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Abstract. Traditional game-theoretic research for security applica-
tions primarily focuses on the allocation of external protection re-
sources to defend targets. This work puts forward the study of a new
class of games centered around strategically arranging targets to pro-
tect them against a constrained adversary, with motivations from var-
ied domains such as peacekeeping resource transit and cybersecurity.
Specifically, we introduce Escape Sensing Games (ESGs). In ESGs,
a blue player manages the order in which targets pass through a chan-
nel, while her opponent tries to capture the targets using a set of sen-
sors that need some time to recharge after each activation. We present
a thorough computational study of ESGs. Among others, we show
that it is NP-hard to compute best responses and equilibria. Neverthe-
less, we propose a variety of effective (heuristic) algorithms whose
quality we demonstrate in extensive computational experiments.

1 Introduction

The past decade has witnessed an influential line of research in AI,
particularly multiagent systems (MAS), that employs computational
game theory to tackle critical challenges in security and public safety
applications, ranging from protecting national ports [20] to combat-
ing smuggling [7] and illegal poaching [14] to defending our cyber
systems [26]. At the core of almost all of these problems is to opti-
mize the allocation of (often limited) external forces to protect criti-
cal targets. In this work, we adopt a similar computational game the-
ory approach but address a fundamentally different type of security
challenge that looks to improve security via optimizing the arrange-
ment of targets in the face of adversaries. This research contributes a
novel perspective to game-theoretic security strategies, emphasizing
target arrangement as a defense mechanism against adversaries.

Specifically, we introduce and study Escape Sensing Games
(ESGs). In these games, a blue player aims to securely navigate a set
of targets through a channel, whereas her opponent, the red player,
controls a set of sensors along the channel and tries to sense (and
therefore “steal”) as many targets as possible. This model captures
strategic interactions arising in various domains. One example is the
transportation of peacekeeping resources using a convoy of ships or
cars over a fixed route with malicious actors (e.g., pirates or hos-
tile forces) trying to intercept them [24] (see Section 2 for details).
In cybersecurity, the blue player could model a network administra-
tor routing sensitive data packets through a network with an attacker
trying to intercept them. Our model captures strategic interactions in
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these settings arising when security measures are either unavailable
or have already been allocated and the blue player is only left with
scheduling the targets to avoid detection by the attacker.

We study the optimal sequential play in ESGs, where the blue
player first commits to an ordering of targets followed by the red
player devising an optimal sensing plan. Herein, sensors’ capabilities
are limited in two ways. First, each sensor is only capable of sensing
certain targets, modeling that detection and interception technologies
are not uniformly effective across different targets, due to differing
characteristics such as size, speed, or defense mechanisms. Second,
sensors need a certain time to recharge after sensing a target, model-
ing limits inherent in detection and interception systems, where per-
manent action is not feasible.

There are certain challenges integral to our model that make the
computation of equilibria highly non-trivial. First, the action space
of both players has an exponential size, rendering standard solution
approaches such as support enumeration computationally infeasible.
Second, also after the strategies of both players have been fixed, the
game evolves in a complex, sequential fashion with targets moving
one after each other through the channel. Connected to this, third,
it turns out that the red player’s best response problem of coming
up with an optimal sensing plan given a target ordering is already
NP-hard. Consequently, this paper also contributes to the algorithmic
research on computationally challenging games, a fairly unexplored
topic outside of combinatorial game theory [10, 19, 12].

1.1 Our Contribution

We contribute a new perspective to the rich literature on computa-
tional game theory for security applications through our study of the
previously overlooked problem of target arrangement. Specifically,
we introduce and analyze Escape Sensing Games with a focus on
the target-controlling blue player. We demonstrate that solving this
game is highly complex, as we prove that it is NP-hard for both play-
ers to compute their optimal strategies. To nevertheless be able to
solve ESGs in practice, we devise algorithms for computing the red
player’s strategy, which turn out to scale well in our experiments.
Computing the blue player’s strategy and thereby the game’s Stack-
elberg equilibrium turns out to be a much more intricate task. Our ex-
periments show that our formulation of the problem as a bilevel pro-
gram is only capable of solving small instances of the game exactly.
Motivated by this, we present a heuristic that effectively combines
simulated annealing with a greedy heuristic and an Integer Linear
Program (ILP) for computing the red player’s strategy. We demon-
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strate the quality of our heuristic through extensive experiments.
We further this investigation in Section 6 by studying a different

variant where sensors are decentralized hence each sensor acts in-
dependently according to a simple greedy strategy. We show that it
remains NP-hard for the blue player to compute its optimal strategy.
While in this setting blue’s problem admits an ILP formulation, we
demonstrate in experiments that it can only solve up to medium-sized
instances. Addressing this, we present heuristics that perform well
in our experiments. We also demonstrate that while sensors usually
have some gain from coordination, this gain depends decisively on
the instance structure and is oftentimes rather small (below 20%).

Full proofs of all results and descriptions of additional experiments
can be found in our full version [6].

2 Escape Sensing Games (ESGs): The Model

Blue ������� Red ����	��
Figure 1. A visual representation of an Escape Sensing Game.

In an Escape Sensing Game (ESG) a blue player (henceforth
Blue) tries to route a set of targets through a channel. They compete
against a red player (henceforth Red) who controls a set of sensors
and tries to sense (and therefore “steal”) as many of Blue’s targets
as possible.2 Formally, an Escape Sensing Game is defined by

1. a set of targets T = {t1, . . . , tn}, each target ti ∈ T equipped
with some utility value vi ∈ R

+,
2. a set of sensors S = {s1, . . . , sk} and a recharging time τ ∈

N ∪ {∞} which is the same for all sensors and,
3. a sensing matrix D ∈ {0, 1}n×k where Di,j = 1 means that

sensor sj is capable of sensing target ti.

