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Abstract. We study two-stage committee elections where voters
have dynamic preferences over candidates; at each stage, a commit-
tee is chosen under a given voting rule. We are interested in identify-
ing a winning committee for the second stage that overlaps as much
as possible with the first-stage committee. We show a full complex-
ity dichotomy for the class of Thiele rules: this problem is tractable
for Approval Voting (AV) and hard for all other Thiele rules (includ-
ing, in particular, Proportional Approval Voting and the Chamberlin–
Courant rule). We extend this dichotomy to the greedy variants of
Thiele rules. We also explore this problem from a parameterized
complexity perspective for several natural parameters. We comple-
ment the theory with experimental analysis: e.g., we investigate the
average number of changes in the committee as a function of changes
in voters’ preferences and the role of ties.

1 Introduction

A local town council advisory committee is responsible for making
decisions on various community issues such as education, infrastruc-
ture, and public services. Elections are held biennially to fill the po-
sitions on this committee. Numerous residents, each with their own
platform and priorities for the town’s development, step forward as
candidates for the election to this advisory committee. Voters from
different neighborhoods and demographics then go to the polls to
elect members of this committee, to make decisions on their behalf.

Between election cycles, due to varying campaign performances
and evolving community concerns, some voters change their pref-
erences over the candidates. While the voting rule to be used to se-
lect the advisory committee is fixed by the bylaws, it often results in
multiple tied committees, i.e., it does not fully determine the election
outcome. There are many ways to break these ties; in particular, one
may want to maintain contiguity by prioritizing committees that have
a substantial overlap with the previous committee, so as to build on
the existing expertise and maintain stability, while remaining repre-
sentative of the population’s preferences.

This problem can be viewed through the lens of multiwinner tem-
poral voting, a natural temporal extension of the well-studied mul-
tiwinner voting model (see the taxonomy of Boehmer and Nieder-
meier [2] and a survey by Elkind et al. [19]). In multiwinner tempo-
ral elections, a set of voters have dynamic preferences over a set of
candidates, and we want to elect a committee at each timestep. In this
work, we seek to study, given a voting rule, how winning committees
adapt to changes in the voters’ preferences in situations where it is
undesirable to replace many committee members at once.
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Our Contributions We consider two-stage elections that use a
fixed voting rule to select a winning committee at each stage; the vot-
ers have approval preferences that may evolve between the stages.
When the first-stage committee is elected, the second-stage prefer-
ences are not yet known. Hence, a winning committee is chosen arbi-
trarily from the committees tied for winning. In the second stage, the
goal is to identify a committee that wins under the new preferences,
yet has as much overlap as possible with the first-stage committee.

We consider this problem for the well-known class of Thiele
rules [32] (this class includes, in particular, Approval Voting
(AV) [4], Proportional Approval Voting (PAV) [41], and the
Chamberlin–Courant rule (CCAV) [11]) and their greedy variants.
In Section 3, we present a full complexity classification of our deci-
sion problem for Thiele rules. In particular, we obtain a dichotomy:
the decision version of our problem is in P for Approval Voting (AV)
(Section 3.1), and coNP-hard for all Thiele rules other than AV (Sec-
tion 3.2 and Section 3.3). We then extend this dichotomy to all greedy
Thiele rules (Section 4); surprisingly, our problem remains hard for
all rules other than AV, even though under greedy Thiele rules, com-
puting a single winning committee is computationally tractable. To
complement our hardness results, we provide parameterized com-
plexity results for a selection of natural parameters and their com-
binations (Section 5). Finally, we use experiments to obtain quanti-
tative results (Section 6): we measure the amount of change in the
committees as a function of change in voters’ preferences, and inves-
tigate the role of ties. In particular, our experiments show that simply
breaking ties lexicographically is far from optimal with respect to the
contiguity objective, thereby justifying our theoretical analysis.

All missing proofs and additional experimental results can be
found in the full version of our paper [44].

Related Work Our analysis extends the line of work initiated by
Bredereck et al. [8], but our model and contributions differ from
theirs in several key aspects: Bredereck et al. [8] study a model where
(i) committees are not selected from the set of winning committees
output by a voting rule, but need to satisfy a lower bound on their
score (via a single non-transferable vote committee scoring rule),
(ii) the subsequent committees need not be of the same size, and (iii)
voters preferences in all stages are known at the start. In contrast,
we consider a large class of popular voting rules and require each
selected committee to win under a given rule for a fixed committee
size; moreover, our model is more realistic in that it does not assume
that the second-stage preferences are known initially.

Other papers in this vein include the work of Bredereck et al. [6],
that considered maximizing the changes made to a committee (the
“revolutionary” setting) to find diverse committees, and the paper by
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Deltl et al. [15], which looks into treating agents fairly.
Our work is also related to the study of robustness in temporal

voting [7]. Bredereck et al. [7] conducted an axiomatic study of sev-
eral voting rules, focusing on the worst-case change that may have to
be made to a winning committee after a single change was made to
some agent’s preference. Conversely, for a given election and a vot-
ing rule, they ask for the minimum number of changes to the agents’
preferences so that the election outcome changes (in any way) under
the given rule. This framework was subsequently adapted and stud-
ied in approval-based elections [24], for greedy approval-based rules
[21], and for nearly-structured preferences [34].

