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Abstract. We investigate a model of sequential decision-making
where a single alternative is chosen at each round. We focus on
two objectives—utilitarian welfare (UTIL) and egalitarian welfare
(EGAL)—and consider the computational complexity of the asso-
ciated maximization problems, as well as their compatibility with
strategyproofness and proportionality. We observe that maximizing
UTIL is easy, but the corresponding decision problem for EGAL is
NP-complete even in restricted cases. We complement this hardness
result for EGAL with parameterized complexity analysis and an ap-
proximation algorithm. Additionally, we show that, while a mecha-
nism that outputs a UTIL outcome is strategyproof, all deterministic
mechanisms for computing EGAL outcomes fail a very weak vari-
ant of strategyproofness, called non-obvious manipulability (NOM).
However, we show that when agents have non-empty approval sets at
each timestep, choosing an EGAL-maximizing outcome while break-
ing ties lexicographically satisfies NOM. Regarding proportionality,
we prove that a proportional (PROP) outcome can be computed effi-
ciently, but finding an outcome that maximizes UTIL while guaran-
teeing PROP is NP-hard. We also derive upper and lower bounds on
the price of proportionality with respect to UTIL and EGAL.

1 Introduction

Consider a group of friends planning their itinerary for a two-week
post-graduation trip across Europe. They have selected their activi-
ties, but still need to decide on their choice of meals for each day. As
popular restaurants typically require reservations, everyone is asked
to declare their preferences upfront before the trip commences.

Suppose that 55% of them prefer Asian cuisine, 25% prefer Eu-
ropean cuisine, 10% prefer Oceanic cuisine, and the remaining 10%
prefer South American cuisine. Given that there is a maximum of
three meals in any given day, it may be impossible to satisfy everyone
on any single day. However, over multiple days, it may be feasible to
eventually satisfy everyone. Still, adopting a day-to-day majority vot-
ing may not lead to a desirable outcome, as the Asian cuisine would
be chosen for every meal, and, as a result, 45% of the group will be
perpetually unhappy. A natural question is then: what would be an
appropriate notion of satisfaction, and can we (efficiently) obtain an
outcome that offers high satisfaction?

As the group moves from city to city, the set of available restau-
rants changes. Even within the same town, one may have different
preferences for lunch and dinner, opting for a heavier meal option
at lunch and a lighter one at dinner. As both preferences and the set

of alternatives may evolve with time, traditional multiwinner voting
models [16, 23, 30] do not fully capture this setting.

This problem fits within the temporal elections framework, a
model where a sequence of decisions is made, and outcomes are
evaluated with respect to agents’ temporal preferences. It was first
introduced as perpetual voting by Lackner [27]; see the survey of
Elkind et al. [20] for a discussion of subsequent work. We consider
the offline variant of this model where preferences are provided up-
front. That is, at each timestep, each agent has a set of approved
alternatives, and the goal is to select a single alternative per timestep.

While this model has been considered in prior work [11, 12, 21],
earlier papers focus on fairness and proportionality notions, with
only a few (if at all) looking into welfare objectives and strategic
considerations. Against this background, in this work we focus on
the algorithmics of maximizing two classic welfare objectives: the
utilitarian welfare (the sum of agents’ utilities) and the egalitarian
welfare (the minimum utility of any agent), both in isolation and in
combination with strategyproofness and proportionality axioms.

Our Contributions In this paper, we investigate the utilitar-
ian (UTIL) and egalitarian (EGAL) welfare-maximization objectives
from three perspectives: the computational complexity of welfare
maximization, compatibility with strategyproofness, and trade-offs
with proportionality.

In Section 3, we show that UTIL is solvable in polynomial-time,
and the decision problem associated with EGAL is NP-complete even
in very restricted instances. Given this, we analyze the parameterized
complexity with respect to several natural parameters, and provide an
ILP-based approximation.

In Section 4, we show that while UTIL is strategyproof, any deter-
ministic mechanism for EGAL may fail non-obviously manipulabil-
ity (NOM), a relaxation of strategyproofness. In the case where each
agent has a non-empty approval set at each timestep, we show that
EGAL admits no deterministic strategyproof mechanism in general,
but is NOM when using leximin tie-breaking.

Finally, in Section 5, we show that while a simple greedy algo-
rithm can return a proportional (PROP) outcome, it is NP-hard to
determine if there exists a PROP outcome that maximizes utilitar-
ian welfare when each agent has a non-empty approval set at each
timestep. We also provide upper and lower bounds for the (strong)
price of proportionality with respect to both UTIL and EGAL. To the
best of our knowledge, our work is the first to investigate the price of
proportionality in temporal elections.
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Related Work Perhaps the most popular line of work in this area
is that of perpetual voting by Lackner [27] and Lackner and Maly
[28]. These works focus on temporal extensions of traditional multi-
winner voting rules, and analyze them with respect to novel axioms
developed for the temporal setting. Bulteau et al. [11] built upon
this framework and proposed temporal extensions of popular justi-
fied representation axioms. Chandak et al. [12] extended this work
by studying efficient algorithms that achieve these axioms. Elkind
et al. [21] studied the computational problems associated with veri-
fying whether outcomes satisfy these axioms.

An adjacent line of work by Bredereck et al. [7, 8] and Zech et al.
[36] look into sequential committee elections where an entire com-
mittee is elected at each timestep. They consider constraints on the
extent to which a committee can change, while ensuring a certain
level of support remains for the committee. Deltl et al. [15] looked
into a similar model, but with the restriction that agents can only ap-
prove at most one project per timestep.