We assume that all of these parts are known to both players at any
point in time. Note that in this paper, we consider the constant-sum
utility structure and leave the general-sum version for future work.
That is, Blue seeks to maximize the summed value of not-sensed
targets, i.e., targets not sensed by any sensor. In contrast, Red seeks
to minimize this value, or equivalently, maximize the summed value
of targets that are sensed by some sensor.

The strategy of Blue is an ordering of the targets σ : T → [n] that
assigns each target t ∈ T a unique position σ(t), i.e., σ is a bijection.
The targets move through the channel according to σ, i.e., the target
on position 1 moves first, on position 2 second, and so on. In each
time step each target moves to the next sensor, leaves the channel (in
case it passed all sensors), or enters the channel at the first sensor (in
case it is the next target in the ordering σ).

The strategy of Red is a sensing plan ψ : S → 2T that maps each
sensor to a subset of targets T ′ ⊆ T sensed by the sensor, where each
sensor senses different targets, i.e., ψ(s) ∩ ψ(s′) = ∅ for each s 	=
s′ ∈ S. Red cannot play arbitrary sensing plans but only those which
are valid. A sensing plan is valid (with respect to a senor ordering σ)
if (i) a sensor only senses targets it has the capabilities to sense, i.e.,
for each sj ∈ S and ti ∈ ψ(sj) we have Di,j = 1, and (ii) a sensor
pauses for at least τ time steps after sensing a target, i.e., for each
s ∈ S and t, t′ ∈ ψ(s) we have |σ(t)− σ(t′)| > τ . Given a sensing

2 Note that the terms “sensor” and “sensing” are only part of our terminology
and do not limit the applications of our model. For instance, instead of
“sensing” the targets, Red might also aim to intercept them.

plan, we can immediately calculate the value of not-sensed targets as
v(ψ) :=

∑
ti∈T\∪s∈Sψ(s) vi, which quantifies Blue’s utility.

Objectives and equilibrium Due to the motivating applications of
our interest, this work adopts Blue’s perspective and analyzes se-
quential play in this game by assuming Blue moves first.3 Our anal-
ysis consists of two parts. First, we will analyze the best response
problem for Red called BEST RED RESPONSE: Given an ordering
σ of the targets, output the sensing plan ψ that is valid with respect
to σ and minimizes v(ψ) among such plans. Second, to compute the
optimal strategy of Blue, we analyze the game’s Stackelberg equi-
librium4, which can be written as the following bilevel optimization
problem: maxσ minψ:ψ is valid wrt. σ v(ψ). We term the corresponding
computational problem BLUE LEADER STACKELBERG EQUILIB-
RIUM.

A motivating application One major motivation of our work is the
secure transit of peacekeeping resources in the presence of adversar-
ial actors such as pirates, which has critical importance due to past
incidents, e.g., to the United Nations [24]. Citing the UN’s peace-
keeping mission manual [25], “protecting shipping in transit ensures
the safety and security of vessels as they pass through waters threat-
ened by piracy on the high seas...” In these applications, UN plays
Blue’s role whereas pirates correspond to Red, who can observe
the ordering of targets and then act second. The UN commands a
fleet of ships (i.e., targets in our model) that often carry resources of
different importance and that can be arranged strategically. Protect-
ing shipping is overall a complex, multi-facet, task and our model
captures one of the phases after potential (often scarce) security mea-
sures have already been allocated to the ships and the pirates look to
identify targets to attack. According to Winn and Govern [27], pi-
rates often use a set of boats (i.e., sensors in our model) to probe
different passing targets, usually by following them to observe their
speed, crew amount, firearm, etc. to judge based on this whether they
are capable of capturing the ship. Such probing takes time, which is
modeled by the recharging time τ .

Sensor and target types We develop some customized algorithms
for instances with only a few different target or sensor models: We
say that two sensors si, sj ∈ S are of the same type if they are
capable of sensing the same targets, i.e., the i-th and j-th column of
the sensing matrix are identical. We say that two targets ti, tj ∈ T are
of the same type if they have the same utility value and can be sensed
by the same sensors, i.e., vi = vj and the i-th and j-th row of the
sensing matrix are identical. We denote as Γ = {γ1, . . . , γnχ} and
Θ = {θ1, . . . , θkχ} the set of target and sensor types, respectively.
It is easy to see that kχ ≤ 2nχ , as a sensor’s sensing capabilities are
defined by the set of target types it can sense. Similarly, assuming
that all targets have the same value, it holds that nχ ≤ 2kχ .

3 Related Work

While the escape sensing game model is new, it is closely related to
a few lines of AI research, as detailed below.

Computational game theory for security Conceptually, our work
subscribes to the extensive MAS literature on computational game
theory for tackling security challenges. The Stackelberg security

3 Note that this is already reflected in our game definition, since the validity
of Red’s sensing plan depends on the strategy of Blue. Thus, Red cannot
move before or simultaneous to Blue.

4 We assume that ties in the strategies are broken according to some prede-
fined lexicographic ordering of the strategies.
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game [23] is one widely studied example. Other game-theoretic mod-
els include the hide-and-seek game [8], blotto games [4], auditting
games [5] and catcher-evader games [18]. Most of these games study
the optimal usage of security forces under different game structures.
In contrast, our ESG model is motivated by detection-vs-evasion sit-
uations in which security forces have already been allocated.

Scheduling On a formal level, our problem is to schedule/order
targets in an adversarial environment, which shares similarities with
the classic problem of scheduling that looks to assign tasks to differ-
ent machines to optimize certain criteria [17]. There is a rich body of
AI research on scheduling, ranging from solving varied problems us-
ing AI techniques such as satisfiability [11] and distributed constraint
optimization [21], to developing new models of scheduling problems
under uncertainty [3] or in multi-agent setups [28].