Our work is different in that we go beyond this worst-case mea-
sure and conduct a more fine-grained analysis, where we ask by how
much a winning committee needs to change in a given altered elec-
tion and study the related computational problems. Moreover, Bred-
ereck et al. [7] and Faliszewski et al. [21] assume a fixed tie-breaking
order of candidates, whereas we study rules under parallel-universe
tie-breaking. Further, while most of the prior work focuses on a few
easy-to-compute rules, in our work, we focus on the important class
of Thiele rules and their greedy variants.

There are also models of temporal voting where a single winner
is chosen at each timestep. These works generally consider temporal
extensions of popular multiwinner voting rules and study various ax-
iomatic properties [30, 31], welfare measures [18, 35], or extensions
of the justified representation axioms and its variants [9, 16, 12, 20].
Other works look into the special case of fair scheduling, where pref-
erences and the outcome are permutations of candidates [17].

We note that similar problems have also been studied (albeit under
different names) in the context of stable matching [5], coloring [27],
clustering [13, 33], and reoptimization [10, 39].

2 Preliminaries

Given a logical expression ϕ, we use the Iverson bracket notation [ϕ]
to denote the evaluation of that expression: [ϕ] = 1 if ϕ is true and
[ϕ] = 0 otherwise. We assume familiarity with the basics of classic
complexity theory [37] and parameterized complexity [22, 36].

Elections Let C = {c1, . . . , cm} be a set of m candidates, and let
N = {1, . . . , n} be a set of n voters. Each voter i ∈ N has approval
preferences over candidates in C, captured by a ballot vi ⊆ C; we
require that vi �= ∅. Let V = (v1, . . . , vn). We refer to the pair
(C, V ) as an election.

Rules A multiwinner voting rule R maps an election E = (C, V )
and an integer k ∈ [|C|] to a non-empty family of sets R(E, k),
where each set in R(E, k) is a size-k subset of C. The sets in
R(E, k) are called the winning committees for E underR.

In this work, we focus on a well-studied class of voting rules
known as Thiele rules [29, 32], and their greedy variants. We say that
a function λ : N+ → [0, 1] is an Ordered Weighted Averaging (OWA)
function if λ(1) = 1 and λ is non-increasing, i.e. for all i, j ∈ N

+ it
holds that i > j implies λ(i) ≤ λ(j) [21]. In what follows, we as-
sume that all OWA functions λ we consider take values in Q ∩ [0, 1]
and are polynomial-time computable. Each OWA function λ defines
a Thiele rule Rλ as follows. Given an election E = (C, V ) and a
committee size k ∈ [|C|], the λ-score of a candidate set S ⊆ C in

E is defined by: λ-scoreE(S) =
∑

i∈N

(∑|S∩vi|
j=1 λ(j)

)
. The rule

Rλ then outputs all size-k subsets of C with the maximum λ-score:
Rλ(E, k) = argmax{λ-score(S) | S ∈ (

C
k

)}. We omit λ and/or E
whenever it is clear from the context. This framework captures many
well-known voting rules. Specifically,

• λ(i) = 1 for all i ∈ N
+ corresponds to the Approval Voting (AV)

rule [4];
• λ(i) = 1/i for all i ∈ N

+ corresponds to the Proportional Ap-
proval Voting (PAV) rule [41]; and

• λ(i) = [i = 1] for all i ∈ N
+ corresponds to the Chamberlin–

Courant Approval Voting (CCAV) rule [11].

The AV rule is appropriate when the aim is to select a group of in-
dividually excellent candidates, whereas CCAV aims to represent as
many voters as possible; the PAV rule provides strong proportional
representation guarantees [32]. We say that an OWA function λ (and
the associated Thiele rule Rλ) is unit-decreasing if λ(1) = 1 >
λ(2). AV is not unit-decreasing, whereas PAV and CCAV are. Intu-
itively, unit-decreasing rules capture that the voters’ marginal utility
from having an additional representative in the winning committee is
lower than their utility from being represented at all.

Since committees under both PAV and CCAV are NP-hard to com-
pute [1, 38, 42], there exist greedy approximation variants of these
rules, which are based on the notion of marginal contributions. Given
an election E = (C, V ), a subset S ⊆ C of candidates and an OWA
function λ, we define the marginal contribution (or points) of a can-
didate c ∈ C \S with respect to S as λ-score(S∪{c})−λ-score(S).
Then, the greedy variant of a Thiele rule Rλ, which we denote by
Greedy-Rλ, outputs all committees that can be obtained by the fol-
lowing iterative procedure: start with an empty committee S and per-
form k iterations; at each iteration, add a candidate in C \ S with
maximum marginal contribution to S under λ (at each iteration there
may be multiple candidates with maximum marginal contribution to
the current committee; a committee is in the output of the rule if
it can be obtained by some way of breaking these ties at each it-
eration). Clearly, a committee in the output of Greedy-Rλ can be
computed in polynomial time (recall that we assume that λ itself is
polynomial-time computable). We note that Greedy-AV is equivalent
to AV; however, other Thiele rules differ from their greedy variants.

Distances Given two committees S, S′ ⊆ C of equal size k, we
define the distance between S and S′ as dist(S, S′) = k− |S ∩S′|.

To this end, we define elementary ADD and REMOVE operations
on elections. An ADD operation adds a previously unapproved can-
didate to the ballot of a single voter. A REMOVE operation removes
a single candidate from a single voter’s ballot. Then, the distance be-
tween two elections E and E′, denoted Dist(E,E′), is defined as
the length of the shortest sequence of ADD and REMOVE operations
that transforms E into E′ (and +∞ if E cannot be transformed into
E′ using these two operations).

