaches, DEBATES employs

two distinct levels of representation. The first motivation is to fa-
cilitate the detection of unintended behaviors by identifying incon-
sistencies and biases in the representations. The second motivation
is to benefit from a global/local data representation for fine-grained
or subordinate classification. This can be postulated as a potential
mechanism underlying human cognition, given the evidence indicat-
ing that subordinate-level categorization occurs after basic-level cat-
egorization [35] and takes longer to learn [29, 34, 2].

Dialog for computer vision A few studies have introduced the
idea of a dialog between agents either to inquire sequentially about
the content of an image [12], to solve image retrieval tasks (“Guess
What?” [13]) or object identification (“Guess Which?” [11]). In [1],
image classification is implemented as a process where an agent se-
quentially queries the value of a visual attribute. In all these stud-
ies, the role of each agent is fixed (active questioner or reactive an-
swerer), and neither collaborates nor argues.

Explainability through argumentation for computer vision
tasks. Argumentation has been proposed as a promising direction to
achieve explainability in AI [43]. Very few studies in this area have
addressed computer vision applications: [3] proposes ProtoArgNet,
which relies on a bottleneck architecture, for which the final multi-
layer perceptron generating the prediction can be interpreted as im-
plementing argumentation [33]. [23] describes a post-hoc explana-
tion resulting from a contradictory debate.

Our proposed methodology utilizes an argumentation-based dia-
log to select and evaluate the most reliable representation elements.
The final decision is delegated to an external mechanism that will
rely on the results of the exchanges between the two agents. These
exchanges will convey arguments and counterarguments for the clas-
sification, thereby providing a more comprehensive framework for
understanding the decision.

Transparent algorithms mainly fall into four leading families [4]:
single decision trees, where the branching process is expected to rep-
resent a sequential reasoning process; additive processes such as lin-
ear decision models, where the weighted combination of features re-
veals their individual contribution to the decision; the nearest neigh-
bor algorithm, which instantiates reasoning as similarity ranking and
voting; and logical rules, where the decision process follows propo-
sitional or predicate calculus and is expected to be semantically in-
terpretable. Our work synthesizes these strategies to achieve trans-
parency in image classification. The dialog is a sequential exploration
of hypotheses and arguments expressed in the framework of propo-
sitional logic. The decoder consists of a dialog between two agents
based on attribute detection and similarity ranking. The final predic-
tion is a voting scheme.

3 Dialog-based image classification
In this section, we describe the essential components of DEBATES.
The classification is based on a dialog between two agents that share
a common database of prototypes, i.e. a set of images that sample
each class. However, the type of information available – attribute val-
ues of the prototypes, attribute values on the image to be classified,
and similarity between the prototypes and the image – is specific to
each agent. The role of the dialog is to reveal the relevant information
that will be used for the final prediction.

3.1 Task formalisation

Given an image x ∈ Rd, the objective is to correctly predict its label
from a list of C classes {1, . . . , C}.
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To achieve this, the global predictor has access to images rep-
resenting the different classes, which are referred to as prototypes.
Each prototype is annotated with a class and the presence or absence
of different binary visual attributes. In the CUB dataset, the classes
are the bird species, and the attributes include the color of the differ-
ent bird’s parts (e.g. black head present or absent).

The binary visual attributes are drawn from a vocabulary V =
{tn}Nn=1. The vocabulary may originate from two distinct sources.
It may be derived from existing data, as exemplified by the CUB
dataset, which includes 312 attributes. Alternatively, it may be gen-
erated using a large language model, as described in [28].

We denote the prototype dataset as D = {(pi, {an
i }Nn=0, yi)}Mi=1

where pi ∈ Rd is the i-th image prototype, yi ∈ {1, . . . , C} its label
among C classes and {an

i }Nn=0 its attribute values where an
i is 1 if

the attribute tn is present in pi and 0 if not.
The role of the dialog is not to predict the label of the image but to

expose the statements (propositions, arguments, counterarguments)
that reveal the relevant information for classification. As explained
later (see Section 3.3), the final prediction relies on analyzing in a
posterior phase the statements exchanged between the two agents
hosting the encoders.