In fact, the BEST RED RESPONSE problem can be formulated as
the following slightly non-standard scheduling problem: There are
k machines (modeling sensors). In each step, a job (modeling a tar-
get) arrives. The job can be processed (modeling sensing) by a given
subset of machines and if executed successfully generates a given
reward value. The job has a processing time of τ and needs to be
processed within the next τ steps. This implies that the job needs to
be processed (i.e., sensed) either now or its reward is lost.

4 The Algorithmics of Escape Sensing Games

We analyze the computational complexity of ESGs starting with
Red’s best response problem, followed by computing equilibria.

4.1 Computing Red’s Best Response Strategy

We analyze Red’s best response problem that Red needs to solve
in each game after Blue has committed to a target ordering. This
problem turns out to be NP-hard, even if Red is only interested in
determining whether it can sense all targets. This intractability result
is the first strong indicator of the intricate game dynamics in ESGs.

Theorem 1. BEST RED RESPONSE is NP-complete, even when
asked to decide whether Red can sense all targets or not.

Proof. We reduce from HITTING SET where we are given a universe
U , a collection of sets Z = {Z1, . . . , Zm} and an integer t, and the
question is whether there a size-t subset U ′ ⊆ U containing at least
one element from each set in Z (we assume that t ≥ 2 and |U | > t).

In the construction, all targets have a value of 1 and the question is
whether Red can sense all targets. As the core of the construction we
add element sensors {au | u ∈ U}, set targets {αZ | Z ∈ Z}, and
selection targets {βi,j | i ∈ [|U |−t], j ∈ [m]}. Each element sensor
can sense all selection targets and all set targets corresponding to sets
in which the element appears. Regarding the ordering of targets, it is
easiest to think of the targets as being arranged in “rounds”. In each
round j ∈ [m], first the selection targets {βi,j | i ∈ [|U | − t]} move
through the channel followed by the the set target αZj . The idea is
that the same |U | − t element sensors sense the selection targets in
every round, which correspond to the elements that are not part of the
hitting set (we extend the construction in the following paragraph to
ensure that this holds). Then, the remaining t element sensors need
to form a hitting set to be able to sense the set target in each round.

We extend the construction as follows. We add filling targets γi,j
for all i ∈ [t− 1] and j ∈ [m], which all element sensors can sense.
Moreover, we add dummy sensors di,j for each i ∈ [2|U |] and j ∈
[m] and dummy targets δi,j for each i ∈ [2|U |] and j ∈ [m]. For

each i ∈ [2|U |] and j ∈ [m], dummy sensor di,j can sense dummy
target δi,j . We set τ := 2|U | + 1. Formally, the target ordering σ
is constructed—in multiple “rounds”—as follows. In each round j ∈
[m], we first move the selection targets {βi,j | i ∈ [|U |− t]} through
the channel, then the dummy targets {δi,j | i ∈ [|U |]}, then the set
target αZj , then the filling targets {γi,j | i ∈ [t − 1]} and then the
dummy targets {δi,j | i ∈ [|U | + 1, 2|U |]} (the ordering of targets
in each of the groups is arbitrary).

Proof of correctness: forward direction Assume that U ′ ⊆ U is
a size-t hitting set of Z . For each i ∈ [2|U |] and j ∈ [m], we let di,j
sense δi,j . We construct the sensing plan for the element sensors iter-
atively as follows. In each round j ∈ [m], we let each of the |U | − t
element sensors {au | u ∈ U \U ′} sense exactly one of the selection
targets {βi,j | i ∈ [|U | − t]}. Now, let u∗ be an element from U ′

that is contained in Zj (such an element needs to exist because U ′ is
a hitting set). We let au∗ sense αZj and we let each of the t − 1 el-
ement sensors {au | u ∈ U ′ \ {u∗}} sense exactly one of the filling
targets {γi,j | i ∈ [t− 1]}.

The constructed sensing plan senses all targets and clearly respects
the sensing matrix. It remains to be argued that the recharging times
of all element sensors are respected (dummy sensors only sense one
target). For each u ∈ U \ U ′, we have that au senses one selection
target in each round. Between two selection targets in two differ-
ent rounds there are at least 2|U | dummy targets and one set tar-
get, so recharging times are respected. For each u ∈ U ′, the sensor
au senses either a set or filling target in each round. There are 2|U |
dummy targets and |U | − t ≥ 1 selection targets between each two
sets and filling targets from different rounds, so recharging times are
respected.

Proof of correctness: backward direction Assume that ψ is a
valid sensing plan that senses all targets. Consequently, in each
round, the |U | element sensors need to sense |U | − t selection,
t − 1 filling, and one set target. As ψ is valid and there are only
|U |− t−1+ |U |+1+ t−2 = 2|U |−2 targets between the first se-
lection and last filling target in each round, this means that each ele-
ment sensor needs to sense exactly one of these targets in each round.
Note that an element sensor that senses a non-selection (i.e., either a
set or filling) target in round j ∈ [m] cannot sense a selection target
in round j+1, as there are only t−1+ |U |+ |U |− t−1 = 2|U |−2
targets between the first non-selection target in round j and the last
selection target in round j + 1. Consequently, as each element sen-
sor needs to sense one target in each round, it follows that there is a
set U ′′ ⊆ U of |U | − t elements so that the corresponding element
sensors sense a selection target in every round. Consequently, the re-
maining t element sensors need to sense all set targets. As an element
sensor is only capable of sensing a set target if the element appears
in the set, it follows that U \ U ′′ is a size-t hitting set of Z .

Despite this intractability result, it is still possible to construct
exact combinatorial algorithms for BEST RED RESPONSE. In par-
ticular, we present a dynamic programming-based algorithm em-
powered by some structural observations on ESGs that runs in
O(n · (kχ + 1)τ+2) (recall that kχ ≤ k). This algorithm in particu-
lar implies that the problem becomes polynomial-time solvable if the
recharging time, which we expect to be rather small in comparison
to the number of targets, is a constant.

