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Abstract. Indirect reciprocity (IR) is a key mechanism to explain
cooperation in human populations. With IR, individuals acquire rep-
utations which can be used by others when deciding to cooperate
or defect: the costs of cooperation can therefore be outweighed by
the long-term benefits of keeping a good reputation. Although IR has
been studied assuming populations fully composed of humans, social
interactions nowadays involve the ever-increasing presence of artifi-
cial agents (AAs) such as social bots, conversational agents or even
collaborative robots. It remains unclear how IR dynamics will be af-
fected once artificial agents co-exist with humans. Here we develop a
theoretical model to investigate the potential effect of AAs, deployed
with a fixed strategy, in the evolving cooperation levels observed in
a population. We study settings where AAs are subject to the same
reputation update rules as the remaining adaptive agents and settings
where AAs have a fixed reputation. We show that introducing a small
fraction of AAs with a discriminating strategy (i.e., cooperate only
with good agents) increases the cooperation rate in the whole pop-
ulation. Moreover, the positive effect of AAs is exacerbated when
these are unconditionally assessed as good. We also demonstrate the
vulnerability of cooperation towards purely defecting AAs, and the
inefficacy of non-discriminating cooperators in promoting coopera-
tion. Our theoretical work contributes to identify the settings where
artificial agents, even with simple hard-coded strategies, can help hu-
mans to solve a social dilemma of cooperation.

1 Introduction
Altruistic cooperation requires that individuals spend a cost (c) to
provide a benefit (b) to others. When b > c, cooperation implies a
social dilemma: cooperation is socially desirable yet, given the cost
involved, refusing to cooperate is the dominant strategy. Explain-
ing cooperation is a fundamental challenge across disciplines [15]
and previous research has identified mechanisms to stabilize it [25].
Among these, indirect reciprocity (IR) stands as a primary mecha-
nism to enable cooperation between unrelated individuals [27]. IR
requires that interactions are observed and individuals assigned rep-
utations [3], which spread through the population (e.g., via gossiping
[12]). Simply put, under IR cooperating today might contribute to
build a reputation that leads others to reciprocate tomorrow [48].

Research in IR spans many disciplines. This mechanism is intrin-
sically related to the evolution of morality, culture and was pointed as
a crucial component of a cohesive social structure [3]. Importantly,
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however, the viability of IR as a mechanism to sustain cooperation
in hybrid populations – composed of humans and artificial agents
(AAs) – remains unknown.

Humans are now increasingly co-existing with AI systems, par-
ticularly with socially interactive agents [23]. Examples of these in-
clude collaborative robots for navigation [37, 54] or education [44].
It is pressing to understand the impacts that AI systems will have
on our collective behavior [2] and our ability to trust and cooperate
with AI [7, 36]. Previous works have suggested the role of commu-
nication, embodiment [22] and the perception of facing an artificial
agent as important aspects of cooperation [20] in hybrid populations.
In the context of IR, however, one must identify the differences in
how humans and artificial agents are assessed, as well as the role of
AAs that discriminate in pre-defined ways to opponents’ reputations.

In this article, we aim to provide a step in addressing two central
questions related to IR in hybrid populations: 1) What is the impact
of artificial agents introduced in a human population interact-
ing under IR? 2) Which social norms promote cooperation in a
system composed of humans and artificial agents?

To answer these questions, we develop a theoretical model based
on evolutionary game theory (EGT) [48] where a finite population
composed of adaptive agents (representing humans) and AAs repeat-
edly play a donation game. In this game, an agent playing as donor
can cooperate (C), that is, donate, or defect (D) with a receiver. As in-
troduced above, cooperate means paying a cost c to concede a benefit
b, where b > c > 0. In our model, detailed in Section 3, agents have
reputations that are dynamically updated based on a social norm,
i.e., rules that maps the action of the donor and the reputation of
the receiver to a new reputation for the donor. While adaptive agents
revise their strategy over time, AAs employ a pre-defined strategy,
thus omitting implementation details and focusing solely on their re-
sulting behavior [40, 17]. We also study the impact of biases against
AAs, in the form of fixed reputations.