Decision Problem We are now ready to present the family of deci-
sion problems we are interested in.

RESILIENT COMMITTEE ELECTIONS (R-RCE):
Input: Elections E = (C, V ) and E′ = (C, V ′) over the
same set of candidates C, a committee size k ∈ N, a win-
ning committee S ∈ R(E, k), and a distance bound � ∈ N.
Question: Does there exist a committee S′ ∈ R(E′, k)
such that dist(S, S′) ≤ �?

3 A Dichotomy for Thiele Rules

We present a full complexity classification of RCE for Thiele rules.
RCE is tractable for AV and hard for all other Thiele rules. To
show this, we proceed in three steps: first (Section 3.1) we present

V. Zech et al. / Multiwinner Temporal Voting with Aversion to Change 3237



a polynomial-time algorithm for AV, then (Section 3.2) we give a
hardness proof for all unit-decreasing Thiele rules, and finally (Sec-
tion 3.3) we extend it to all Thiele rules other than AV. Our hardness
result for unit-decreasing Thiele rules also establishes that this prob-
lem is coW[1]-hard with respect to the committee size k.

3.1 Tractability for Approval Voting

We first observe that RCE is easy for Approval Voting.

Proposition 3.1. AV-RCE admits a polynomial-time algorithm.

Proof. Consider two elections E = (C, V ) and E′ = (C, V ′) over
a candidate set C = {c1, . . . , cm}. Let k ∈ N be the commit-
tee size and let S ∈ R(E, k) be a winning committee for E. For
each c ∈ C, let s(c) be the approval score of c in E′. Without loss
of generality, assume that s(c1) ≥ · · · ≥ s(cm). Then, we par-
tition C into three disjoint sets: Cabove = {cj | s(cj) > s(ck)},
Cequal = {cj | s(cj) = s(ck)}, and Cbelow = {cj | s(cj) < s(ck)}.
A winning committee under AV in E′ must include all of the can-
didates in Cabove and k − |Cabove| candidates from Cequal; by con-
struction, 0 < k − |Cabove| ≤ |Cequal|. Thus, we construct a com-
mittee S∗ by first including all candidates from Cabove as well as
min{k−|Cabove|, |Cequal∩S|} candidates from Cequal∩S. We then fill
the committee with arbitrary candidates from Cequal. Obviously, the
resulting committee S∗ wins in election E′ under AV. Furthermore,
our approach ensures that S∗ contains as many candidates from S
as possible. Finally, we check if dist(S, S∗) ≤ �. As all steps are
computable in polynomial time, this concludes the proof.

3.2 Hardness for Unit-Decreasing Thiele Rules

We will now present our hardness result for unit-decreasing Thiele
rules. Our proof also shows parameterized hardness with respect to
the committee size, and applies even to the case where E and E′

differ only in a single approval.

Theorem 3.2. For every unit-decreasing Thiele rule R and ev-
ery fixed value of � ∈ [k − 1] the problem R-RCE is coNP-
hard and coW[1]-hard when parameterized by the committee size
k, even if every voter approves at most two candidates, and even if
Dist(E,E′) = 1.

Proof. We reduce from INDEPENDENT SET (IS). An instance of
IS is a pair (G, κ), where G = (V, E) is an arbitrary graph and
κ ∈ N is a non-negative integer. It is a yes-instance if there is an
independent set of size κ in G, and a no-instance otherwise. IS is
NP-hard and W[1]-hard when parameterized by the solution size κ.
Given an instance (G, κ) of IS where G = (V, E) and |V| = ν, we
construct an instance ofR-RCE as follows.

We set committee size k to κ. In election E, the set of candidates C
is defined as CV ∪D, where CV = {cw | w ∈ V} is the set of vertex
candidates, and D is a set of k dummy candidates. Let α = λ(2),

where λ is the underlying OWA function ofR, and let t =
⌈

2
1−α

⌉
.

We introduce the following four voter groups in election E.

1. For every edge {u,w} ∈ E , there are t edge voters who approve
the vertex candidates cu and cw.

2. For every vertex w ∈ V , there are (ν − deg(w)) · t voters who
approve the vertex candidate cw.

3. For every pair of candidates d ∈ D and cw ∈ CV , there are t
voters who approve both d and cw.

4. For every dummy candidate d ∈ D, there are k · t voters who
approve d.

Note that every candidate is approved by exactly (ν + k) · t voters.
Since no two dummy candidates are approved by the same voter,

the size-k committee D has the maximum possible score of k · (ν +
k) · t in election E. Therefore, D ∈ R(E, k).

Now, consider an election E′ = (C, V ′), where V ′ is obtained by
picking an arbitrary candidate d∗ ∈ D and an arbitrary voter i who
approves d∗ and some vertex candidate, and removing d∗ from i’s
ballot. Then the score of the committee D in E′ is k · (ν+ k) · t− 1.
We will show that D wins in election E′ if and only if there is no
size-κ independent set in graph G and that otherwise, every winning
committee S ∈ R(E′, k) is entirely disjoint from D, i.e., D∩S = ∅.
Note that this generalizes the statement to all values of � ∈ [k − 1].