Proposition 2. There is a O(n · (kχ + 1)τ+2)-time algorithm for
BEST RED RESPONSE.

Proof Sketch. Our idea is to construct a valid sensing plan iteratively
by going through the arriving targets one by one (we assume that the
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ordering of targets is t1, . . . , tn). For each target, we either decide
that it will not be sensed or assign it to one of the sensors so that
the resulting plan is still valid. Our key observation to bring down
the time and space complexity of the dynamic program is that we do
not need to store the full sensing plan to ensure the validity of the
plan after updating it. Instead, it is sufficient to know for each sensor
whether it has sensed a target in the last τ steps. More formally, given
a valid sensing plan ψ that has been constructed by iterating over
the first i ∈ [n] targets, we only store the following information:
(i) the value of all targets {t1, . . . , ti} that have not been assigned
to a sensor in ψ, i.e.,

∑
tj∈{t1,...,ti}\∪s∈Sψ(s) vj , (ii) the sensors the

last τ + 1 targets have been assigned to. It is possible to store this
information in a table of sizeO(n·(k+1)τ+1) where each cell can be
computed inO(k)-time. To extend the algorithm to sensor types, we
prove that we can collapse sensors of one type into a “meta” sensor,
making it sufficient to bookmark the types of sensors that have sensed
the last τ + 1 targets.

We conclude by giving a clean ILP formulation of BEST RED RE-
SPONSE, which turns out to scale very favorably in our experiments
allowing us to solve instances with up to 10000 targets within one
minute.

Proposition 3. BEST RED RESPONSE admits an ILP formulation
with O(n · k) binary variables and O(n · k) constraints.

Proof. We model an instance I of BEST RED RESPONSE as an ILP
as follows. We assume that the targets are ordered as t1, . . . , tn. We
create a binary variable xi,j for each i ∈ [n] and j ∈ [k+1]. Setting
xi,j to one corresponds to letting sensor sj sense target ti if j ∈ [k],
and letting ti not be sensed by any sensor if j = k + 1.

To ensure that Red minimizes the value of not-sensed targets, the
optimization criterion becomes: min

∑
i∈[n] vi · xi,k+1. To ensure

the validity of the sensing plan ψ, for each i ∈ [n], we enforce that:∑
j∈[k+1] xi,j = 1. Moreover, to ensure that sensor capabilities are

respected, we impose for each i ∈ [n] and j ∈ [k] that: xi,j ≤ Di,j .
Lastly, to enforce that recharging times are respected, for each j ∈
[k] and i ∈ [n− τ ] we add the constraint:

∑i+τ
�=i x�,j ≤ 1.

4.2 Solving for the Stackelberg Equilibrium

We now study the problem of computing Blue’s optimal strategy,
i.e., to solve BLUE LEADER STACKELBERG EQUILIBRIUM. The-
orem 1 already shows the NP-hardness of BEST RED RESPONSE.
While this does not imply the hardness of computing Stackelberg
equilibria5, a convincing intractability result for Blue’s optimal
strategy shall ideally “disentangle” its complexity from Red’s best
response problem. With this in mind, we prove the NP-hardness of
BLUE LEADER STACKELBERG EQUILIBRIUM even in situations
where Red’s best response problem is linear-time solvable. This
demonstrates that the complexity in our reduction does not come
from finding Red’s strategy but from the problem of whether Blue
can arrange the targets in an optimal way.

Theorem 4. BLUE LEADER STACKELBERG EQUILIBRIUM is NP-
hard, even on instances where BEST RED RESPONSE is linear-time
computable and the recharging time is 3.

5 Note that the fact that it is NP-hard for Red to best respond to certain Blue
strategies (as constructed in the reduction of Theorem 1) does not imply
that is also hard for Red to best respond to the particular Stackelberg equi-
librium strategy of Blue (as these strategies might admit some structure
that makes it easier to best respond).

Note that the NP-hardness upholds even if sensors’ recharging
time is constant, a case in which Red’s best response problem is
polynomial-time solvable (see Proposition 2). Our hardness result in-
dicates that computing Blue’s optimal strategy is a generally much
harder problem than computing Red’s optimal strategy. In fact, it re-
mains open whether BLUE LEADER STACKELBERG EQUILIBRIUM

is contained in NP or whether it is complete for complexity classes
beyond NP. We suspect the latter to hold.

4.2.1 Bilevel Optimization

In light of this, it is unclear (and from our perspective rather unlikely)
that BLUE LEADER STACKELBERG EQUILIBRIUM admits an ILP
formulation. Naive brute-force approaches are also computationally
infeasible, as we would need to enumerate all n! possible target or-
derings and solve the NP-hard BEST RED RESPONSE problem as a
subroutine for each of them.

Thus, we turn to a formulation as a bilevel optimization problem
[9] as one way to solve the problem exactly. In such formulations,
constraints are still linear, but there exist two connected levels of the
problem, i.e., an outer and an inner level. The inner level controls
certain variables that it sets to minimize an objective subject to linear
constraints that also involve variables controlled by the outer level,
while the outer level sets these variables to maximize the objective.
In our problem, we can model Red’s best response problem as the
inner level loosely following the ILP from Proposition 3. The outer-
level models Blue’s problem. The key parts of the outer level are
variables for each target that encode the position in which the target
appears in the final ordering and that are used in the inner level to
ensure the validity of the sensing plan.

Proposition 5. BLUE LEADER STACKELBERG EQUILIBRIUM ad-
mits a bilevel optimization formulation with O(n2 + n · k) binary
variables, O(n) integer variables, and O(n2 · k) constraints.