The content of the information exchanged by the agents relies
on two encoders used to extract relevant information from images:
fproto and fatt. The first encoder, fproto, selects the prototypes that
best represent the input data x using a similarity distance in the fproto
embedding space. We denote the similar prototypes as {pσ(k)}Kk=1

where K is the number of prototypes considered similar by the agent,
and σ is the similarity order on prototypes from most to least similar
according to a similarity distance. The second encoder, fatt, repre-
sents data by detecting the presence of meaningful attributes. It relies
on a detector for each attribute tn that can be applied to the input data.
The attribute value detected on x is denoted ân and equals 1 if the
attribute is detected in the image, 0 if not. The technical details of the
implementation of the two encoders are presented in Section 7.1.

3.2 Agent features

In this section, we discuss the characteristics of agents: goals, roles,
and the information they manipulate according to their role in the
dialog.

In our dialog, the agents collaborate by exchanging their respective
information about the image: a first agent uses similarities predicted
from fproto and considers that an image of a given class should be
similar to prototypes of the same class. In contrast, the other agent
uses the attributes predicted by fatt and considers that an image
of a class should have attributes identical to the prototypes of the
class. Agents handle each proposed label separately in different di-
alog branches that give arguments for and against the label proposi-
tion.

We will refer to these two agents as Prototype and Attribute agents,
respectively, simplified for brevity as P and A agents. Next, we intro-
duce their roles and the information they have access to, summarised
in Table.1.

Agent P . Its role is to propose possible labels for the image x with
support from the most similar prototypes. If the image x is similar
to a given prototype, the agent can assume that x has the same label
as that prototype. To link prototypes to labels, it has access to them
and their labels {yi}Mi=1. It has also access to their attribute values
{an

i }M,N
i=1,n=1. This information helps to counter attribute detection

if this happens to be inconsistent with the presence or absence of
attributes in similar prototypes.

Agent A. As similarities between images may not encode reliably
fine-grained differences between images, the role of agent A is to re-
fine label propositions. To do so, it can agree with propositions and
disagree by stating a difference of attributes between x and proto-
types of the proposed label. It has access to prototypes {pi}Mi=1, their
attributes {an

i }M,N
i=1,n=1 and detected attributes {ân}Nn=1 in x.

Table 1: Information available to the agent P and A. The symbols
✓and × indicate whether the information is available to the agent.

Available Information P A

V = {tn}Nn=1: visual attribute vocabulary ✓ ✓
{pi}Mi=1: prototypes ✓ ✓
{ani }

M,N
i=1,n=1: attribute values of prototypes ✓ ✓

{yi}Mi=1: labels of prototypes ✓ ×
{pσ(k)}Kk=1: prototypes ranked by similarity to x ✓ ×
{ân}Nn=1: attribute values detected in x × ✓

3.3 Classification mechanism
The predicted label of the image is not selected by an agent but pre-
dicted according to a mechanism exterior to the dialog. It allows a
transparent mechanism that uses only the human-interpretable infor-
mation available in the dialog to make the decision.

To predict a class, we propose a simple argument counting strat-
egy. For each proposed class, we consider a dialog branch with two
sets of arguments. Arguments for the label proposition provided by
agent P , and arguments against the label proposition provided by
agent A. The predicted label is the label with the highest difference
between the number of arguments for and against the label proposi-
tion. In the case of equality, we take the first proposed label.

Before examining the dialog formalization, the subsequent section
will illustrate interactions between our two agents with a simulated
dialog. The simulation will also demonstrate how attribute detection
and similarities with prototypes are used to discuss the labeling of an
input image. Furthermore, it will demonstrate how it is possible to
identify unintended behaviors.

4 An illustrative example
To illustrate the transparency of DEBATES, we instantiate a simple
dialog highlighting the benefits of relying on a dialog for detecting
and understanding unexpected behaviors.

(a) Sooty Albatross (b) Laysan Albatross

Figure 2: Instances of the two classes considered in the example.

Simulation. We consider the following setup example of image clas-
sification:

• An image x to be classified.
• Two classes Sooty Albatross and Laysan Albatros.

For brevity, we denote them as Sooty and Laysan. Figure 2 shows
instances of both classes.