(⇒) Assume that there is an independent set I of size κ in graph
G, and let SI = {cw | w ∈ I} be the size-k committee that corre-
sponds to the vertices in I . Since I is an independent set, no two can-
didates in SI are approved by the same voter, so the score of SI in E′

is k ·(ν+k)·t. Moreover, SI∩D = ∅. Assume for contradiction that
there is a committee S ∈ R(E′, k) such that S ∩D �= ∅, i.e., there
is a candidate d ∈ S ∩D. Since score(D,E′) = k · (ν + k) · t− 1,
it must hold that S �= D, i.e., there is a candidate c ∈ S ∩ CV .
However, then there are t voters who approve both d and c. There-
fore, the score of S is at most k · (ν + k) · t − (1 − α) · t. Now,
since R is a unit-decreasing Thiele rule, we have α < 1 and, hence,
score(SI , E

′) > score(S,E′). Thus, S �∈ R(E′, k), a contradiction.
(⇐) Assume that there is no independent set I of size κ in G.

Assume for contradiction that there is a size-k committee S ⊆ C
such that score(S,E′) > score(D,E′), i.e., D /∈ R(E′, k). Then
S ∩CV �= ∅; let c be some candidate in S ∩CV . Now, if S ∩D �= ∅,
there exists a candidate d ∈ S, and t voters who approve both c and
d. Similarly, if S ∩ D = ∅, we have S ⊆ CV . Since S does not
correspond to an independent set, there are at least t edge voters who
approve two candidates in S. Therefore, in either case, the score of S
is at most k ·(ν+k) ·t−(1−α) ·t. But then t =

⌈
2

1−α

⌉
implies that

the quantity score(D,E′)−score(S,E′) = (k ·(ν+k) ·t−1)−(k ·
(ν+k) ·t−(1−α) ·t) = (1−α) ·t−1 = (1−α) ·

⌈
2

1−α

⌉
−1 ≥ 1,

i.e., D has a strictly higher score than S in E′, a contradiction.
Note that the committee size k in our constructed election is equal

to the solution size κ of the given IS instance. Therefore, our reduc-
tion is parameter-preserving.

Note that we do not claim thatR-RCE is coNP-complete; because
in the naive guess-and-check approach, one would first guess a com-
mittee S′ with a low enough distance from the original committee
S, which indicates to the class NP. Then to verify that the chosen
committee S′ wins in the altered election, one would guess a sec-
ond committee S′′ and check if S′′ has a higher score than S′ in the
altered election, which indicates to the class coNP.

3.3 Beyond Unit-Decreasing Thiele Rules

Consider a Thiele rule Rλ that is not unit-decreasing. This means
that λ(1) = λ(2) = 1. Then either λ(i) = λ(j) for all i, j ∈ N (i.e.,
Rλ is the Approval Voting rule) or there exists an s > 1 such that
λ(j) = 1 for all j ≤ s and λ(s+ 1) < 1.

In the latter case, we can modify the proof of Theorem 3.2 by (1)
adding a set of s−1 candidates F that are approved by all voters, and
(2) increasing the committee size by s − 1. Then in both E and E′,

V. Zech et al. / Multiwinner Temporal Voting with Aversion to Change3238



every committee with the maximum score would contain F . More-
over, F ∪D is optimal for Rλ in E, and it remains optimal in E′ if
and only if the underlying graph does not admit an independent set
of size κ. This establishes thatRλ-RCE is coNP-hard.

We are now ready to state our dichotomy result.

Theorem 3.3. Consider a Thiele ruleR associated with the OWA λ.
If λ(i) = 1 for all i ∈ N

+, then the problemR-RCE is polynomial-
time solvable. Otherwise, it is coNP-hard and coW[1]-hard when
parameterized by k. These hardness results hold for all fixed � ∈
[k−s] where s ∈ N

+ is the smallest number such that λ(s+1) < 1,
and even if Dist(E,E′) = 1.

4 A Dichotomy for Greedy Thiele Rules

In this section, we focus on greedy Thiele rules, and establish a di-
chotomy result that is similar to Theorem 3.3: if Greedy-Rλ is a
greedy Thiele rule, Greedy-Rλ-RCE is NP-hard unless λ(i) = 1
for all i ∈ N

+ (i.e., unless Greedy-Rλ is AV). This is despite greedy
Thiele rules having better computational properties than Thiele rules:
e.g., it is easy to find a winning committee under a greedy Thiele rule.

However, our argument becomes much more involved. Again, we
start by establishing a hardness result for unit-decreasing rules. Our
hardness reduction for this class of rules proceeds in two steps. We
first define a new problem, which we call CANDIDATE INCLUSION

(CI) and show it to be NP-hard for greedy unit-decreasing Thiele
rules. We then give a reduction from CI to RCE.

For a fixed voting rule R, an instance of R-CI comprises of an
election E = (C, V ), a committee size k ∈ N and a set of candi-
dates P ⊆ C; it is a yes-instance if there exists a winning committee
S ∈ R(E, k) such that P ⊆ S, and a no-instance otherwise. This
problem can be seen as a generalization of the WINNER CHECKING

(WC) problem studied by Aziz et al. [1], i.e., the task of checking
whether a given committee is among the winners in a given election.

We provide a high-level idea of our hardness proof of CI, and defer
the full proof (which is quite technical) to the full version [44].

Proposition 4.1. For every greedy unit-decreasing Thiele rule
Greedy-R and size of |P | ∈ [1, k], Greedy-R-CI is NP-hard.