Note that standard techniques to convert this bilevel program into
an (integer) linear program, e.g., by exploiting KTT-optimality con-
ditions [2, 13], are not applicable in our setting, as we are solving
an integer bilevel program within which the inner-level program is
already non-convex.

4.2.2 Heuristic

We will see later that the running time for the bilevel formulation
of the problem becomes already infeasible on small-sized instances.
Therefore, we experimented with different heuristics to solve the
problem.6 In the following, we present two variants of simulated
annealing-based heuristics that performed best. For a target ordering
σ, we denote as N(σ) its neighbors, i.e., all

(
n
2

)
orderings that arise

from σ by swapping the position of any two different targets. The
relaxed version of our simulated annealing (SA_Relax) is presented
in Algorithm 1. The idea is to find an optimal ordering through re-
peated local rearrangements. We store the current ordering as σ and
compute its value for Blue by solving Red’s best response problem
using Proposition 3. Then, we pick a random neighbor of σ, compute

6 Note that the heuristic double-oracle approach that has been successfully
employed for other large combinatorial games [1, 16] is not applicable to
ESGs. Traditionally, the approach successively expands the strategy spaces
of both players by letting them best respond to each other. However, in
ESGs, we face a bilevel problem in which there is no best response of the
leader to the follower. The approach also fails here because the valid strate-
gies of the follower heavily depend on the strategy picked by the leader.
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Algorithm 1 SA_RELAX

Input: Target ordering σ and temperature T = 100

1: Compute optimal sensing plan ψ wrt. σ.
2: while T > 0.00001 do
3: Select a random neighbor σ̂ ∈ N(σ).
4: Compute optimal sensing plan ψ′ wrt. σ̂.

5: if e
v(ψ̂)−v(ψ)

T > random[0, 1] then

6: σ := σ̂, ψ := ψ̂.
7: T := T · 0.9.
8: Return σ.

its value, and update the ordering based on this according to standard
simulated annealing rules.

In the full version of our simulated annealing (SA), instead of pick-
ing a random neighbor σ̂ from N(σ) in Line 3 of Algorithm 1, we
first run a heuristic for BEST RED RESPONSE on all orderings from
N(σ).7 Then, on the μ fraction of neighbors with the highest re-
turned value, we execute the ILP from Proposition 3 to compute the
optimal sensing plan. Of the examined neighbors, we pick the one
with the highest returned value as σ′. As a hyper-parameter tuning
process, we tested the performance of our heuristic algorithm with
respect to the choice of μ (see our full version [6] for results). It
turns out that μ = 0.1 provides a good trade-off between the al-
gorithm’s running time and Blue’s utility. Thus, we fix μ = 0.1
throughout the paper. For both heuristics, we always run the heuris-
tic three times with three different initial randomly generated target
orderings and return the best computed ordering.

5 Experimental Evaluations

We analyze the quality and performance of our algorithms to com-
pute the Stackelberg equilibrium.8 We consider three simulated game
settings for generating ESGs. For each setting, we determine the
value of a target by drawing a number uniformly within [0, 1]9:

1. DEFAULT (DEF): For each i ∈ [n] and j ∈ [k], we set Di,j = 1
with probability 0.2.

2. EUCLIDEAN (EUC): Each target ti ∈ T and each sensor sj ∈ S
are uniformly sampled points in [0, 1]× [0, 1]. A sensor can sense
a target (i.e., Di,j = 1) if the Euclidean distance between their
points is below 0.3.

3. RANDOMLEVEL (RAND): Each target ti ∈ T has a difficulty
level di uniformly sampled from [0, 1], and each sensor sj ∈ S
has a skill level sj uniformly sampled from [0, 1]. For each i ∈ [n]
and j ∈ [k], we set Di,j = 1 with probability (1− di) · sj .

In all our experiments, if not stated otherwise, we average over 50
instances generated according to one of the models. We present our
experimental results as tables where each entry contains Blue’s av-
erage utility (i.e., the summed value of not-sensed targets) from the
computed target ordering assuming Red best responds and the aver-
age running time in seconds in italics, both followed by their respec-
tive standard deviations. Note that standard deviations are calculated
7 In our (greedy) heuristic, we consider the targets in decreasing order of

their value and construct the sensing plan ψ iteratively. Let S′ ⊆ S be the
sensors s so that ψ remains a valid sensing plan after adding the current
target to ψ(s). We let the target be sensed by a randomly selected sensor
from S (or by no sensor if S is empty). For a formal description, see our
full version [6].

8 We use Gurobi [15] to solve the ILP from Proposition 3 and MIBS [22]
to solve the bilevel program from Proposition 5. Both are among the most
popular off-the-shelf tools for solving the respective problem.

9 In our full version [6], we analyze supplementary scenarios, reinforcing
similar conclusions to those presented here.

across the different sampled instances, implying that independent of
the solution method some non-trivial standard deviation is to be ex-
pected, as certain instances are more favorable for Blue than others.

We analyze the maximum size of instances that we can solve ex-
actly using the bilevel program, which we denote as OPT. We present
results for the DEFAULT game setting in Table 1 (results for other
simulated game settings are similar). It turns out that while instances
with 5 targets can be solved within a second by OPT, instances with
9 targets take already around 9 hours to solve. This demonstrates
that the bilevel program is only usable for quite small instances.
Moreover, we observe the to-be-expected trend that Blue’s utility
increases when Blue has more targets or Red has less sensors. How-
ever, we do not find any consistent trend regarding whether it is more
advantageous for Blue: more targets or fewer sensors.

Motivated by the high computational cost of the bilevel program,
we now turn to analyzing the quality of our heuristics. We also in-
clude the Random method here as a baseline where Blue simply
picks an arbitrary ordering of targets (and Red best responds to it).
In addition, we compare our heuristics against a naive random strat-
egy of comparable computational cost. For this, we include the Ran-
dom2 method which generates 3000 random orderings for Table 2
and 3 · 107 random orderings for Table 3. The sampled ordering
that achieves the highest utility for Blue assuming that Red best
responds is returned.