A line of work also worth mentioning is that of apportionment with
approval preferences [10, 14]. In this setting, the goal is to allocate
the seats of a fixed-size committee to parties based on voters’ (ap-
proval) preferences over the parties. This is equivalent to a restricted
setting of temporal voting where voters have static preferences that
do not change over time.

Yet another related model is that of fair scheduling, whereby both
agents’ preferences and the outcome are permutations of projects.
Elkind et al. [18] studied the computational issues of associated with
maximizing various welfare objectives, along with several other fair-
ness properties. Our work differs from this setting in that we allow
projects to be chosen more than once (both in agents’ preferences
and the outcome).

One could also view temporal elections as allocating public goods
or decision-making on public issues, making the fair public decision-
making model [13, 22, 34] particularly relevant.

Other models of issue-by-issue decision-making can also be con-
sidered as a restricted setting of temporal voting. In particular, Alouf-
Heffetz et al. [2] considered such a model with uncertainty in voters’
preferences, and the goal is to recover the majority-supported out-
come for each issue.

Finally, the price of fairness concept for proportionality, which
captures the welfare loss from mandating proportionality, has also
been studied for more demanding proportionality guarantees in the
single-round multiwinner voting literature [9, 17, 29].

2 Preliminaries

For each positive integer k, let [k] := {1, . . . , k}. Let N = [n]
be a set of n agents, let P = {p1, . . . , pm} be a set of m projects
(or candidates), and let T = [�] be a set of � timesteps. For each
k ∈ [�], the set of projects approved by agent i ∈ N at timestep k
is captured by her approval set Sik ⊆ P . The approval sets of agent
i are collected in her approval vector Si = (Si1, . . . , Si�). Thus, an
instance of our problem is a tuple (N,P, �, (Si)i∈N ).

An outcome is a vector o = (o1, . . . , o�), where ok ∈ P for each
k ∈ [�]. The utility of an agent i ∈ N for an outcome o is given by
ui(o) = |{k ∈ [�] : ok ∈ Sik}|. Let Π(I) denote the space of all
possible outcomes for an instance I. A mechanism maps an instance
I = (N,P, �, (Si)i∈N ) to an outcome in Π(I).

We do not require each agent to approve at least one project at
each timestep; however, we do require that each agent approves at
least one project at some timestep, i.e., for each i ∈ N there exists
a k ∈ [�] with Sik �= ∅; indeed, if this condition is failed for some

i ∈ N , we can simply delete i, as it can never be satisfied. If Sik �=
∅ for all i ∈ N and k ∈ [�], we say that we are in the complete
preference (CP) setting. We believe that the CP setting captures many
real-life applications of our model: for instance, in our motivating
example, having no particular opinion on any cuisine would be more
reasonably interpreted as approving all options rather than having an
empty approval set.

We assume that the reader is familiar with basic notions of classic
complexity theory [33] and parameterized complexity [24, 32].

All missing proofs can be found in the full version of our paper.

3 Welfare Maximization

We first focus on welfare maximization, without combining it with
other desiderata. The two objectives we consider are defined as fol-
lows.

Definition 1 (Social Welfare). Given an outcome o, its utilitarian
social welfare is defined as

∑
i∈N ui(o) and its egalitarian social

welfare is defined as mini∈N ui(o). We refer to outcomes that max-
imize the utilitarian/egalitarian welfare as UTIL/ EGAL outcomes,
respectively.

A UTIL outcome can be found in polynomial time: at each
timestep, one can simply select the project that has the highest num-
ber of approvals. However, observe that if 51% of the population
approves project p at each timestep, while 49% of the population ap-
proves project q at each timestep (and there are no other approvals),
if we select the UTIL outcome, close to half of the population will
not get a single project approved at any timestep. This underscores
the need to consider other criteria for selecting outcomes, such as,
e.g., egalitarian welfare. However, while computing a UTIL outcome
is computationally feasible, this is not the case for EGAL outcomes.

The decision problem associated with computing EGAL outcomes,
which we denote by EGAL-DEC, is defined as follows.

MAXIMIZING EGALITARIAN WELFARE (EGAL-DEC):
Input: A problem instance I = (N,P, �, (Si)i∈N ) and a
parameter λ ∈ Z

+.
Question: Is there an outcome o such that mini∈N ui(o) ≥
λ?

The following result shows that, perhaps surprisingly, EGAL-DEC

is NP-complete even when the goal is to guarantee each agent a util-
ity of 1, and when there are only two projects.1

Theorem 3.1. EGAL-DEC is NP-complete, even if m = 2, λ = 1.

The above negative result effectively rules out the possibility of
maximizing the egalitarian welfare even in simple settings.

Nevertheless, in what follows, we show that when the number of
agents or timesteps is constant, we are able to efficiently find a so-
lution to this problem. More precisely, we show that EGAL-DEC is
fixed-parameter tractable (FPT) with respect to the number of agents
(n). Our approach is based on integer linear programming; we show
how to encode EGAL-DEC as an integer linear program (ILP) whose
number of variables depends on n only; our claim then follows from
Lenstra’s classic result [31]. To accomplish this, we classify the
projects and timesteps into ‘types’, so that the number of types is
exponential in n, but does not depend on m or � respectively.

1 This result is equivalent to Theorem 2 of Deltl et al. [15]. Nevertheless, for
completeness, we include a proof in the full version of this paper.
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Theorem 3.2. EGAL-DEC is FPT with respect to n.