We show that introducing a small fraction of AAs whose actions
are conditioned on reputations can trigger high levels of cooperation
in settings where defection previous prevailed (i.e., low b/c ratio).
This effect is further amplified if these AAs are perceived as good.
Additionally, we observe that unconditional cooperative AAs are ex-
ploited, thereby unable to sustain cooperation, while anti-social AAs
undermine all cooperative behavior in the population. These results
contribute to identify the settings where AAs can help humans to
solve a social dilemma of cooperation. 1

1 Code and supplementary material is available on [1].
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Figure 1. We consider a hybrid population consisting of adaptive agents
(representing humans), in gray, and artificial agents, in orange. We assume
interactions involving three agents: a Donor, Receiver and Observer(s). The
Donor chooses whether to cooperate or defect (C or D) with the Receiver.
The interaction is witnessed by a third party, the Observer, who determines

the new reputation (Good, G, or Bad, B) of the donor following a social
norm. The reputation is shared by the Observer and assumed to spread to all

other agents, becoming public knowledge. Top right: Reputations are
assigned following a social norms that is fixed in a population and followed
by all agents. Social norms determine the next reputation of a donor given

the reputation of the recipient and the action of the donor. Bottom right: The
three strategies considered: AllC, which always cooperates, AllD, that always

defects, and Disc, that cooperates with G and defects against B.

2 Related Work

Indirect Reciprocity: A wide body of literature has studied the
connection between IR and cooperation [26, 27]. Firstly, IR requires
a social norm to discern between good and bad behaviors. Previous
work has explored which social norms, and under which interac-
tion contexts, can best sustain cooperation. More specifically, sem-
inal work by Ohtsuki et al. has identified the leading norms able to
stabilize cooperation [30, 31]; subsequent works have considered the
role of cognitive complexity and emotional displays in IR [42, 11],
as well as the impact of private reputation systems [19]. Research
on IR has historically been focused on scenarios with infinitely large
populations [49, 5], both for the convenience of mathematical analy-
sis, and to discourage direct reciprocity (cooperation emergent from
repeated play against the same individual). For a review of indirect
reciprocity models see [32].

Fixed-strategy artificial agents: Previous works have considered
the role of agents with a fixed policy in cooperation dynamics. These
agents were named "seeding" [4] or "fixed-strategy" agents [43, 16].
Whenever such agents cooperate unconditionally, they were also re-
ferred to as "pathological altruists" [34]. Besides AAs, human re-
silient cooperators are also shown to increase overall cooperation in
experimental settings [24].

Cooperation in hybrid populations: Following the increased
prevalence of AI in everyday life, research on cooperation has now
been considering an alternative scenario, where humans coexist
among AAs forming hybrid populations and enabling hybrid intel-
ligence [2]. Studies on hybrid populations seek to gain insight into
the potential implications of deploying socially engaged AAs in hu-
man cooperation. Crucially, it remains unclear what their long-term
consequences will be on a societal level – if these systems, even when

potentially cooperative, will reinforce or undermine cooperation ef-
forts [36, 47, 9, 8]. Theoretical and experimental work has already
been conducted in understanding the small scale effect that AAs have
on human decision-making, often through investigating direct inter-
actions between humans and AI-systems [33, 51, 22, 7, 18] or by hav-
ing an autonomous system in place during human interactions [46].
These works highlight a complex relationship between the two par-
ties, where the results of a human-AI interaction often differ greatly
from those of a human-human or an AI-AI interaction, despite still
showing promising results. Modelling the long-term and large scale
effects of AI systems is, however, a more challenging task. To this
end, frameworks like EGT and multi-agent systems are often applied
to provide insight into the dynamics of such social systems [48].

Hybrid populations have been studied over a myriad of scenarios,
such as two-player one-shot games [17], collective risk dilemmas
[51] and the multiplayer ultimatum game [40]. Under these settings,
AAs almost consistently improve the cooperation levels of the pop-
ulation, even in small numbers. We aim to complement these works
by studying such hybrid systems under the context of indirect reci-
procity, adapting the methods stemming from evolutionary game the-
ory [55] to describe how human cooperation is influenced by the
presence of AAs. Our conclusions also provide insight to guide fu-
ture human-AI experimental works.