• We limit our example to only two attributes V = {t1 :
black_head, t2 : orange_beak}.

• We consider 6 prototypes, their attributes and labels
D = {(p1, {black_head}, Sooty),
(p2, {black_head}, Sooty), (p3, {black_head}, Sooty)
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, (p4, {}, Laysan), (p5, {}, Laysan), (p6, {}, Laysan)}.
If an attribute is indicated for a prototype, it is present; other-
wise, it is not. For example, in p5 both attributes black_head and
orange_beak are absent.

• Similar prototypes to x are p1, p4, p6 (ordered from most to least
similar).

• orange_beak is detected in x and black_head is not.

The dialog is described by the following script.

(1) P : I propose the label Laysan for x.
(2) A: Why is x of class Laysan?
(3) P : Since p4 is similar to x and p4 is of class Laysan, so x is a
Laysan.
(4) A: p4 is of label Laysan and does not have the attribute
orange_beak but x has the attribute orange_beak, so x is not a
Laysan.
(5) P : I disagree that x doesn’t have the attribute orange_beak,
since x is similar to p1 and p1 has the attribute orange_beak.
(6) A: I concede that x is of label Laysan.
(7) P : Also p6 is similar to x and p6 is of class Laysan, so x is a
Laysan.
(8) A: I concede that x is of label Laysan.
(9) P : I propose the label Sooty for x.
(10) A: Why is x of class Sooty?
(11) P : Since the prototype p1 is similar to x and p1 is of class
Sooty, so x is a Sooty.
(12) A: The prototype p1 is of label Sooty and has the attribute
black_head but x doesn’t have the attribute black_head, so x is
not a Sooty.
(13) P : Ok, I’m not able to find another interesting prototype. x is
not a Sooty.

In this simulation, we consider a dialog example where both
classes in (1) and (9) are discussed to show that agent P can hesi-
tate between multiple labels. The set of exchanges shows how agents
exchange information to converge to a class. In this example, the
class Laysan has three arguments for it in (3), (5), and (7) and one
against it in (4). The class Sooty has one argument for it in (11) and
one against it in (12). The resulting predicted label is Laysan. The
dialog reveals the reasons for the prediction, x is similar to p4 and
p6.

The interactions also bring to the forefront elements that would
have been difficult to detect in a classical classification model. In-
deed, we can highlight some conflicts as disagreements between
agents on a label proposition or on a detected attribute.

• In turn (1), agent P proposes the label Laysan. In turn (4), agent
A disagrees with agent P on this label proposition as it detects
attribute orange_beak in image x that is absent in the prototype
p4 of label Laysan.

• In turn (5), agent P disagrees on the attribute orange_beak de-
tected by agent A in turn (4) as similar images do not have the
mentioned attribute.

• In turn (12), agent A disagrees on the label Sooty because
black_head differs in x and the prototype p1 of label Sooty.
It detects that it is absent in x while it is present in the prototype
p1.

These conflicts reveal two sources of uncertainty that can lead to
unintended behavior. Firstly, agent P can’t differentiate between
the two classes. Secondly, agent A can’t correctly predict the
orange_beak attribute, possibly due to the beak of a Laysan being
yellow, which is very similar to the orange color.

The supplementary material [39] presents several additional con-
crete examples obtained with our implementation.

Table 2: Possible replies in the dialog game.
Speech acts Attacks Surrenders

PROPOSE (x_is_y) WHY-PROPOSE (x_is_y)
ARGUE(Ψ, ¬(x_is_y))

WHY-PROPOSE (x_is_y) ARGUE(Ψ, x_is_y) DROP-PROPOSE(x_is_y)

ARGUE(Ψ,ϕ) ARGUE(Ψ′,ϕ′)
where ϕ′ = ¬(ϕ) or ¬(ϕ′) ∈ Ψ

CONCEDE(ϕ)

DROP-PROPOSE(x_is_y)
CONCEDE(ϕ)

5 Dialog formalisation
Automated dialog generation and analysis can be supported by a rig-
orous formalism: its design is one of the main contributions of the
present work. The formalism defines how agents can communicate
(Section 5.1), what they are allowed to say (Section 5.2), and how
the elements of speech relate to the visual information extracted from
encoders (Section 5.3 and Section 5.4).