Proof idea. Fix a greedy unit-decreasing Thiele rule Greedy-R.
We reduce from RESTRICTED EXACT COVER BY THREE SETS

(RX3C) [26], which is a variant of EXACT COVER BY THREE SETS

[23]. An instance of RX3C comprises of a finite set of elements
U = {u1, . . . , u3h} and a family M = {M1, . . . ,M3h} of size-
3 subsets of U such that every element of U belongs to exactly three
sets inM; it is a yes-instance if there is a selection of exactly h sets
fromM whose union is U , and a no-instance otherwise.

Given an instance (U ,M) of RX3C, we construct an instance of
Greedy-R-CI with an election E, a subset P of candidates, and a
committee size k. Our set of candidates contains a set candidate for
every set in M, as well as three candidates p, d, and x. We set the
committee size k to 3h + 2. We construct voters so that x is cho-
sen in the first iteration, followed by a selection of h set candidates.
Then, in the (h + 1)-th iteration, we reach the critical point where
candidate p can be selected if and only if the previously selected set
candidates correspond to an exact cover of U , and otherwise, candi-
date d is selected as a default. In the final 2h iterations, all remaining
set candidates are selected. The set P consists of candidate p and an
arbitrary number of set candidates. Then, there is a winning com-
mittee S ∈ Greedy-R(E, k) with P ⊆ S if and only if U can be
covered with h sets fromM.

By reducing CI to RCE, we establish the following:

Theorem 4.2. For every greedy unit-decreasing Thiele rule
Greedy-Rλ and for every distance between committees � ∈ [k − 1],
Greedy-R-RCE is NP-hard, even if Dist(E,E′) = 1.

Proof idea. We give a reduction from Greedy-R-CI to Greedy-R-
RCE. Fix a greedy unit-decreasing Thiele rule Greedy-R. Given an
instance (Ẽ = (C̃, Ṽ ), P̃ , k̃) of Greedy-R-CI, we construct an in-
stance of Greedy-R-RCE as follows. We create two wrapper elec-
tions E and E′ at distance of 1 from each other. In E and E′, we
include all candidates in C̃ and all voters in Ṽ , an additional set B
of k̃−|P̃ | candidates, as well as two control candidates x and y. We
set the committee size k to k̃ + 2. We construct voters in election
E so that candidate x can be chosen in the first iteration. Once x is
selected, all candidates in C̃ \ P̃ lose sufficiently many points that
they will not be selected in any of the subsequent iterations. Thus, all
candidates in B∪ P̃ need to be chosen, before y is chosen in the final
iteration. Therefore, the size-k committee S = B ∪ P̃ ∪{x, y} wins
in election E, i.e., S ∈ Greedy-R(E, k).

In contrast, we construct the voters in E′ so that y must be se-
lected in the first iteration. Once y is selected, all candidates in B
lose sufficiently many points that they will not be selected in any of
the subsequent iterations. Then, in the following k̃ iterations, candi-
dates from C̃ must be chosen, before x is chosen in the final iteration.
Thus, the intersection between S and a winning committee S′ in E′

can only contain x, y, and candidates in P̃ .
After y has been chosen and before x is chosen, Greedy-R op-

erates on E′ in the same way as it would on Ẽ. This implies that
Greedy-R(E′, k) = {S̃ ∪ {x, y} | S̃ ∈ Greedy-R(Ẽ, k̃)}, i.e., a
committee S′ is winning in E′ if and only if it consists of candidates
x and y and all candidates from a winning committee in Ẽ. We set
the allowed difference � between committees in our RCE instance to
k−|P̃ |−2, i.e., at least |P̃ |+2 candidates need to appear in both win-
ning committees. Since x and y will always be chosen, this implies
that a selection of at least |P̃ | candidates from S̃ need to be present
in both S and S′, which are exactly the candidates from P̃ . This en-
sures that the given instance of Greedy-R-CI is a yes-instance if and
only if our constructed Greedy-R-RCE instance is a yes-instance.

The above establishes hardness for all values of � ∈ [k−3]. Recall
that Greedy-R-CI is NP-hard for every size of |P | ≥ 1, and we
remark that the distance between committees in E and E′ can be
increased by 2 by setting k to k̃ + 1. Then, under Greedy-R, y will
not be chosen in the last iteration on E, and x will not be chosen in
the last iteration on E′. Thus, one can verify that we obtain hardness
for the complete range of � ∈ [k − 1].

Recall that Greedy-AV is equivalent to AV and hence Greedy-AV-
RCE is polynomial-time solvable. On the other hand if λ(s) = 1,
λ(s + 1) < 1, we can use the same construction as in the proof of
Theorem 3.3, i.e., modify the proof of Theorem 4.2 by increasing the
committee size by s and adding s candidates approved by all voters.
We obtain the following corollary.

Corollary 4.3. Consider a greedy Thiele rule Greedy-R associated
with the OWA λ. If λ(i) = 1 for all i ∈ N

+, then Greedy-R-RCE is
polynomial-time solvable. Otherwise, it is NP-hard. The result holds
for all � ∈ [k − s], where s ∈ N

+ is the smallest number such that
λ(s+ 1) < 1, and even if Dist(E,E′) = 1.