In Table 2, we show the algorithms’ performance for small in-
stances where we can still compute Blue’s maximum utility (OPT)
via the bilevel program. In Table 3, we consider larger instances
where the optimum value is unknown. Note that higher values corre-
spond to a better performance of the algorithm, as we always report
Blue’s utility for Red’s best response.

From the results in Table 2, we can see that all heuristics perform
well on small instances. In particular, SA_Relax, SA, and Random2
find the optimal solution in all (but one) cases. However, SA_Relax
proves advantageous because it only needs a sixth of the running time
of the other two methods.

While our two heuristics SA and SA_Relax show a similar ap-
proximation quality for small instances, for larger instances (Table 3)
SA clearly outperforms SA_Relax. For the DEFAULT game setting,
using SA compared to SA_Relax even regularly leads to a doubled
utility for Blue. While this is a strong argument for using SA, SA’s
downside is its higher computational cost, needing over 7 hours to
solve instances with 75 targets.

Finally, we observe that both methods clearly outperform the Ran-
dom baseline, with SA consistently preserving an average of approx-
imately 20 more targets for the larger instances. This highlights that
the solution quality of the target ordering clearly increases through-
out the simulated annealing. Considering Random2, we find that re-
peatedly sampling orders (instead of only once) leads to a notice-
able utility increase. However, on the larger instances, Random2
performs even worse than SA_Relax while running as long as SA,
thereby combining the disadvantages of SA and SA_Relax. Overall,
our experiments highlight that Blue benefits from ordering the tar-
gets strategically instead of randomly.

6 Escape from Non-Coordinated Sensing

ESGs assume that the different sensors are controlled by a central
authority that computes the sensing plan. We now investigate the sit-
uation where these sensors are non-coordinated and each one acts in-
dependently based on a natural greedy algorithm. This happens when
sensors cannot easily exchange information and coordinate with each

N. Boehmer et al. / Escape Sensing Games: Detection-vs-Evasion in Security Applications3264



#targets
#sensors 2 3 5

5 1.79 ± 0.71,
0.61 ± 0.21

1.55 ± 0.65,
0.77 ± 0.02

1.02± 0.62,
0.98 ± 0.04

7 2.41 ± 0.78,
102 ± 36

2.29 ± 0.80,
116 ± 31

1.62± 0.72,
140 ± 29

8 2.96 ± 0.81,
1501 ± 354

2.33 ± 0.74,
1760 ± 38

1.7 ± 0.69,
1814 ± 23

9 n/a,
31358

n/a,
32541

n/a,
35376

Table 1. Scalability test of bilevel-program
(OPT) for DEFAULT game setting with τ = 2. For
n = 9, we report running time for one instance.
For all tables: each entry shows Blue’s average

utility (top) and running time in seconds (bottom).

Algo.
Setting

DEF EUC RAND

OPT 2.29 ± 0.80,
116 ± 31

1.952 ± 0.74,
126± 2.29

2.09 ± 0.87,
120 ± 25

SA 2.29 ± 0.80,
4.78 ± 0.38

1.951 ± 0.75,
4.96 ± 0.47

2.09 ± 0.87,
5.03 ± 0.69

SA_Relax 2.29 ± 0.80,
0.81 ± 0.03

1.952 ± 0.74,
0.84 ± 0.05

2.09 ± 0.87,
0.85 ± 0.08

Random 2.16 ± 0.84,
0.001

1.71 ± 0.83,
0.001

1.93 ± 0.92,
0.001

Random2 2.29 ± 0.80,
5.13 ± 0.16

1.952 ± 0.74,
5.25 ± 0.33

2.09 ± 0.87,
5.3 ± 0.46

Table 2. Comparison of algorithms to compute
Blue’s utility for different simulated game
settings, where n = 7, k = 3, and τ = 2.

Algo.
Setting

DEF EUC RAND

SA 15.96 ± 1.1,
28101 ± 563

18.4 ± 2.1,
27755 ± 928

17.3 ± 4.2,
27970 ± 1136

SA_Relax 8.76 ± 0.9,
49.6 ± 2.57

10.53 ± 2.32,
47.5 ± 0.86

12.3 ± 3.6,
49.7 ± 1.6

Random 6.19 ± 1.26,
0.001

6.86 ± 2.25,
0.001

9.68 ± 2.78,
0.001

Random2 8.27 ± 0.73,
25036 ± 311

9.54 ± 2.45,
24333 ± 211

11.68 ± 3.58,
26810 ± 295

Table 3. Comparison of algorithms to compute
Blue’s utility for different simulated game

settings, where n = 75, k = 10, and τ = 5. We
generate 9 instances per method.

other. Another motivation is when sensors are controlled by different
adversaries, each serving only their own interests and being unlikely
to coordinate their actions and share their reward. Both of these sce-
narios can occur in our motivating domain of piracy at large open
seas, as coordination between different groups is likely to be chal-
lenging. Different pirate groups might even refuse to coordinate at
all and instead directly compete with each other.

We model these situations by assuming that sensors have a pre-
defined ordering as s1, . . . , sk (as induced by fixed locations of the
sensors); for each sensor s ∈ S, as soon as a not previously sensed
target that s can sense passes s (i.e., s has the capabilities and is cur-
rently not recharging), s senses it, thereby greedily maximizing its
number of sensed targets.