5.1 Dialog moves
The communication between agents is instantiated as moves. Moves
are defined by a locution and its parameters. Several types of locu-
tions are available in the literature; we select the most relevant ones
for our problem in this section. Assuming a class y ∈ {1, . . . , C}
and x the image to be classified, the available locutions for the agents
are the following:

• PROPOSE (ϕ), which puts forward a proposition ϕ. In our case, it
is always a proposition of a label y for the image x.

• WHY-PROPOSE (ϕ), which questions about the argument(s) that
support ϕ.

• ARGUE(Ψ, ϕ), which explains the conclusion ϕ with premises Ψ.
ϕ should be a logical consequence of Ψ [38]. Agents use it to
justify a label proposition or to disagree with a label proposition
or an attribute detection. However, these locations do not intend to
explain why a prototype is similar to the image or why an attribute
is present or absent.

• DROP-PROPOSE(ϕ): which abandons a proposition. Depending on
the agent’s policy (see Section 5.4), an agent may propose a label
without justification, requiring the agent to drop its proposition.

• CONCEDE(ϕ): which concedes a proposition ϕ. In our dialog, an
agent may concede a label proposition or its negation, i.e. the label
of the image is not the proposed one. An agent concedes when it
has no other arguments for or against the proposition. So conced-
ing a label is different from predicting a label, it’s a decision by
default.

5.2 Dialog protocol
Communication between agents requires a protocol to avoid inco-
herent behaviors. Following previous works on deliberative dialog
[22, 18], the dialog protocol corresponds to a reply structure that
specifies the authorised moves according to the previous move. Ta-
ble 2 summarises these moves. The reply structure is the same for
both agents. However, some locutions are available to only one agent:
PROPOSE and DROP-PROPOSE are only available to agent P and
WHY-PROPOSE to agent A only.

5.3 Links between dialog and vision
In order to construct a coherent dialog for image classification, we
need to link the information from the two encoders (i.e. visual at-
tributes, similarities) and the logical reasoning of the two agents. To
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do so, we define the following statements and rules for our dialog.
We note ∧, →, and ¬ as the logical conjunction, implication, and
negation respectively.

Definition 1. The dialog is based on different statements:

• An assignment statement of the form p_is_y where p ∈ {x} ∪
{pi}Mi=1 and y ∈ {1, . . . , C}, meaning that the image or proto-
type p is of class y.

• A similarity statement of the form x_is_sim_to_p where p ∈
{pσ(k)}Kk=1, meaning that the image x is similar to prototype p.
In our case, we consider that the K nearest prototypes according
to σ are similar to x.

• An attribute statement of the form xi_has_t or ¬(xi_has_t)
where xi ∈ {pi}Mi=1 ∪ {x} and t ∈ V , meaning that the image xi

has or has not the attribute t respectively.

The dialog also provides several rules to make the agent’s reason-
ing explicit. On the one hand, the agent P considers that images of
the same class are similar according to its encoder. Thus, it justifies
a label proposition with a similar prototype.

Definition 2. An assignment by similarity rule is of the form

p_is_y ∧ p_is_sim_to_x → x_is_y

where y ∈ {1, . . . , C} and p ∈ {pσ(k)}Kk=1, meaning that if p is a
prototype of label y and p is similar to x then x is of class y.

Example 1. (Simulation cont.) Agent P uses an assignment by sim-
ilarity rule at the turn (11): p1_is_Sooty ∧ x_is_sim_to_p1 →
x_is_Sooty. It also uses the rule in (3).

On the other hand, agent A considers that images of the same class
have similar attributes; it can thus disagree on a label proposition if
a class prototype has different attributes than x.

Definition 3. An assignment rejection by attribute rule is of one of
the following forms

p_is_y ∧ ¬(p_has_t) ∧ x_has_t → ¬(x_is_y)

p_is_y ∧ p_has_t ∧ ¬(x_has_t) → ¬(x_is_y)

where y ∈ {1, . . . , C} and p ∈ {pi}Mi=1, meaning that if p is of
label y and p does not have the attribute t and x has t, then x is not
of class y. Alternatively, if p is of label y and has the attribute t and
x does not have the attribute t, then x is not of class y.