Proof. As a preprocessing step, we create � copies of each project.
That is, we replace a project p with projects p1, . . . , p� and modify
the approval vectors: for each i ∈ N , k ∈ [�], p ∈ Sik we place pk in
Sik and remove p. This does not change the nature of our problem,
since in our setting, there is no dependence between timesteps, and a
project’s label can be re-used arbitrarily between timesteps. For the
modified instance, it holds that for each project p there is at most one
timestep k ∈ [�] such that p ∈ ∪i∈NSik. Then, we define the type of
a project as the set of voters who approve it: the type of p is τ(p) =
{i ∈ N : p ∈ Sik for some k ∈ [�]}. Because of the preprocessing
step, for each p ∈ P there is a timestep k ∈ [�] such that p ∈ Sik for
all i ∈ τ(p), and p �∈ Sik′ for all i ∈ N , k′ ∈ [�] \ {k}. Note that
there are at most 2n different project types.

In the same way, we can classify timesteps by the types of projects
present in them, giving us at most 22

n

different timestep types. Let
Q ⊆ 2N be the set of all project types and let R ⊆ 2Q be the set of
all timestep types.

Now, we construct our ILP. For each R ∈ R, let zR be the number
of timesteps of type R. For each i ∈ N , let Qi be the set of project
types that agent i approves of. For each R ∈ R and τ ∈ R, we intro-
duce an integer variable xR,τ representing the number of timesteps
of type R in which a project of type τ was chosen.

The ILP is defined as follows, with objective function

maximize λ

subject to the following constraints:
(1)

∑
τ∈R xR,τ ≤ zR for each R ∈ R;

(2)
∑

R∈R
∑

τ∈Qi
xR,τ ≥ λ for each i ∈ N ;

(3) xR,τ ≥ 0 for each R ∈ R and τ ∈ R.
The first constraint is equivalent to requiring that we select at most

one project per timestep, whereas the second constraint ensures that
each agent has utility of λ from the outcome.

There are at most O(2n+2n) variables in the ILP, so the classic
result of Lenstra Jr [31] implies that our problem is FPT in n.

Next, we show that when the number of timesteps (�) is constant,
EGAL can be solved in polynomial time, i.e., EGAL-DEC is slicewise
polynomial (XP) with respect to the number of timesteps.

Theorem 3.3. EGAL-DEC is XP with respect to �.

Proof. Observe that there are m� possible outcomes. Thus, when �
is constant, the number of outcomes is bounded by a polynomial. We
can thus iterate through all outcomes; we output ‘yes’ if we find an
outcome that provides utility γ to all agents, and ’no’ otherwise. By
combining this approach with binary search over γ, we can also find
an EGAL outcome.

We complement the above result by showing that EGAL-DEC is
W[2]-hard with respect to the number of timesteps. This indicates
that an FPT (in �) algorithm does not exist unless FPT = W[2], and
hence the XP result of Theorem 3.3 is tight.

Theorem 3.4. EGAL-DEC is W[2]-hard with respect to �.

Proof. We reduce from the DOMINATING SET (DS) problem. An
instance of DS consists of a graph G = (V,E) and an integer κ; it is
a yes-instance if there exists a subset D ⊆ V such that |D| ≤ κ and
every vertex of G is either in D or has a neighbor in D, and a no-
instance otherwise. DS is known to be W[2]-complete with respect
to the parameter κ [32].

Given an instance (G, κ) of DOMINATING SET with G = (V,E),
V = {v1, . . . , vn}, set N = [n], P = {p1, . . . , pn}, � = κ. Then
for each i ∈ N and k ∈ [�] let Sik = {pj : i = j or {vi, vj} ∈ E}.
We claim that G admits a dominating set D with |D| ≤ κ if and
only if there exists an outcome o such that ui(o) ≥ 1 for all agents
i ∈ N .

For the ‘if’ direction, consider an outcome o = (pj1 , . . . , pjκ)
that provides positive utility to all agents, and set D =
{vj1 , . . . , vjκ}. Then D is a dominating set of size at most κ. In-
deed, consider a vertex vi ∈ V . Since voter i approves pjk for some
k ∈ [�], we have vjk ∈ D and i = jk or {vi, vjk} ∈ E. Note that if
there are projects chosen more than once, we simply have |D| < κ.

For the ‘only if’ direction, observe that a dominating set D =
{vj1 , . . . , vjs} with s ≤ κ can be mapped to an outcome o =
(pj1 , . . . , pjs , p1, . . . , p1) (with p1 selected in the last κ − s
timesteps). As any vertex of G is either in D, or has a neighbor in D,
we have ui(o) ≥ 1 for each agent i ∈ N .

The construction in the proof of Theorem 3.4 can be used to derive
the following corollary

Corollary 3.5. EGAL-DEC is NP-complete, even for λ = 1 and in
the CP setting.

As a special case, we further show that when agents have non-
empty approval sets at all timesteps, and there are two projects, then
EGAL-DEC is XP with respect to λ.

Theorem 3.6. EGAL-DEC is XP with respect to λ in the CP setting
with m = 2.

Theorem 3.1 shows that EGAL-DEC is NP-complete even when
λ = 1. This implies that EGAL-DEC is inapproximable: an approxi-
mation algorithm would be able to detect whether a given instance
admits an outcome with positive egalitarian social welfare. How-
ever, suppose we redefine each agent’s utility function as u′

i(o) =
1 + ui(o); this captures, e.g., settings where there is a timestep in
which all agents approve the same project. We will now show that we
can obtain an 1

4 logn
-approximation to the optimal egalitarian welfare

with respect to the utility profile (u′
1, . . . , u

′
n).

Theorem 3.7. There is a polynomial-time algorithm that, for any
ε > 0, given an instance (N,P, �, (Si)i∈N ), with probability 1 − ε
outputs an outcome o whose egalitarian social welfare is at least

1
4 logn

of the optimal egalitarian social welfare with respect to the
modified utility functions (u′

1, . . . , u
′
n).