Previously, we have motivated the RCE problem with settings in
which it is costly to replace any member of an already implemented
winning committee. In these settings, we are mostly interested in the
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computational complexity for small values of the parameter �, i.e.,
we allow for only very few candidates to be replaced. However, in
other scenarios, one might mostly be concerned that there is at least
some intersection between subsequent winning committees. For in-
stance, imagine a scenario where the board of directors of an organi-
zation is elected periodically. When a new board is elected without
a candidate who was also part of the previous board, there might
not be an adequate handover. As this would likely lead to a great
reduction in productivity since the new board members will have to
be acquainted with their roles completely independently, one might
suggest that at least a few board members should be part of two sub-
sequent boards of directors. We can think of this scenario in the light
of a transition of power. With regard to the RCE problem, these types
of scenarios motivate the study of the computational complexity for
small values of k − � > 0, i.e., situations in which we want at least
k− � candidates to stay in the committee. However, we see that such
a problem is still computationally hard, with the following result.

Theorem 4.4. For every greedy unit-decreasing Thiele rule
Greedy-Rλ and for every fixed value of k − � ∈ N

+, parameterized
by the solution size k, Greedy-R-RCE is W[1]-hard, even if every
voter approves at most two candidates, and even if Dist(E,E′) = 1.

5 Parameterized Complexity Results

Next, we consider RCE for Thiele rules and their greedy variants
from a parameterized complexity perspective. We present tractability
results (FPT and XP) for some parameters, which are not already
ruled out by the results in the previous section.

5.1 Thiele Rules

Fix a Thiele ruleR. IfR is unit-decreasing, then, according to The-
orem 3.2, unless FPT = coW[1], no algorithm can solve an instance

I of R-RCE in O
(
f(k) · |I|O(1)

)
time, where k is the committee

size and f is some computable function. Thus, we cannot hope for
an FPT algorithm with respect to k that works for all Thiele rules.
However,R-RCE admits a simple algorithm that is XP with respect
to k and FPT with respect to |C| = m.

Proposition 5.1. For every Thiele rule R the problem R-RCE is
FPT in m and XP in k.

Proof. Given an R-RCE instance (E,E′, S, k, �), we can go over
all size-k subsets of C, evaluate their scores in E′, and check if one
of the committees with the maximum score is at distance at most �
from S. There are

(
m
k

) ≤ mk ≤ mm committees to consider; for
each, itsR-score in E′ can be computed in polynomial time.

Further, our problem is fixed-parameter tractable with respect to
the combined parameter n + k, where n is the number of voters.
This proof, as well as some of the subsequent proofs, is based on
the idea that we can partition the candidates in E′ into at most 2n

non-empty candidate classes, so that all candidates in each class are
approved by the same voters.

Proposition 5.2. For every Thiele rule R the problem R-RCE is
FPT in n+ k.

Proof. Given a Thiele ruleR and an RCE instance (E,E′, S, k, �),
we construct an election Ẽ = (C̃, Ṽ ) with |C̃| ≤ k · 2n such that
there is a committee S̃ ∈ R(Ẽ, k) with dist(S, S̃) ≤ � if and only

if there is an S′ ∈ R(E′, k) with dist(S, S′) ≤ �. The candidate
set C̃ contains all k candidates in S, and, for every candidate class
K, an arbitrary selection of at most k − |K ∩ S| of candidates from
K \ S. The profile Ṽ is then obtained by restricting V to C̃. Since
S ⊆ C̃, and all candidates within each class are interchangeable, we
can assume without loss of generality that a committee in R(E′, k)
that minimizes the distance to S is a subset of C̃. We can therefore
use the same approach as in the proof of Proposition 5.1, i.e., go
through all size-k subsets of C̃, compute their score in Ẽ and distance
to S. The bound on the running time follows from the analysis in
Proposition 5.1 and the fact that |C̃| ≤ 2n · k.

Whether this result can be strengthened to a fixed-parameter
tractable algorithm with respect to n alone remains an open ques-
tion. However, we can place our problem in FPT with respect to n
for a specific well-studied rule, namely, CCAV.

Proposition 5.3. CCAV-RCE is FPT in n.

5.2 Greedy Thiele Rules

Greedy Thiele rules are less computationally demanding than Thiele
rules. As such, all easiness results from Section 5.1 extend to greedy
Thiele rules; moreover, some variants of our problem that are hard
for Thiele rules (under a suitable complexity assumption) admit FPT
algorithms for greedy Thiele rules. For instance, by Theorem 4.4, if
R is a Thiele rule, R-RCE is coW[1]-hard with respect to k even
for fixed �. In contrast, our next proof shows that Greedy-R-RCE is
FPT in k for any fixed value of �.

Proposition 5.4. For every greedy Thiele rule Greedy-R the prob-
lem Greedy-R-RCE is FPT in k for every fixed value of � ∈ N, as
well as FPT in m and XP in k.

Proof. Given an RCE instance (E,E′, S, k, �), we guess a subset of
candidates S− ⊆ S, |S−| ≤ � to be replaced, and a subset of can-
didates S+ ⊆ C \ S, |S+| = |S−|, to replace them. Note that for
S′ = (S \S−)∪S+ we have dist(S, S′) ≤ �, and there are at most(
k
�

) ·(m−k
�

)
pairs (S−, S+) to consider (polynomially many for con-

stant �, and at most 2k ·mk, as � ≤ k). We then guess a permutation
π of S′ and check if the rule Greedy-R can select the candidates in
S′, in the order specified by π. There are k! permutations to consider,
so the bounds on the running time follow.

Just as for Thiele rules, we combine the approach of Proposi-
tion 5.4 with the idea of partitioning candidates into classes to design
an algorithm that is FPT in n+ k.

Proposition 5.5. For every greedy Thiele rule Greedy-R the prob-
lem Greedy-R-RCE is FPT in n+ k.