Example 2. (Simulation cont.) In (4), agent A uses an
assignment rejection by attribute rule: p4_is_Laysan ∧
¬(p4_has_orange_beak) ∧ x_has_orange_beak →
¬(x_is_Laysan). It also uses the rule in (12).

Finally, agent P may also disagree on a detected attribute in x if it
is incoherent with its similar prototypes, i.e. the detected attribute in
x differs from its similar prototype attributes.

Definition 4. An attribute detection reject rule is of one of the fol-
lowing forms

p_is_sim_to_x ∧ p_has_t → x_has_t

p_is_sim_to_x ∧ ¬(p_has_t) → ¬(x_has_t)

where p ∈ {pσ(k)}Kk=1 and t ∈ V , meaning that if p is similar to x
and has the attribute t then x has t. Conversely, if p is similar to x
and does not have the attribute t, then x does not have t.

Example 3. (Simulation cont.) In (4), agent P uses an attribute de-
tection reject rule: p1_is_sim_to_x∧¬(p1_has_orange_beak) →
¬(x_has_orange_beak).

5.4 Agents beliefs
To construct their arguments with visual information, agents use their
beliefs about the state of the world (in our case, the classification
task), which correspond to information that is specific to each agent
and not shared between them [40]. This section introduces the beliefs
of our agents and how they evolve during the dialog according to the
information communicated by the other agent.

We denote the beliefs of agents P and A by ΣP and ΣA, re-
spectively. Using the term belief rather than knowledge recognizes
that what an agent believes at a given step of the dialog may not
necessarily be true (and may change in the future). Thus, we sepa-
rate the notions of knowledge and input image beliefs by denoting
ΣP = KP ∪ BP where KP corresponds to the knowledge of agent
P and BP corresponds to its input image beliefs.

On the one hand, according to Table.1, agent P has access at
the beginning of the dialog to similar prototypes, prototype labels,
and attributes. Thus, KP = {{pi_is_yi}Mi=1 ∪ {pi_has_tn|an

i =
1}M,N

i=1,n=1 ∪ {¬(pi_has_tn)|an
i = 0}M,N

i=1,n=1 } and BP =

{x_is_sim_to_pσ(k)}Kk=1.

Example 4. In the simulation, agent P has the following beliefs and
knowledge at the beginning of the dialog.

• KP =
{
{pi_has_black_head}i∈{1,2,3}∪

{¬(pi_has_black_head)}i∈{4,5,6}∪
{¬(pi_has_orange_beak)}i∈{1,2,3,4,5,6}}∪
{pi_is_Sooty}i∈{1,2,3} ∪ {pi_is_Laysan}i∈{4,5,6}

}
,

• BP = {x_is_sim_to_pi}i∈{1,4,6}

Agent P adds to its beliefs the detected attributes communicated
by agent A unless it disagrees. That is, if the last dialog move is an
ARGUE(Ψ,ϕ) of agent A such that x_has_t ∈ Ψ then BP = BP ∪
{x_has_t} unless agent P ’s next move is ARGUE(Ψ′,¬(x_has_t)).
Vice versa for ¬(x_has_t).

Example 5. In the simulation, agent A communi-
cates ¬(x_has_black_head) in (12), agent P adds
¬(x_has_black_head) to its beliefs as it doesn’t dis-
agree on the detected attribute in (13). Thus, BP =
{{x_is_sim_to_pi}i∈{1,4,6} ∪ ¬(x_has_black_head)}.

After (3) where agent A communicates x_has_orange_beak, the
detected attribute is not added to agent P beliefs as it disagrees to
x_has_orange_beak in (4).

On the other hand, according to Table.1, agent A has access
at the beginning of the dialog to prototype attributes and detected
attributes in x. Thus, KA = {{pi_has_tn|an

i = 1}M,N
i=1,n=1 ∪

{¬(pi_has_tn)|an
i = 0}M,N

i=1,n=1} and BA = {{x_has_tn|ân =

1}Nn=1 ∪ {¬(x_has_tn)|ân = 0}Nn=1}.

Example 6. In the simulation, agent A has the following beliefs and
knowledge at the beginning of the dialog.