Proof. First, we construct a polynomial-size integer program for
finding outcomes whose egalitarian welfare with respect to modified
utilities is at least a given quantity η. For each p ∈ P and k ∈ [�],
we define a variable c(p,k) ∈ {0, 1}: c(p,k) = 1 encodes that p is se-
lected at time k. Our constraints require that (1) for each k ∈ [�], at
most one project can be chosen in timestep k:

∑
p∈P

c(p,k) ≤ 1, and (2)

each agent i ∈ N approves the outcome in at least η − 1 timesteps,

so her modified utility is at least η:
�∑

k=1

∑
p∈Sik

c(p,k) + 1 ≥ η. By

relaxing the 0-1 variables c(p,k) to take values in R+, we obtain the
following LP relaxation:
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LP(η) :
∑
p∈P

c(p,k) ≤ 1 for all k ∈ [�]

�∑
k=1

∑
p∈Sik

c(p,k) ≥ η − 1 for all i ∈ N

c(p,k) ≥ 0 for all p ∈ P, k ∈ [�].

We can use binary search over η to find the largest value of η for
which our LP is feasible; denote this value by η∗. Let η′ be the op-
timal egalitarian welfare with respect to u′

1, . . . , u
′
n in our instance;

then η′ together with an encoding of the outcome that provides this
welfare forms a feasible solution to our LP, and hence η′ ≤ η∗.

When η∗ ≤ 4 log n, for every outcome o we have u′
i(o) ≥ 1

for all i ∈ N , and hence o is a 1
4 logn

-approximation. Thus, we can
output an arbitrary outcome in this case. Hence, from now we assume
that η∗ > 4 log n.

We can find an optimal (fractional) solution to LP(η∗) in polyno-
mial time; let {c∗(p,k)} be some such solution. To transform it into
a feasible integer solution, we use randomized rounding: for each
k ∈ [�] we select p to be implemented at timestep k with probabil-
ity c∗(p,k). These choices are independent across timesteps. For each
i ∈ N and k ∈ [�], define a Bernoulli random variable Zi

k to indicate
if agent i approves the project randomly selected at timestep t. Then,
for each agent i ∈ N , we define a random variable Zi =

∑�
k=1 Z

i
k.

Note that the utility of an agent i ∈ N is given by u′
i = Zi + 1.

Then, the expected value of Zi
k is

E[Zi
k] =

∑
p∈Sik

c∗(p,k).

By linearity of expectation, we get

E[Zi] =
�∑

k=1

E[Zi
k] =

�∑
k=1

∑
p∈Sik

c∗(p,k) ≥ η∗ − 1.

Applying the multiplicative Chernoff bound [1], we obtain

P{u′
i ≤ η∗(1− δ)} ≤ exp

(−η∗δ2

2

)
for any δ > 0.

Recall that η∗ > 4 log n. Thus, by letting δ = 4
5

, we have

P

{
u′
i ≤ η∗

5

}
≤ exp

(
−32 log n

25

)
= n− 32

25 .

Finally, by applying the union bound, we get

P

{
u′
i ≥ η∗

5
for all i ∈ N

}
≥ 1− n · n− 32

25 = 1− n− 7
25 > 0.

Consequently, there exists a 1
5

-OPT integer solution; using probabil-
ity amplification techniques, we can obtain it with probability 1− ε.
It remains to observe that 1

5
> 1

4 logn
when n > 3.

4 Strategyproofness and Non-Obvious
Manipulability

An important consideration in the context of collective decision-
making is strategyproofness: no agent should be able to increase their
utility by misreporting their preferences. It is formally defined as fol-
lows. Note that agent i’s utility function ui is computed with respect
to his (truthful) approval vector Si.

Definition 2 (Strategyproofness). For each i ∈ N , let S−i de-
note the list of all approval vectors except that of agent i: S−i =
(S1, . . . ,Si−1,Si+1, . . . ,Sn). A mechanism M is strategyproof
(SP) if for each instance (N,P, �, (Si)i∈N ), each agent i ∈ N
and each approval vector Bi it holds that ui(M(Si,S−i)) ≥
ui(M(Bi,S−i)).

We first show that the algorithm that obtains a UTIL outcome by
choosing a project with the highest number of approvals at each
timestep (breaking ties lexicographically) satisfies this property. We
will refer to this algorithm as GREEDYUTIL.

Theorem 4.1. GREEDYUTIL is strategyproof.

In contrast, no deterministic mechanism that maximizes egalitar-
ian welfare can be strategyproof. Intuitively, this is because agents
have an incentive to not report their approval for already-popular
projects.

Proposition 4.2. Let M be a deterministic mechanism that always
outputs an EGAL outcome. Then M is not strategyproof, even in the
CP setting.

Proof. Consider an instance with P = {p1, p2, p3}, n = 3, � = 2,
and the approval sets S1,S2,S3 such that S11 = S21 = S31 = {p1}
and Si2 = {pi} for each i ∈ {1, 2, 3}.

If p1 is not selected at the first timestep, at most one agent receives
positive utility, so the egalitarian welfare is 0. Thus, for every EGAL

outcome o = (o1, o2) we have o1 = p1 and o2 ∈ {p1, p2, p3}. This
ensures that the egalitarian welfare in 1.

Assume without loss of generality that M selects o = (p1, p2)
when the agents report truthfully. Then u1(o) < 2. Then, agent 1 can
misreport their approval vector as S′

1 = (S11, S12), where S11 =
{p2, p3}, S12 = {p1}. In this case, the only EGAL outcome is o′ =
(p1, p1), so M is forced to output o′. Moreover, agent 1’s utility
(with respect to his true preference) from o′ is u1(o

′) = 2 > u1(o),
i.e., agent 1 has an incentive to misreport.