3 Methods
3.1 Donation game

We consider a finite population of size Z where, following previous
indirect reciprocity models, we assume that agents play Donation
Games with each other [30, 29, 39]. In a Donation Game, one agent
(the donor) decides to cooperate Cooperate (C) or Defect (D) with
another agent (the recipient). If the donor cooperates, the recipient
receives a benefit (b) and the donor pays a cost (c, where b > c). If the
donor defects, it incurs no cost and no benefit is given to the recipient.
This game captures the essence of social dilemmas of cooperation:
cooperation results in a socially desirable outcome, as the benefit of
cooperation outweighs its cost; cooperators must, however, pay a cost
and thus defection is the only dominant strategy in this game, likely
to be implemented by rational agents.

The agents’ decision to cooperate or defect depends on their ac-
tion rules and reputations. Each agent has a (public) binary reputa-
tion, Good (G) or Bad (B), which can be updated after each donation
game (see Section 3.3). Moreover, agents adopt strategies to decide
either to cooperate or defect. A strategy is a tuple p = (pG, pB),
where pG and pB represent the probability of cooperating with an
opponent with reputation G or B, respectively. We focus on the dy-
namics between the three key pure strategies typically studied in in-
direct reciprocity: AllC (p = (1, 1)), AllD (p = (0, 0)), and the dis-
criminator strategy Disc (p = (1, 0)). While individuals using AllC
and AllD will always opt for strategy C and D, respectively, therefore
ignoring reputations, a Disc will only cooperate with G individuals.

Although we consider pure strategies, we allow for the presence
of so-called execution errors: with probability ε, an agent fails to
correctly execute the desired action. The execution error can easily
be introduced by directly modifying any strategy p to pε = (pε

G, p
ε
B)

where pε
i = (1− 2ε) · pi + ε.

3.2 Artificial agents

In a hybrid population, humans co-exist with arbitrarily complex arti-
ficial agents [13]. Although such agents can widely vary in their form
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and abilities, we assume that they are characterized by two minimal
properties: 1) their strategies can be hard-coded by design [40, 51]
and 2) they will be perceived differently than human players [18],
thereby being assigned different reputations. As a result, we consider
fixed-strategy agents (FSAs), playing with a fixed, hard-coded strat-
egy, and fixed-reputation-and-strategy agents (FRSAs), which,
besides having a fixed-strategy, are also always perceived as having
a designated reputation. The latter assumption captures the effects of
either techno-optimism [10], whenever the reputations of the FRSAs
is fixed at G, or techno-skepticism, when it is instead fixed at B.

When considering FSAs, all artificial agents will have the same
strategy. When, instead, FRSAs are introduced, all AAs will have
both the same strategy and reputation. We denote by A the number
of FSAs (or FRSAs) in the population of size Z, such thatA ≤ Z as
they are a part of the population, fp ∈ {AllC,AllD,Disc} the fixed
strategy of any existing FSA, and fr ∈ {G,B} the predetermined
fixed reputation, when applicable.

3.3 Reputation dynamics

We study second-order social norms [42] in hybrid populations,
where the next reputation of an agent (donor) depends on its action
(C/D) and the reputation of the recipient (G/B). Following previous
models [39, 31, 32], we encode social norms as a tuple with four en-
tries d = (dGC , dGD, dBC , dBD), where each entry corresponds to
the probability of assigning a good reputation given the action of the
donor and the reputation of the receiver.

We assume that reputation dynamics incurs assignment errors, α
(an observer wrongfully attributes the reputation following an ob-
servation) and assessment errors, χ (an individual incorrectly per-
ceives the reputation of another agent). The assignment error can
be included in each entry of a social norm, dij , by changing its
value to dαij = (1 − 2α) · dij + α. Assessment errors are added
by impacting the probability that an individual with strategy p co-
operates with an individual of a given reputation, which is given by
Cp

G = (1−χ)pG+χpB and Cp
B = χpG+(1−χ)pB when cooper-

ating with a good and a bad individual, respectively. Coincidentally,
the probability of defecting against a good and a bad individual is
given by C̄p

G = 1− Cp
G and C̄p

B = 1− Cp
B , respectively.