• KA =
{
{pi_has_black_head}i∈{1,2,3}∪

{¬(pi_has_black_head)}i∈{4,5,6}∪
{¬(pi_has_orange_beak)}i∈{1,2,3,4,5,6}

}
,

• BA = {¬(x_has_black_head), x_has_orange_beak}
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The agent A adds to its knowledge the prototype labels communi-
cated by agent P . Thus, if the last dialog move is an ARGUE(Ψ,ϕ) of
agent P such that p_is_y ∈ Ψ then KA = KA ∪ {p_is_y} .

Example 7. In the simulation, after (3) where agent P communi-
cates p4_is_Laysan, agent A adds to its knowledge p4_is_Laysan.
Thus KA = KA ∪ p4_is_Laysan. It uses this knowledge in its next
move (4) to disagree with the label proposition.

6 Agent policies
To operate the dialog, we propose to endow our agents with trans-
parent move policies so they can select which move to make at the
current dialog step.

6.1 Agent P policy
The role of the agent P is to PROPOSE labels, justify them in response
to a WHY-PROPOSE with a similarity measure (with prototypes), and
ARGUE to reject detected attributes if they do not correspond to sim-
ilar prototypes. All these actions require a policy to choose the move
parameters and when to carry them out. We define these in this sec-
tion.

PROPOSE a label. Agent P proposes a label at the outset of the
dialog. Subsequently, the agent may propose new labels when the ar-
gumentation about a label ends. The agent always proposes the most
prevalent label in the set of labels of prototypes similar to x, which
have not yet been proposed. This process will continue until all labels
present in similar prototypes have been proposed.

Example 8. In the simulation, p1, p4 and p6 are considered similar
to x for agent P . Since p4 and p6 are of class Laysan and p1 is of
class Sooty, Laysan is proposed first, then Sooty.

Respond to WHY-PROPOSE. Agent P ARGUE about the label
proposition with an assignment by similarity rule. It uses multiple
similar prototypes to justify the label. This approach is preferable to
relying on a single similarity, which may be erroneous, to justify the
label.

More precisely, the agent uses prototypes similar to x of the cor-
responding label in descending order of similarity. Then, it considers
the attributes detected by agent A to select the prototype. The proto-
type attributes must match the attributes of x that were added to BP

during the dialog. In other words, if x_has_t ∈ BP , then t should
be present in the prototype. Conversely, if ¬(x_has_t) ∈ BP , then
t should not be present in the prototype. Without a similar proto-
type of the corresponding label following these conditions, it DROP-
PROPOSE.

Example 9. In the simulation, to justify the label Laysan, agent P
first uses p4 because it is the most similar prototype of this label, then
p6. Also, after (12), prototypes used to justify labels should not have
the attribute black_head as agent P believes that x does not have
the attribute black_head. It does not impact our dialog here as p2
and p3 are not similar to x.

Respond to ARGUE with an attribute detection reject rule.
Agent P can ARGUE to deny a detected attribute. It does so if all
prototypes similar to x have no such presence or absence of the at-
tribute. To achieve this, it uses the closest prototype (excluding the
prototype used in the answered ARGUE). Otherwise, it CONCEDE that
x is not of the proposed label.

Example 10. In (5), since none of similar prototypes p1, p4 and p6
have the attribute orange_beak, agent P argues that x doesn’t have
the orange_beak attribute.

6.2 Agent A policy
Agent A can ARGUE to disagree with a label proposition by pointing
out differences in attributes between a prototype of the label and the
image to be classified. The question is when and with which proto-
type and attribute to disagree. This is related to how we detect the
presence or absence of attributes, which is discussed below.

Attribute detection. Vision-language models, such as CLIP [36],
measure distances between texts and images. The distance between a
text t and an image x is noted datt(x, t). We use these distances be-
tween images and text attributes to calibrate attribute detection. For
each attribute t ∈ V , we define two thresholds γ0(t) and γ1(t). An
attribute t is detected present in x if datt(x, t) > γ1(t) and absent if
datt(x, t) < γ0(t). Otherwise, the attribute is omitted. Each thresh-
old is defined to have a certain percentage of false positives and false
negatives on the prototypes specified in Section 7.1.