For Greedy-CC, we can strengthen this result from FPT in n+ k
to FPT in n; it remains an open problem if a similar tractability result
holds for other greedy Thiele rules.

Proposition 5.6. Greedy-CC-RCE is FPT in n.

6 Experiments

To complement our theoretical analysis, we conduct experiments
to gain insights into the practical facets of our problem. Thereby,
we also contribute to the small, growing body of experimental
work on approval-based elections [3]. Given that computing a win-
ning committee for most Thiele rules is already computationally
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intractable, we focus on two popular greedy Thiele rules: Greedy-
CC and Greedy-PAV.

Our experiments focus on the following three questions. Q1: How
resilient are winning committees under Greedy-CC and Greedy-PAV,
i.e., how much do they need to change when votes do? Q2: How
good are solutions of RCE obtained by employing lexicographical
tie-breaking when computing the original and updated winning com-
mittee? Q3: Is there a correlation between (i) the round in which the
greedy rule included a candidate in the committee and (ii) how often
the candidate gets replaced after changes in the votes occur?

In Experiments 1 and 3, we assume lexicographical tie-breaking
in the computation of Greedy-CC and Greedy-PAV, i.e., we break
ties based on some fixed order of candidates whenever multiple can-
didates have the same marginal contribution. This implies that both
rules become resolute, i.e., they return a unique winning committee.
In particular, this allows us to solve RCE in polynomial time. The
code for our experiments is available online [43].

Experimental Design We consider two different models for gen-
erating approval-based preferences, both of which are well-studied
in the literature [3, 14, 25, 40].

• In the 1D-Euclidean Model (1D), each voter v (resp. candidate
c) is assigned (uniformly at random) a point pv (resp. pc) in the
interval [0, 1]. The model is parameterized by a radius τ ∈ [0, 1].
A voter v approves of a candidate c if and only if |pv − pc| ≤ r.

• In the 2D-Euclidean Model (2D), each voter and candidate is as-
signed (uniformly at random) a point in the unit square [0, 1] ×
[0, 1]. A voter v approves of a candidate c if and only if the Eu-
clidean distance between their points is at most the radius τ .

We focus on elections with n = 1000, m = 100, and commit-
tee size k = 10, which is standard in the literature [3]. We set the
radius for the 1D (resp. 2D) model to 0.051 (resp. 0.195), so that,
on average, every voter approves around 10 candidates. In all three
experiments, we sample 100 elections for each of the two models.

We also conduct experiments for a greater range of radii, a sam-
pling method known as Resampling, as well as for 1D and 2D models
in combination with Resampling. Due to space constraints, we defer
the model definitions and detailed trends to our full version [44], and
only briefly highlight the differences to the above sampling models.

To capture change in the votes, we consider three different opera-
tions: ADD, REMOVE, and MIX. Given a number r of changes to be
performed, for ADD, we uniformly at random add r new approvals to
the elections (i.e., we sample an r-subset of all voter-candidate pairs
where the voter does not approve the candidate). For REMOVE, we
uniformly at random delete r existing approvals from the election,
whereas for MIX, we add and remove �r/2� approvals each.

We consider different levels of change as determined by a change
percentage p ∈ [0%, 10%]. For an election E, a change percentage of
p corresponds to making r = �app(E) · p� changes, where app(E)
is the total number of approvals in E. We consider 15 change per-
centages, quadratically scaled, to ensure that smaller amounts of
changes are captured in greater detail.

Experiment 1: Resilience of Greedy Thiele Rules We analyze the
resilience of winning committees, i.e., how much they change when
voters’ preferences change, and how this depends on the voting rule
and operation type. For this, for each considered level of change p
and election E, we perform 100 iterations. For each iteration, we
sample an election E′ by applying r = �app(E) · p� changes and
compute the distance between the winning committee in E and E′.

(a) Greedy-CC, 1D, τ = 0.051 (b) Greedy-PAV, 1D, τ = 0.051

(c) Greedy-CC, 2D, τ = 0.195 (d) Greedy-PAV, 2D, τ = 0.195

Figure 1: Results of Experiment 1. x-axis is the percentage change
between the original election E and the adapted election E′; y-axis
is the average distance between the two winning committees.

The average distance between winning committees in the original
and the modified election can be found in Figure 1.

Examining Figure 1, we find that in all considered settings, win-
ning committees are highly non-resilient. In particular, changing only
1% of the approvals at random leads to (on average) the replacement
of two of the ten committee members. If we increase the change per-
centage further to 10%, around half of the committee gets replaced.
These observations hint at a general non-robustness of Greedy-CC
and Greedy-PAV, and a high fragility of produced outcomes.

In fact, winning committees under Greedy-CC and Greedy-PAV
tend to produce—on average—committees of similar resilience
when elections are sampled with the 1D model. However, while elec-
tions sampled with the 2D model are generally more resilient for both
voting rules, Greedy-PAV has a slight edge over Greedy-CC.

Turning to the different operation types, one might intuitively ex-
pect that removing approvals leads to greater changes in the winning
committee, as randomly removed approvals, generally speaking, hurt
winning candidates with a higher probability. However, while this is
indeed the case, the observed difference is not very prominent.

For 1D and 2D with Resampling, the trends are very similar, but
both rules produce slightly more resilient committees (on average,
around 0.5 to 1 fewer candidates need to be replaced given a change
rate of 10%). For Resampling, the produced committees are a lot
more resilient (the highest measured average of the number of can-
didates that need to be replaced was just over 2 for Greedy-CC), and
the outcome is highly dependent on the choice of sampling parame-
ters (see our full version [44] for a detailed discussion).