Formally, given a target ordering σ, we construct a sensing plan
ψσ sequentially as follows. For each step 
 ∈ [n+ k− 1], if target ti
passes sensor sj in step 
, then we add ti to ψσ(sj) if the resulting
sensing plan remains valid with respect to σ (formally, for i ∈ [n]
and j ∈ [k] target σ−1(i) passes sensor sj in step i+ j − 1). As the
strategy of Red is fixed, the problem BEST BLUE RESPONSE Blue
faces is to pick a target ordering σ so that v(ψσ) gets maximized. In
the following, we study the computational complexity of this prob-
lem and solve it in computational experiments. By comparing the
answer of BEST BLUE RESPONSE to the value of the Stackelberg
equilibrium in the corresponding ESG we can ultimately answer how
much Red gains from being able to centrally control its sensors.

6.1 Algorithmic Analysis

Unfortunately, it turns out that computing Blue’s strategy is NP-
hard, even in restricted cases where each sensor can only sense one
target. Due to the sequential construction of Red’s sensing plan, this
reduction is our most intricate one:

Theorem 6. BEST BLUE RESPONSE is NP-complete, even if the
recharging time is ∞, i.e., each sensor can sense only one target,
each target has value 1, and the sum of each row and column in the
sensing matrix is at most four.

Proof Sketch. We focus on the variant where each sensor can only
sense one target. Interestingly, as discussed in more detail in our full
version [6] this problem shares some similarities with the NP-hard
MINIMUM MAXIMAL MATCHING problem, as we can view the sen-
sors and targets as two sides of a bipartite graph with sensor-target
pairs where the sensor senses the target corresponding to maximal
matchings in this graph. However, the ordering of the sensors makes
only certain maximal matchings in these graphs realizable, which is
why we instead show NP-hardness by reducing from a variant of 3-
SAT where each variable appears only twice positive and once neg-
ative. The core idea of our construction is the following: We add

a literal target for each literal. Moreover, for each clause, we add
a clause sensor and a clause target. The clause sensor is capable
of sensing the corresponding clause target as well as targets corre-
sponding to the three literals appearing in the clause. We add further
targets and sensors to the instance so that all clause targets need to
make it unsensed through the channel. This implies that each clause
sensor needs to sense a literal target as it will otherwise sense the
corresponding clause target in passing, i.e., we need to “cover” each
clause with a literal appearing in the clause. Now for each variable,
we add a slightly intricate gadget that ensures that we can either use
the targets corresponding to positive literals to cover clause sensors
(which corresponds to setting the variable to true) or the one target
corresponding to a negative literal (which corresponds to setting the
variable to false). Because we need to “cover” each clause, the in-
duced assignment is satisfying.

We can adopt a similar view as in Proposition 2 to solve the prob-
lem via dynamic programming. However, this time the dynamic pro-
gramming iteratively constructs the optimal target ordering and we
need to keep track of the previously used targets together with the
sensors used in the last τ + 1 timesteps. This results in a naive run-
ning time of O(n · 2n · (k + 1)τ+2), which can be improved to
O (

nχ ·
(∏nχ

i=1(
i + 1)
) · (k + 1)τ+2

)
if we incorporate types:

Proposition 7. BEST BLUE RESPONSE is solvable in
O (

nχ ·
(∏nχ

i=1(
i + 1)
) · (k + 1)τ+2

)
, where 
i is the num-

ber of targets of type γi.

6.1.1 ILP Formulation

Constructing an ILP for BEST BLUE RESPONSE turns out to be
slightly more challenging, as we need to encode Red’s greedy se-
quential behavior:

Proposition 8. There is an ILP formulation for BEST BLUE RE-
SPONSE with O(n2 · k) binary variables, O(n) integer variables,
and O(n2 · k) constraints.

Proof Sketch. We introduce for each target i ∈ [n] an integer vari-
able zi encoding the position in which the target appears. Moreover,
similar to Proposition 3, for each i ∈ [n] and j ∈ [k + 1], we add
a binary variable xi,j , which encodes whether ti is sensed by sensor
sj or whether the target makes it unsensed through the channel (for
j = k+1). We can add mostly straightforward constraints to ensure
that xi,j respects recharging times. The main challenge is to encode
the greedy behavior of the sensors (i.e., the ILP cannot have the free-
dom to pick the xi,j values arbitrarily to optimize Blue’s utility but
they are set according to sensors’ greedy behavior). For this, for each
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#targets
#sensors 2 3 5

5 2 ± 0.68,
0.007 ± 0.005

1.71 ± 0.57,
0.009 ± 0.005

1.32± 0.52,
0.01 ± 0.003

15 6.6 ± 1,
0.14 ± 0.35

6.29 ± 0.9,
0.32 ± 0.88

5.46 ± 0.87,
6.85 ± 22.9

20 9.05 ± 1.13,
0.52 ± 2.94

8.49 ± 1.01,
1.58 ± 4.4

7.56 ± 1.01,
229 ± 1261

25 11.38 ± 1.26,
6.8 ± 30.6

10.96 ± 1.29,
283 ± 1771

n/a,
22537

Table 4. Scalability test of ILP (OPT) for
DEFAULT game setting with τ = 2. For all tables:
each entry shows Blue’s average utility (top) and

running time in seconds (bottom).

Algo.
Setting

DEF EUC RAND

OPT 3.1± 0.86,
0.15 ± 0.37

3.25± 0.79,
0.25 ± 0.71

3.04 ± 0.78,
3.26 ± 8.77

SA 2.83 ± 0.81,
0.7± 0.02

2.92 ± 0.81,
0.71 ± 0.02

2.72 ± 0.8,
0.71 ± 0.018

SA_Relax 3.06 ± 0.88,
0.02

3.17 ± 0.81,
0.02

2.89 ± 0.82,
0.02

Random 1.9 ± 0.72,
0.001

2.15 ± 0.9,
0.001

1.9 ± 0.9,
0.001

Random2 2.91 ± 0.87,
0.81 ± 0.0004

3.11 ± 0.79,
0.81 ± 0.0004

2.89 ± 0.78,
0.83 ± 0.0004

Table 5. Comparison of algorithms for BEST
BLUE RESPONSE for different game settings,

where n = 10, k = 5, and τ = 2.