Although there are 16 second-order social norms, we focus on four
key norms, previously identified as capable of sustaining cooperation
[26, 50, 30, 31, 38]: Image Score (IS), d = (1, 0, 1, 0), where coop-
erating is always considered good, and defecting is always bad; Sim-
ple Standing (SS), d = (1, 0, 1, 1), where only defecting against a
good individual is considered bad; Shunning (SH), d = (1, 0, 0, 0),
where only cooperating with a good individual is considered good;
and Stern Judging (SJ), d = (1, 0, 0, 1), where both cooperat-
ing with good agents and defecting against bad agents is consid-
ered good, and the remaining is considered bad [21, 35]. As a sanity
check, we also include the trivial norm All Good, d = (1, 1, 1, 1),
which essentially prevents any correlation between reputations and
actions, precluding indirect reciprocity. A visualization of the popu-
lation structure and the underlying social interaction, together with a
summary of the social norms and strategies under consideration, is
presented in Figure 1.

To illustrate the impact of IR, in Figure 1 of the Supplementary
Material [1], we show how different social norms result in distinct co-
operation levels for varying values of b, the donation benefit, without
any AAs. We observe that, in general, increasing b increases coop-
eration; notwithstanding, some norms (e.g., Shunning and All Good)
fail to sustain cooperation even for high levels of b (b = 8).

Given the assumptions above, the probability of assigning a good
(public) reputation to an individual using strategy p after an interac-
tion can be defined as

Gp
G = (1−χ)(Cp

GdGC + C̄p
GdGD)+χ(Cp

GdBC + C̄p
GdBD),

(1)

when interacting with a good individual, and when interacting with
a bad individual as

Gp
B = χ(Cp

BdGC + C̄p
BdGD)+ (1−χ)(Cp

BdBC + C̄p
BdBD).

(2)

Adapting the process described in [39] to three strategies, we now
define the transition probabilities of a Markov chain that represents
the possible distributions of good individuals, given a strategy state
defined by a tuple nijk = (ni, nj , nk), where ni, nj and nk rep-
resent the number of individuals currently using strategy AllC, AllD
and Disc, respectively, and ni+nj+nk = Z. As such, for each strat-
egy state nijk, there will be an associated Markov chain with a corre-
sponding set of states Gijk = {gijk | 0 ≤ gt ≤ nt, ∀ t ∈ {i, j, k}}
where gijk = (gi, gj , gk) is a state where there are gi, gj and gk
good individuals using strategy AllC, AllD and Disc, respectively. In
the presence of FRSAs, one must also remove any states where the
number of individuals of strategy fp with reputation fr is less than
A. We can represent this new set of reputation states as

Gf
ijk = {gijk | 0 ≤ gt ≤ nt∧

{
gfp ≥ A , if fr = G
gfp ≤ nfp −A , if fr = B

,

∀ t ∈ {AllC,AllD,Disc}} (3)

where we abuse notation by denoting gfp as the number of good
individuals using strategy fp , with an analog definition for nfp .

The transition probabilities of having one more (H+
p ) or one less

(H−
p ) good individual using strategy p are given by

H+
p (gijk) =

np − gp −Q+
p,f

Z

( |gijk|
Z − 1

Gp
G +

Z − |gijk| − 1

Z − 1
Gp

B

)
(4)

and

H−
p (gijk) =

gp −Q−
p,f

Z

( |gijk| − 1

Z − 1
Ḡp

G +
Z − |gijk|
Z − 1

Ḡp
B

)
(5)

where |gijk| is the total number of good individuals in the reputation
state, Ḡp = (1−Gp), and Q+

p,f = A if fr = G and 0 otherwise, and
Q−

p,f = A if fr = B and 0 otherwise, which represent the damping
factors related to the inability of the FRSAs in changing reputation.
Intuitively, these can be understood as reducing the number of agents
available to change reputation in the population where FRSAs are
present. If the FSAs do not have fixed reputations, then this damping
factor should not be applied, and therefore Q±

p,f = 0.
For a given strategy state, we can now fully define the transition

matrix H for the reputation dynamics. Each entry Ha,b represents
the probability of transitioning from a state gaijk to a state gbijk. Thus,
each entry in the matrix is defined as