Having ruled out the compatibility of EGAL and strategyproof-
ness, we consider a relaxation of strategyproofness known as non-
obvious manipulability. It was introduced by Troyan and Morrill
[35], and has been studied in the single-round multiwinner voting
literature [3, 4]. It is formally defined as follows.

Definition 3 (Non-Obvious Manipulability). A mechanism M
is not obviously manipulable (NOM) if for every instance
(N,P, �, (Si)i∈N ), each agent i ∈ N , and each approval vector
Bi that i may report, the following conditions hold:

min
S−i∈Σn−1

P,�

ui(M(Si,S−i)) ≥ min
S−i∈Σn−1

P,�

ui(M(Bi,S−i))

max
S−i∈Σn−1

P,�

ui(M(Si,S−i)) ≥ max
S−i∈Σn−1

P,�

ui(M(Bi,S−i)),

where Σn−1
P,� denotes the space of all (n − 1)-voter profiles where

each voter expresses her approvals of projects in P over � steps.

Intuitively, a mechanism is NOM if an agent cannot increase her
worst-case utility or her best-case utility (with respect to her true
utility function) by misreporting. Clearly, strategyproofness implies
NOM: if a mechanism is strategyproof, no agent can increase her
utility in any case by misreporting.

While NOM is a much weaker condition than strategyproofness, it
turns out that it is still incompatible with EGAL.
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Proposition 4.3. Let M be a deterministic mechanism that always
outputs an EGAL outcome. Then M is not NOM.

Proof. We will prove that an agent can increase her worst-case util-
ity, and hence the mechanism fails NOM.

Fix P = {p1, p2}, n = � = 2. Consider first an instance I =
(N,P, �, (Si)i∈N ) with S11 = S21 = ∅, S12 = {p1}, and S22 =
{p2}. Let o = (o1, o2) be the output of M on this instance; assume
without loss of generality that o2 = p1.

Now, consider an instance I′ = (N,P, �, (S′
i)i∈N ) with S′

11 =
{p1, p2}, S′

21 = ∅, S′
12 = {p1}, and S′

22 = {p2}. For o′ = (o′1, o
′
2)

to be an EGAL outcome for this instance, it has to provide positive
utility to both agents; this is only possible if o′2 = p2. Thus, M has
to select p2 at timestep 2 (and one of p1, p2 at timestep 1), so the
utility of agent 1 from the outcome selected by M is 1.

However, we will now argue that if the first agent misreports her
approval vector as (∅, {p1}), she is guaranteed utility 2 no matter
what the second agent reports, i.e., her worst-case utility is 2.

Indeed, by our assumption on o, if agent 2 reports (∅, {p2}), M
selects p1 at timestep 2 (and one of p1, p2 at timestep 1). Further,
if agent 2 reports (∅, {p1}) or (∅, {p1, p2}), then M selects p1 at
timestep 2 (and one of p1, p2 at timestep 1), as this is the only way
to guarantee positive utility to both agents. Finally, if S21 �= ∅, to
guarantee positive utility to both agents, M would have to select a
project from S21 at the first timestep, and p1 at the second timestep.
That is, if agent 1 reports (∅, {p1}), M selects an outcome (o∗1, o

∗
2)

with o∗2 = p1, and this outcome provide utility 2 to agent 1 according
to his true preferences (i.e., S′

11 = {p1, p2}, S′
12 = {p1}).

However, we obtain a positive result for the CP setting. Let Mlex

be the mechanism that outputs an EGAL outcome, breaking ties in
favor of agents with lower indices. Formally, we define an order �
on the set Π(I) of possible outcomes for a given instance as fol-
lows: (1) if mini∈N ui(o) > mini∈N ui(o

′), then o � o′; (2) if
mini∈N ui(o) = mini∈N ui(o

′) and there is an i ∈ N such that
ui′(o) = ui′(o

′) for i′ < i and ui(o) > ui(o
′) then o � o′. We

then complete � to a total order on Π(I) arbitrarily. Mlex outputs an
outcome o with o � o′ for all o′ ∈ Π(I) \ {o}.

Theorem 4.4. Mlex is NOM in the CP setting.

Proof. In the CP setting, the best-case utility of each agent is � when
they report truthfully: this is, e.g., achieved if all other agents have
the same preferences. Thus, it remains to establish that under Mlex

no agent can improve their worst-case utility by misreporting.
Let Si be the true approval vector of agent i, and let Bi be an-

other approval vector that i may report. Consider a minimum-length
sequence of elementary operations that transforms Si into Bi by
first adding approvals in Bik \ Sik, k ∈ [�], one by one, and
then removing approvals in Sik \ Bik, k ∈ [�], one by one. Let
X0,X1, . . . ,Xk, . . . ,Xγ+1 be the resulting sequence of approval
vectors, with X0 = Si, Xγ+1 = Bi. Note that all approval vectors
in this sequence consist of non-empty approval sets, i.e., we remain
in the CP setting. Suppose this sequence starts with t additions, so
that Xs is obtained from Xs−1 by adding a single approval is s ≤ t
and by deleting a single approval if s > t.

We will first show that reporting Xt instead of X0 = Si does
not increase i’s worst-case utility. Then, we will show that for all
s = t+1, . . . , γ+1, reporting Xs instead of Xs−1 does not increase
i’s worst-case utility. This implies that reporting Bi instead of Si

does not increase her worst-case utility either.
Fix a list S−i of other agents’ approval vectors, and let S =

(S−i,Si), S ′ = (S−i,Xt). Suppose Mlex(S ′) = o. Let η be the

egalitarian welfare of o with respect to the reported utilities at S ′,
and let η′ be the utility of i at o according to Xt; note that η′ ≥ η
and η′ ≥ ui(o). By choosing o at S, the mechanism can guarantee
utility η to all agents other than i, and ui(o) ≤ η′ to i. If ui(o) ≤ η,
the egalitarian welfare of choosing o at S is ui(o), so under any
EGAL outcome at S the utility of i is at least ui(o). In this case we
are done, as Mlex always chooses an EGAL outcome.