Experiment 2: The Role of Ties In Experiment 1, we circum-
vented the intractability of RCE for Greedy-CC and Greedy-PAV by
applying lexicographic tie-breaking. In fact, this can be seen as a nat-
ural heuristic to solve RCE (compute S′ using the same tie-breaking
rule that was used to pick S). Ties play a surprisingly important role
in winner determination of greedy Thiele rules [28]. Hence, our sec-
ond experiment (Figure 2) investigates the effectiveness of this strat-
egy and the importance of tie-breaking for the RCE problem.
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(a) Greedy-CC, 1D, τ = 0.051 (b) Greedy-PAV, 1D, τ = 0.051

(c) Greedy-CC, 2D, τ = 0.195 (d) Greedy-PAV, 2D, τ = 0.195

Figure 2: Results of Experiment 2. Focus is only on MIX operation.
Orange lines represent the median and dashed green lines the mean.
x-axis is the percentage change between the original election E and
the adapted election E′; y-axis is the dist(S, S′

lexi)− dist(S, S′
opt),

where S, and S′
lexi are the respective winning committees in E and

E′ under lexicographic tie-breaking, and S′
opt is chosen out of 100

tied winning committees in E′ to be closest to S.

For each election E, we make S the winning committee in E under
lexicographical tie-breaking. Subsequently, for all considered change
percentages, we sample 100 elections E′. For each of these elections
E′, we compute up to 100 committees winning in the election and
pick S′

opt to be the one closest to S. Further, let S′
lexi be the commit-

tee winning under lexicographic tie-breaking in E′. Using this, we
compute the quantity dist(S, S′

lexi)−dist(S, S′
opt), i.e., the number

of additional candidates that need to be replaced in S′
lexi compared

to S′
opt. This can be interpreted as a lower bound on the “price” paid

for using our heuristic instead of solving RCE optimally.
Across all considered sampling methods and voting rules, we find

instances that show drastic differences in the contiguity offered by
S′
lexi and S′

opt. Specifically, for a percentage change of 1.3%, the
difference was non-zero in ∼ 1/3 of cases, and at least 3 in ∼ 7.8%
of cases. For both voting rules, Greedy-CC and Greedy-PAV, the out-
liers tend to be more extreme on the 2D, compared to the 1D model.

The surprising trend for the difference to decrease again for higher
changes to the underlying elections is due to these elections being
much “noisier” than pure 1D and 2D elections. Thus, they tend to
have far fewer ties. However, while this behaviour in terms of ties is
not present in the 1D and 2D with Resampling models, they produce
an almost identical picture, with similarly drastic outliers. Despite
the generally higher resilience in the Resampling model, here we
also witness outliers up to the value of 6. The results show that, for
greedy Thiele rules, lexicographic tie-breaking does not constitute a
reliable approximation for finding a committee that is close to the
original one, highlighting the prominence of ties in these rules and
motivating the search for optimal solutions via the RCE problem.

Experiment 3: Who Gets Replaced? We try to determine if some
members of the initial winning committee get replaced more often
when changes occur. In light of the round-based nature of greedy

(a) Greedy-CC, 1D, τ = 0.051 (b) Greedy-PAV, 1D, τ = 0.051

(c) Greedy-CC, 2D, τ = 0.195 (d) Greedy-PAV, 2D, τ = 0.195

Figure 3: Results of Experiment 3. Focus is only on MIX operation
and changes of 2.5% in relation to the original number of approvals
were applied. Orange lines represent the median and dashed green
lines the mean. x-axis corresponds to candidates from the original
winning committee, ordered by when they were chosen in the given
greedy Thiele rule; y-axis is the percentage of winning committees
in the adapted elections where each candidate is replaced.

Thiele rules, one might expect the candidates chosen in later rounds
to be generally weaker and hence more likely to be replaced. To ad-
dress this hypothesis, we fix a change percentage of 2.5% for the
MIX operation, and for each election E, sample 100 elections by
applying r = �app(E) · 2.5%� changes to E. For each member c
of the winning committee for E, we determine how many winning
committees of the 100 sampled elections contain c. Figure 3 shows
the results of this experiment as boxplots, grouped by the round in
which candidates were added to the initially winning committee.

While the suspected correlation is present, the dependence is sur-
prisingly weak. The most notable trend is that the last selected candi-
date is consistently the weakest, especially so for Greedy-CC under
1D elections. While, compared to the 1D model, the correlation is
slightly more prominent in the 1D with Resampling model, Resam-
pling has seemingly no effect on the correlation in the 2D model.

7 Conclusion

We presented a complexity dichotomy (along with parameterized
complexity results) for RCE under Thiele rules and their greedy vari-
ants. We also conducted three experiments that unveiled interesting
practical insights for our problem; in particular, they show that ties
are highly prevalent and therefore the decision on how to break them
to achieve a particular goal (as captured by RCE) is an important one.

Natural directions for future work include considering weighted
cost in the replacement of candidates, or investigating RCE with dif-
ferent classes of rules, as well as removing or adding candidates or
votes. It would also be interesting to explore the resilience of vot-
ing rules designed for temporal settings. A canonical candidate is,
e.g., the voting mechanism for the AAAI Executive Council, where
one-third of the positions are up for election each time.
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