When to ARGUE. Agent A may disagree with a label proposition.
To do so, it must select a prototype p and an attribute t, as described
in the next paragraphs. Following this selection, multiple attributes
may be possible. The agent then uses all these attributes to disagree,
one after the other, to avoid relying on only one attribute detection,
which might be erroneous. If no prototype or attribute is selected, it
CONCEDE.

Which prototype to ARGUE. All prototypes of the proposed label
are eligible. It can be noted that, for agent A to know whether a
prototype is of a particular label, this information must be exchanged
by agent P .

Which attribute to ARGUE. The agent selects an attribute not al-
ready used within the dialog. Furthermore, the attribute should be
detected as present in x and absent in p, or vice versa.

The agent’s goal is to accurately predict the label, which depends
on its detection capacity. To ensure accurate attribute detection, the
detected attribute on p should also correspond to its ground truth. As
p is similar to x, this increases the probability of correctly detecting
the attribute in x.

If multiple attributes are possible, the agent first se-
lects the attribute t minimizing min(|datt(t, x) −
maxpdatt(t, p)|, |datt(t, x)−minpdatt(t, p)|).

Example 11. In (4), since the attribute orange_beak is detected in
x and is absent in p4, agent A disagrees with the label proposition in
(5) using the attribute. To do this, we assume that agent A detects the
attribute absent in p4. Since this is the only difference between the
detected attributes of x and the attributes of p4, no other attributes
are used to disagree with the label proposition.

7 Demonstration
We apply our DEBATES method to the CUB-200 bird dataset [41]
and to the Flowers 102 [31] dataset. CUB-200 contains 200 classes
of birds and 5,994 train and test images. Each image is annotated
with a class and 312 binary attributes. Binary attributes describe the
color and shape of different birds parts. The Flowers 102 dataset
contains 102 classes of flowers, 1,030 train images, and 6,129 test
images. Each image is annotated with a class. The dataset doesn’t
contain any attribute. To apply DEBATES, we propose to use LLM-
generated attributes from [17]. For each class, it provides attributes
that characterise the class, for a total of 1118 attributes.

We chose these datasets as they are challenging, with fine-grained
differences between labels that make the task difficult for both
agents, and results in rich dialogs.
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7.1 Implementation
We test DEBATES with two different encoders fproto: DINO (ViT-
S/8) [8] and DINOv2 (ViT-B/14) [27]. For the attribute encoder, we
use a CLIP [36] encoder pre-trained from [10] (Swin-L & CLIP text)
on CUB-200 and a vanilla CLIP (ViT-B/32) on Flowers 102. We use
the train images as prototypes for a total of 5,994 prototypes on CUB
and 1,030 prototypes on Flowers 102.

In our experiments, agent P ranks the prototypes by their cosine
similarity with fproto(x). Agent P considers the 5 closest images to
x as similar (K = 5). On Flowers, we set the thresholds γ1 and γ0
to detect attributes present and absent with 0% of false positives and
negatives respectively. On CUB, we set the thresholds γ1 and γ0 to
9% of false positives/negatives. For each class, we also remove at-
tributes with a frequency smaller than 5% to reduce noise in attribute
annotations.

7.2 Impact on performance
In computer vision, numerous transparent methods observe a perfor-
mance loss when incorporated into a model. This study demonstrates
that DEBATES improves transparency without compromising per-
formance. We compare DEBATES to applying a K-NN with proto-
types encoded using fproto (DINO or DINOv2). The value of K is
set to 5, similar to our method. Table 3 reports the performances. On
CUB, DEBATES improves DINO accuracy by 1.57% and DINOv2
accuracy by 0.04%. On the Flowers dataset, we observe an improve-
ment of 2.75% with DINO and the same accuracy with DINOv2. The
results of our experiments indicate that the greater the difference in
efficiency between encoders, the more challenging it is to improve
their accuracy. When one encoder is more efficient, the impact of
the other encoder is reduced. Nevertheless, we observe interesting
dialogs described in the supplementary [39].

We also compare DEBATES to existing transparent image classi-
fication methods: ProtoPNet, Concept Bottleneck Models, and CLIP
with our attributes generation method [17]. DEBATES with DINOv2
demonstrates superior performance on CUB.
Table 3: Accuracy of our DEBATES method compared to a KNN and
classical image classification transparent methods.