Now, suppose ui(o) > η, and let o′ = Mlex(S). Note that the
egalitarian welfare of o at S is η, so the egalitarian welfare of o′ at
S is at least η. Moreover, it cannot be strictly higher than η, because
then the egalitarian welfare of o′ at S ′ according to the reported util-
ities would be strictly higher than η as well, a contradiction with
Mlex outputting o on S ′. Thus, o′ and o provide the same egalitar-
ian welfare at S, and Mlex favors o′ over o at S due to lexicographic
tie-breaking. Let i′ be the smallest index such that ui′(o

′) > ui′(o).
If i′ ≥ i, we are done, as this means that ui(o

′) = ui(o), so i does
not benefit from reporting Xs instead of Si. Otherwise, Mlex should
favor o′ over o at S ′. Indeed, i’s utility from o′ according to Xs is at
least ui(o

′) ≥ η, so o′ and o provide the same egalitarian welfare.
As i′ < i and agents 1, . . . , i′ have the same preferences in S ′ and S,
Mlex should choose o′ over o, a contradiction with the choice of o.

Now, for each s > t we will argue that for every S−i there
is an S ′

−i such that ui(Mlex(S−i,Xs−1)) ≥ ui(Mlex(S ′
−i,Xs)).

Suppose that Xs is obtained from Xs−1 by deleting a project p
at timestep k. Let o = Mlex(S−i,Xs−1). If ok �= p then o =
Mlex(S−i,Xs). Otherwise, consider a project p′ �= p approved
by agent i at timestep k according to Xs. We construct S ′

−i by
swapping all other agents’ approvals for p and p′ at timestep k. Let
o′ = Mlex(S ′

−i,Xs). Then o and o′ will only differ at timestep k,
choosing project p′ instead of p. As agent i approves p, we have
ui(o) ≥ ui(o

′) Hence, for each S−i, there is an S ′
−i such that

ui(Mlex(S−i,Xs−1)) ≥ ui(Mlex(S ′
−i,Xs)), i.e., reporting Xs in-

stead of Xs−1 does not increase i’s worst-case utility. As this holds
for all s > t, the proof is complete.

5 Proportionality

Another property that may be desirable in the context of temporal
voting (and has been considered by others in similar settings [13, 18])
is proportionality (PROP).

Definition 4 (Proportionality). Given an instance I =
(N,P, �, (Si)i∈N ), for each i ∈ N let μi = |{k ∈ [�] : Sik �= ∅}|.
We say that an outcome o is proportional (PROP) for I if for all
i ∈ N it holds that ui(o) ≥ 	μi

n

.

We note that proportionality is often understood as guaranteeing
each agent at least 1/n-th of her maximum utility, which would cor-
respond to using μi

n
instead of 	μi

n

 in the right-hand side of our def-

inition [13, 18, 26]. However, the requirement that ui(o) ≥ μi
n

may
be impossible to satisfy: e.g. if N = {1, 2}, � = 3, P = {p1, p2}
and for i = 1, 2 agent i approves project pi at each timestep, we can-
not simultaneously guarantee utility 3/2 to both agents. Moreover,
the proof of Theorem 3.4 shows that the associated decision prob-
lem is NP-complete. In contrast, our definition can be satisfied by a
simple greedy algorithm. This follows from a similar result obtained
by Conitzer et al. [13] in the setting of public decision-making; we
provide a proof in the full version of this paper for completeness.

Theorem 5.1. A PROP outcome always exists and can be computed
by a polynomial-time greedy algorithm.
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We note that PROP can be seen as a specialization of the Strong
PJR axiom for temporal voting [12, 21] to voter groups of size 1 (this
offers additional justification for our definition), and hence the exis-
tence of PROP outcomes also follows from Theorem 4.1 in the work
of Chandak et al. [12]; we omit a formal proof of this connection due
to space constraints.

As finding some PROP outcome is not hard, one may wish to select
the “best” PROP outcome. A natural criterion would be to pick a
PROP outcome with the maximum utilitarian or egalitarian welfare
(i.e., a PROP outcome that is also UTIL or EGAL).

However, the proof of Theorem 3.1 implies that selecting the
PROP outcome with maximum egalitarian welfare is computation-
ally intractable. Our next result shows that combining proportion-
ality with utilitarian welfare is hard, too, even though both finding
a PROP outcome and finding a UTIL outcome is easy. It also im-
plies that finding a utilitarian welfare-maximizing outcome among
all PROP outcomes is NP-hard.

Theorem 5.2. Determining if there exists a PROP outcome that is
UTIL is NP-complete, even in the CP setting.

Proof. To see that this problem is is NP, recall that we can compute
the maximum utilitarian welfare for a given instance; thus, we can
check if a given outcome is UTIL and PROP.

From Corollary 3.5, in the CP setting, it is NP-complete even to
determine if there is an outcome o such that ui(o) ≥ 1 for all agents
i ∈ N . We construct a new instance I′ with 2n agents and timesteps
such that there is an outcome that is proportional and maximizes util-
itarian welfare if and only if there is an outcome in the original in-
stance I that offers positive utility to all agents.