Ha,b =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
H+

p (gaijk) if gbp = gap + 1 ∧ gbp′ = gap′ ∧ gbp′′ = gap′′

H−
p (gaijk) if gbp = gap − 1 ∧ gbp′ = gap′ ∧ gbp′′ = gap′′

H=(gaijk) if gbijk = gaijk

0 otherwise

,

(6)
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where p, p′, p′′ ∈ {AllC,AllD,Disc} and p �= p′ �= p′′.
The size of the reputation state space will be equal to SR = (ni +

1− Tf (AllC))(nj + 1− Tf (AllD))(nk + 1− Tf (Disc)), where

Tf (p) =

{
0 if fp �= p

A if fp = p
. (7)

As it is possible to transition from any state to every other state in
a finite number of time steps – that is, the Markov chain is irreducible
– the stationary distribution σ exists, is unique, and can be found by
searching for the eigenvector with the associated eigenvalue 1. Thus,
it must verify the propriety σH = σ. We clarify that, when AAs
do not have fixed reputations, this stationary distribution is equal to
that of the case when A = 0 in each possible strategy state, inde-
pendently of A. This is not the case for FRSAs, as the reduction of
available states causes the transition probabilities to differ.

3.4 Strategy dynamics

The adoption of strategies follows a birth-death process which mod-
els strategy imitation and mutation [28]. Individuals tend to imitate
those who perform better than them, which we model using the pair-
wise comparison rule (also known as the Fermi update rule) [53].
As such, the probability that an individual using strategy p adopts
strategy p′ is given by Pp→p′(nijk) = 1/(1 + e−βΔFp,p′ ), where
ΔFp,p′(nijk) = F̄p′(nijk)−F̄p(nijk) is the difference between the
average fitness of strategy p′ and strategy p, and β is the strength of
selection, where a higher value (β →∞) results in a more determin-
istic evolutionary process, and a lower value (β → 0) approximates
the random selection process.

We now determine the average fitness of a strategy p in the con-
text of a donation game, with benefits b and costs c as introduced
in Section 3.1. The expected payoff of a strategy p in the strategy
state nijk and reputation state gijk is given as Fp(nijk, gijk) =
bRp(nijk, gijk)−cDp(nijk, gijk), where Rp(nijk, gijk) represents
the probability that an individual of strategy p will receive a dona-
tion, and is given by

Rp(nijk, gijk) =
gp
np

(np − 1

Z − 1
Cp

G +
np′

Z − 1
Cp′

G +
np′′

Z − 1
Cp′′

G

)

+
np − gp

np

(np − 1

Z − 1
Cp

B +
np′

Z − 1
Cp′

B +
np′′

Z − 1
Cp′′

B

)
,

(8)
where p′ and p′′ are the other available strategies, and

Dp(nijk, gijk) is the probability that an individual using strategy p
will donate, and is calculated as

Dp(nijk, gijk) =
gp
np

( |gijk| − 1

Z − 1
Cp

G +
Z − |gijk|
Z − 1

Cp
B

)

+
np − gp

np

( |gijk|
Z − 1

Cp
G +

Z − |gijk| − 1

Z − 1
Cp

B

)
.

(9)

Finally, having access to the stationary distribution σ over reputa-
tion states, the average fitness is determined by

F̄p(nijk) =
∑

gijk∈Gf
ijk

(nijk)

σgijkFp(nijk, gijk), (10)

where σgijk is the value of the stationary distribution in the repu-
tation state gijk.