Accuracy
Method CUB Flowers 102
K-NN (DINO) 68.72% 80.92%
DEBATES (CLIP+DINO) 70.29% 83.67%
K-NN (DINOv2) 86.65% 99.67%
DEBATES (CLIP+DINOv2) 86.69% 99.67%
CLIP with LLM attributes [17] 56.13% 72.19%
Concept Bottleneck Models [21] 80.1% ⧸
ProtoPNet [9] 80.2% ⧸

7.3 Debugging models
DEBATES aims to reveal unintended behaviors and why they occur
to correct them. In this section, we show how a model can be fixed in
3 steps: identifying unintended behaviors, interpreting the source of
these behaviors, and acting to correct the model. DEBATES enables
an easier identification of unintended behaviors and a wider range of
corrections than existing methods. We analyse several dialogs (pre-
sented in the supplementary [39]) and describe the discovered unin-
tended behaviors and ways to fix them here.
Identify unintended behaviors. Unintended behaviors refer to agent
features that mislead classification. Typically, if agents disagree on
the label to be predicted, at least one agent is misleading the classi-
fication. It is, therefore, possible to identify unintended behavior by
looking for conflicts between agents.

Understand the source of these behaviors Having identified unin-
tended behaviors, it is possible to identify their origin by interpreting
the dialog. We observe different types of unintended behaviors:

• Similarities between images reveal biases in the encoder fproto.
We found several biases of DINO and DINOv2. The DINO en-
coder considers all images of a bird held in one hand similar. It
also finds all images of a flower with a bee similar. DINOv2 and
DINO also consider all images of a bird with a feeder similar.

• The encoder fproto can confuse different classes.
• The encoder fatt can also be subject to errors and hallucinate at-

tributes. The dialog helps to identify attributes that are difficult for
the fatt encoder to detect.

• Some conflicts also reveal annotation problems. For example, in
CUB, some images of the class Yellow Bellied Flycatcher don’t
have the attribute yellow belly color.

Propose potential corrective actions. Understanding these sources
of unintended behavior makes it possible to propose corrective ac-
tions depending on the type of unintended behavior. We propose pos-
sible corrective actions for the different types of unintended behavior
discussed before. These actions not only correct the inference but
also apply to future inferences.

• It is possible to mitigate fproto biases by removing prototypes
with the corresponding bias. For example, we remove prototypes
until birds held in one hand no longer appear in a dialog anymore.
This process results in the removal of 73 prototypes, which elimi-
nates 13 errors on our test set.

• fproto confusions are usually cleared by the other agent. However,
this may not always be the case. One potential solution is to intro-
duce additional prototypes of the classes, which would assist in
distinguishing between classes more effectively.

• In general, attribute hallucinations are corrected by the fproto en-
coder. However, this does not exclude the possibility of error. One
potential solution is to turn off the attribute detector for the at-
tribute when it is not required. Alternatively, the calibration could
be improved to prevent hallucinations.

• The annotation errors can be resolved by rectifying the annota-
tions in question. However, fatts may learn these false annotations
and create new errors. In such a case, it may be necessary to train
the encoder again with fixed annotations or refrain from utilizing
these attributes.

8 Conclusion and future work
We have proposed and formalised a dialog for transparent image clas-
sification. We demonstrate its efficiency on the CUB-200 and Flow-
ers datasets. Our study indicates that our DEBATES method can as-
sist developers in identifying, understanding, and correcting unin-
tended behaviors without compromising performance. We consider
two possible directions for future work.

Exploiting the flexibility and expressiveness of the dialog [19] for
other datasets and other vision tasks, such as object detection.

Another avenue for exploration is the implementation of a trans-
parent automatic correction, which would allow a developer to anal-
yse and verify corrections. The method should assist in identifying
unintended behaviors, interpret them, and correct the decision. DE-
BATES already proposes a way to identify unintended behaviors and
we show that humans can interpret and correct them. The remaining
step is to allow the model to correct the decision by analyzing the
encoders’ behavior more deeply, not just the impact on their output.
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