Note that if � ≥ n in the CP setting, then there always exists an
outcome o such that ui(o) ≥ 1 for all i ∈ N . Hence, assume that
� < n. Let Apk be the set of agents that approve project p at timestep
k in I. We construct an instance I′ with 2n agents and timesteps and
m+n projects. Let P ′

ik = {p ∈ P : i−n ≤ n−|Apk|}. We define
the approval sets S′

ik for I′ as follows:

S′
ik =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
{pi} if i ≤ n and k ≥ �

{pn+1} if i ≥ n and k ≥ �

Sik if i ≤ n and k ≤ �

{pm+i−n} ∪ P ′
ik if i ≥ n and k ≤ �

Note that this is an instance in the CP setting. At timestep � < k ≤
2n, each agent prefers exactly one project. At timesteps k ≤ �,
agents i ≤ n prefer at least one project as Sik �= ∅ and agents
i > n prefer project pm+i−n.

Also note that an outcome for I′ maximizes utilitarian welfare if
and only if a project in P is chosen for timesteps k ≤ � and the
project pn+1 is chosen at timesteps k > �. For timesteps k ≤ �,
all projects p ∈ P have exactly n agents approving the project and
all projects p /∈ P has at most one agent approving the project. For
timesteps k > �, project pn+1 has exactly n agents approving the
project and all other projects has at most one agent approving the
project. There is an outcome that is proportional and maximizes util-
itarian welfare for I′ if and only if there is an outcome o for I such
that ui(o) ≥ 1 for all agents i ∈ N .

For the ‘if’ direction, suppose there were an outcome o for I such
that ui(o) ≥ 1 for all agents i ∈ N . We construct outcome o′ by
picking the same project as o for the first � timesteps and picking
project pn+1 for the remaining timesteps. For agent i ≤ n, ui(o

′) ≥
1 as we select the same first � projects as o and the approval set
of these agents are identical to the original instance for the first �

timesteps. For agents i > n, ui(o
′) ≥ 2n− � as these agents prefer

the project pn+1 for the last 2n − � timesteps. Hence, o′ achieves
proportionality and maximizes utilitarian welfare.

For the ‘only if’ direction, suppose there were an outcome o′ for
I′ that achieves proportionality and maximizes utilitarian welfare.
As the outcome achieves proportionality, ui(o

′) ≥ 1 for all agents
i. Furthermore, as the outcome maximizes utilitarian welfare, project
n + 1 was chosen for the last 2n − � timesteps and no agent in N
prefers any project chosen in the last 2n − � timesteps. Hence, each
agent i ∈ N prefers a project chosen in the first � timesteps. We
construct outcome o by picking the same project as o′ for the first �
timesteps. As the approval set of agents i ∈ N are identical to the
original instance for the first � timesteps, ui(o) ≥ 1 for all agents
i ∈ N .

Beyond the computational aspects of picking the ‘best’ (according
to our welfare objective) PROP outcome, another interesting ques-
tion is to consider the trade-off between proportionality and one of
our welfare objectives.

The concepts of the price of fairness and the strong price of fair-
ness [5] formalize this trade-off, and have been studied for several
proportionality guarantees in the single-round multiwinner voting lit-
erature [9, 17, 29]. As we are only considering PROP, we instantiate
the definition of the (strong) price of fairness accordingly, as follows.

For any problem instance I, let ΠPROP(I) ⊆ Π(I) denote the
set of all outcomes that are proportional for I. Also, given a wel-
fare objective function W , let W (o) denote the welfare of an out-
come o. For instance, UTIL(o) =

∑
i∈N ui(o), and EGAL(o) =

mini∈N ui(o). Furthermore, given a welfare objective W , let W -
OPT(I) denote the maximum W -welfare over all outcomes in Π(I).
Definition 5 (Price of Proportionality). For a welfare objective W ,
the price of proportionality (PoPROP) is the supremum over all in-
stances I of the ratio between the maximum W welfare of an out-
come for I and the maximum W welfare of an outcome for I that
satisfies PROP:

PoPROP = sup
I

W -OPT(I)
maxo∈ΠPROP(I) W (o)

.

Definition 6 (Strong Price of Proportionality). For a welfare objec-
tive W , the strong price of proportionality (s-PoPROP) is the supre-
mum over all instances I of the ratio between the the maximum W -
welfare of an outcome for I and the minimum W welfare of an out-
come for I that satisfies PROP:

s-PoPROP = sup
I

W -OPT(I)
mino∈ΠPROP(I) W (o)

.

We first observe that requiring proportionality has no impact on
egalitarian welfare: any outcome o can be transformed (in polyno-
mial time) into a proportional outcome o′ so that the egalitarian wel-
fare of o′ is at least as high as that of o.

Proposition 5.3. Given an outcome o, we can construct in poly-
nomial time another outcome o′ so that o′ is proportional and its
egalitarian welfare is at least as high as that of o.

By applying Proposition 5.3 to an outcome o that maximizes the
egalitarian welfare, we obtain the following corollary.

Corollary 5.4. The PoPROP with respect to EGAL is 1.

In contrast, for utilitarian welfare, the price of proportionality
scales as

√
n, even in the CP setting.
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Theorem 5.5. In the CP setting, the PoPROP with respect to UTIL

is n
2
√

n−1
or Θ(

√
n).

Proof. We first prove the lower bound. Let k be an integer such that
1 ≤ k ≤ n. Consider the instance with P = {p1, . . . , pn−k+1}, n
agents, and � = n. The agents have static preferences: their approval
sets, for all timesteps k ∈ [�], are defined as follows:

Sik =

{
{pi} if i ≤ n− k

{pn−k+1} otherwise

Under a UTIL outcome, project pn−k+1 will be chosen for all
timesteps. As k agents approve pn−k+1, the maximum utilitarian
welfare in this case is n · k. However, in order for an outcome to be
proportional, each project must be chosen at least once. Hence, the
maximum utilitarian welfare for a proportional outcome is n−k+k2.
Then, we get that

PoPROP =
k · n

n− k + k2
=

n · √n

2n−√
n

=
n

2
√
n− 1

,

where the second equality is obtained by letting k =
√
n.