Algo.
Setting

DEF EUC RAND

SA 16.57 ± 1.64,
485 ± 20

17.2 ± 2.4,
470 ± 9.6

17.54 ± 3.27,
503 ± 20

SA_Relax 12.3 ± 1.58,
3.14 ± 0.35

13.11 ± 2.62,
2.84 ± 0.2

14.47 ± 2.96,
2.95 ± 0.2

Random 9.2 ± 1.99,
0.001

10.02 ± 2.77,
0.001

11.67 ± 3.07,
0.001

Random2 12.75 ± 1.03,
458 ± 15

12.98 ± 2.37,
437 ± 13

14.67 ± 3.18,
496 ± 19

Table 6. Comparison of algorithms for BEST
BLUE RESPONSE for different game settings,

where n = 75, k = 10, and τ = 5.

Algorithm 2 SA_Relax for BEST BLUE RESPONSE

Input: Initial target ordering σ and temperature T = 100

1: while T > 0.00001 do
2: Select a random neighbor σ̂ ∈ N(σ).

3: if e
v(ψσ̂)−v(ψσ)

T > random[0, 1] then
4: σ := σ̂.
5: T := T · 0.9.
6: Return σ.

i, i′ ∈ [n] and j ∈ [k], we add a binary variable yi,i′,j and add con-
straints so that yi,i′,j is equal to one if target i is sensed by sensor j
and because of this j recharges when i′ is passing, i.e., i “covers” i′.

To encode sensors’ greedy behavior, we want to add a constraint
that makes sure that in case xi,j = 1, the target needs to be cov-
ered by other targets for all sensors that are capable of sensing
it placed before j. Note that this together with another constraint
(
∑

j∈[k+1] xi,j = 1) in particular implies that each target is sensed
by the first sensor it passes which is not recharging, thereby encod-
ing the greedy behavior of sensors. Specifically, for each i ∈ [n] and
j ∈ [k + 1], we add:

∑

t∈[j−1]:Di,t=0

1+
∑

t∈[j−1]:Di,t=1

∑

i′∈[n]

yi′,i,t − (j − 1) (1)

≥ −n(1−
k+1∑

t=j

xi,t).

6.1.2 Heuristic

Since it will turn out that the ILP formulation cannot quickly solve
medium-to-large instances, we explore various simulated annealing-
based heuristics, similar to the approach discussed in Section 5. We
present the variant SA_Relax where a random neighbor is picked in
Algorithm 2. The other variant SA computes Blue’s utility v(ψσ̂)
for all neighbors and picks the one with the highest utility.

6.2 Experiments

We reuse the general setup described in Section 5, but naturally now
report Blue’s computed utility assuming that sensors act greedily.
Here, we let the Random2 method generate 1000 random orderings
in Table 5 and 5 · 105 random orderings in Table 6.

First of all, we evaluate the scalability of our ILP for BEST BLUE

RESPONSE (OPT) in Table 4. The ILP can solve the problem for
medium-sized instances with up to 25 targets in a few minutes. How-
ever, due to the complexity of the ILP modeling, already for 25 tar-
gets as soon as the number of sensors reaches 5, instances can take
more than 5 hours to solve. This is why the last line of the table only
reports the running time for one instance.

Next, we analyze the solution quality of our heuristic approaches.
On small instances presented in Table 5, our best heuristic algorithm
approximates the optimal solution quite well and the error is typ-
ically below 10% with the SA_Relax method consistently outper-
forming SA. Both heuristics outperform Random, while Random2
performs better than SA (yet still worse than SA_Relax, while hav-
ing a much longer running time). When moving to larger instances in
Table 6, the picture flips, as SA is now substantially outperforming
SA_Relax. This shows a general trend that the solution quality of SA
scales more favorably than that of SA_Relax (while the opposite is
naturally true for the running time). The heuristics again clearly out-
perform Random, with SA sensing approximately 15 more targets.
Random 2 performs similarly to the suboptimal heuristic SA_Relax,
while being slower by a factor of more than 100.

Finally, we are interested in exploring the power of coordination
for Red, i.e., the difference between the optimal utility Blue gets in
the non-coordinated setting explored in this section compared to its
utility in the Stackelberg equilibria from Section 5. We find that for
the small instances where we can compute the Stackelberg equilib-
rium exactly Red can reduce Blue’s utility by 10% to 20% through
coordination. For larger instance sizes, we no longer know the op-
timal solutions, which is why we resort to comparing the results of
the respective SA heuristics. We find that for larger instances, the
gap decreases with Red being only able to decrease Blue’s utility
by 5% through coordination in the instances from the DEFAULT set-
ting underlying Table 3. In our full version [6], we show that when
Red’s sensors are capable of sensing more targets, coordination is
more important sometimes leading to halving Blue’s utility.

7 Conclusion

By introducing Espace Sensing Games, we initiated the study of a
new class of games concerned with target arrangement and moti-
vated by security applications. We showed that while the worst-case
computational complexity of ESGs is prohibitive, our presented al-
gorithms still have a good performance in experiments.

There are multiple directions for future work emanating from our
work. First, pinpointing the precise complexity of computing Stack-
elberg equilibria remains a concrete open question. Second, there are
other variants of ESGs beyond those studied by us. For instance, it
would be possible to merge the settings studied in Sections 4 and 6
into a game where sensors act greedily but Red can control the or-
dering of the sensors. In this game variant where both Red and Blue
need to pick orders, it would also be possible to study simultaneous
play or Stackelberg equilibria where Red moves first. Lastly, there
are various other target arrangement problems to be studied. One ex-
ample could be a game where Blue needs to place targets on a grid
and Red cannot sense any two targets placed close to each other.
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