Next, we prove the upper bound. We provide a constructive proof
by selecting an outcome that has a utilitarian welfare of at least
2√
n
− 1

n
of the maximum utilitarian welfare attainable. First, we split

up the � timesteps into groups of n timesteps. For the last group, if
there are less than n timesteps (i.e., the number of timesteps is not a
multiple of n), we simply choose projects that maximize utilitarian
welfare. Next, we ensure that each agent approves of at least one of
the projects chosen in each group of n timesteps. This would sat-
isfy proportionality, as it ensures that ui(o) ≥ 	 �

n

 for each agent

i ∈ N . Furthermore, this also guarantees that for each group, the
outcome selected in those timesteps n has utilitarian welfare at least
2√
n
− 1

n
of the maximum utilitarian welfare attainable.

Next, we analyze a group of n timesteps. First, let p be the project
in any timestep with the highest number of agents approving it. Let q
be the number of agents that approve p. First, we select p at that
timestep, and we pick q − 1 more projects greedily by targeting
projects at unselected timesteps with the most agents approving those
projects. Note that as project p has q agents approving it, after our
first q selections, there are at most n − q agents that do not approve
any project in the initial selection. For the remaining n−q timesteps,
we select projects to ensure that each agent approves of at least one
project chosen in this group of timesteps. Let Q be the utilitarian
welfare from our initial q selection and r be the maximum number
of agents that approve a project in the remaining n − q unselected
timesteps. The maximum utilitarian welfare in this group of n time
steps is at most Q+ (n− q) · r and the minimum utilitarian welfare
from our selection is at least Q+ n− q, giving us:

1

PoPROP
≥ Q+ n− q

Q+ (n− q) · r ≥ r · q + n− q

n · r (as Q ≥ r · q)

≥ (r − 1) · r + n

n · r (as r ≤ q)

=
r − 1

n
+

1

r

Using elementary calculus, the term 1
PoPROP is minimized when

r =
√
n, giving us PoPROP ≤ n

2
√

n−1
< n√

n
= Θ(

√
n).

For s-PoPROP, we obtain the following bounds.

Theorem 5.6. The s-PoPROP with respect to UTIL or EGAL is ∞.
However, if for all agents i ∈ N , 	μi

n

 ≥ 1, then s-PoPROP with

respect to UTIL or EGAL is 2n− 1 or Θ(n).

6 Conclusion and Future Work

We investigated the problem of maximizing utilitarian and egalitar-
ian welfare for temporal elections. We showed that, while UTIL out-
comes can be computed in polynomial time and can be achieved in a
strategyproof manner, EGAL is NP-complete and obviously manipu-
lable. To circumvent the NP-hardness of EGAL, we analyzed its pa-
rameterized complexity with respect to n,m and �, and provided an
approximation algorithm that is based on randomized rounding. We
also established the existence of a NOM mechanism for EGAL under
a mild constraint on agents’ preferences. Finally, we considered pro-
portionality and showed that it is computationally hard to select the
‘best’ proportional outcome. We also gave upper and lower bounds
for the (strong) price of proportionality with respect to both UTIL

and EGAL.
We discuss several possible directions for future work.

Maximizing the p-mean welfare objective One possible exten-
sion to our work is analyzing the more general p-mean welfare ob-
jective. The associated decision problem is defined as follows.

MAXIMIZING p-MEAN WELFARE:
Input: A problem instance I = (N,P, �, (Si)i∈N ) and a
parameter λ ∈ Z

+.
Question: Is there an outcome o such that(
1
n

∑
i∈N ui(o)

p
)1/p ≥ λ?

Note that setting p = 1 (respectively, p = −∞) would correspond
to the utilitarian (respectively, egalitarian) welfare. Setting p → 0
corresponds to maximizing the geometric mean, or Nash welfare
(we denote the corresponding decision problem of maximizing the
Nash welfare by NASH). We also note that many of the computa-
tional hardness and impossibility results for EGAL directly translate
to similar results for NASH: NASH is obviously manipulable in the
general setting and not strategyproof even in the CP setting. NASH is
also NP-complete even when m = 2 and is W[2]-hard with respect
to �. The XP algorithm with respect to � also works for NASH. While
our FPT algorithm (with respect to n) for EGAL relies on an ILP that
does not extend to NASH, a randomized XP algorithm has been pro-
posed for a more demanding setting [18]. Now, for our setting, we
can show that there is a deterministic XP algorithm (with respect to
n) for any p-mean welfare objective, which includes NASH.

Theorem 6.1. There exists a deterministic XP algorithm (with re-
spect to n) for maximizing the p-mean welfare.

However, the question of whether NASH admits an FPT algorithm
is an open problem. Beyond NASH, it may be interesting to identify
values of p for which maximizing p-mean welfare is tractable.

Cardinal preferences Another possible direction for building
upon this work is looking into cardinal preferences, which has been
studied in various social choice settings recently [6, 13, 19, 22, 25].
In our model with approval preferences, agents can also be thought
of as having binary utilities over projects. One can extend this
model by allowing each agent i ∈ N to have a valuation function
vi : P × [�] → R[0,1] instead of an approval set. Then, it would be
interesting to investigate whether the positive results in our setting
extend to the setting with cardinal preferences.
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