Similar to the process described in [38, 41], we now define an-
other Markov chain which describes the strategy adoption dynamics.
Such a Markov chain will be constructed following the process de-
fined above for the reputation dynamics, only transitioning between
strategy states, nijk, instead of reputation states. Given the presence
of FSAs, the state space of the strategy Markov chain is given by

Mf = {nijk | ni + nj + nk = Z ∧ nfp ≥ A}. (11)

As such, it is necessary to first define the transition probabilities
between each state. Thus, we define the probability that an agent us-
ing strategy p changes to strategy p′ under state nijk to be

Mp→p′(nijk) = Op
f (nijk)

(
γ̄
np

Z

np′

Z − 1
Pp→p′(nijk) + γ

np

2Z

)
,

(12)
where γ is the chance of mutation and γ̄ = (1−γ), and Op

f (nijk)
represents the factor accounting for the presence of FSAs of strategy
p, which are unable to change strategy, and is given by

Op
f (nijk) =

⎧⎪⎨
⎪⎩
0 if fp = p ∧ np < A
np−A
np

if fp = p ∧ np ≥ A
1 otherwise.

. (13)

Given that one strategy is always constrained to be greater or equal
to A, the size of the strategy state space will be SS =

(
Z−A+2

2

)
.

Finally, we define the transition matrix M for the strategy adoption
dynamics. Similar to Equation (6), each entry Ma,b will correspond
to the probability of transitioning from state na

ijk to state nb
ijk, and

is defined as

Ma,b =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Mp→p′(n

a
ijk) if nb

p = na
p − 1 ∧ nb

p′ = na
p′ + 1

∧ nb
p′′ = na

p′′

1−∑
Mp→p′(n

a
ijk) if nb

ijk = na
ijk

0 otherwise

,

(14)
where p, p′, p′′ ∈ {AllC,AllD,Disc} and p �= p′ �= p′′.
We can now define the gradient of selection, that is, the vector that

points towards the most likely evolutionary path, in a given strategy
state, as �v(na

ijk) = (M+
AllC −M−

AllC ,M
+
AllD −M−

AllD,M+
Disc −

M−
Disc) where M+

p = Mp′→p + Mp′′→p and M−
p = Mp→p′ +

Mp→p′′ represent the probability that an agent adopts or abandons
strategy p, respectively.

3.5 Cooperation Index

Having the Markov chain that describes the strategy adoption dy-
namics, we now aim to calculate the cooperation index [39], which
measures the fraction of actions that lead to cooperation. For that
end, we first define the average cooperation of a strategy p over a
strategy state nijk to be

Cp(nijk) =
∑

gijk∈Gf
ijk

(nijk)

σgijkDp(nijk, gijk). (15)

Denoting θ as the stationary distribution of M , over strategy states,
(which is found similarly to σ, see Section 3.3), we define the coop-
eration index as

I =
∑

nijk∈Mf

θnijk

1

Z

∑
p∈{AllC,AllD,Disc}

Cp(nijk)np(nijk). (16)
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3.6 Approximations through Reputation
Down-sampling

While the previous sections described how to achieve the exact co-
operation index for a given population size Z, the number of strategy
and reputation states quickly expands as Z increases. As such, com-
putational resources might not suffice. To this end, we expand on
the method described before by employing an approximation of the
reputation dynamics, drastically reducing the necessary number of
reputation states while preserving the original dynamics.

Our method relies on determining the weighted average reputation
state g∗ijk in any given strategy state nijk. We note that, by increas-
ing the population size, the average fraction of G individuals in any
strategy remains the same, save for rounding errors, as the transition
probabilities depend solely on the fractions of good and bad individ-
uals, and never solely on the population size. Thus, one can safely
approximate g∗ijk for a population of size Z by calculating it for a
lower population size Z′, and scaling it accordingly to fit Z. Under
this approximation, the number of reputation states will scale at a
constant factor of O(Z′3). The average reputation state is computed
from the stationary distribution as

g∗ijk =
∑

gijk∈Gf
ijk

(nijk)

σgijkgijk. (17)

From there, the calculations that rely on σ are modified to instead
use g∗ijk. These are the average fitness, which becomes F̄p(nijk) =
Fp(nijk, g

∗
ijk), and the average cooperation of a strategy p, becom-

ing Cp(nijk) = Dp(nijk, g
∗
ijk). We note that using the average repu-

tation is valid whenever the functions, in this case Rp and Dp , which
produce both F̄p and Cp , are linear in respect to changes in gijk in
any dimension. As this is the case, this approximation is applicable
without loss of generality.

4 Results
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Figure 2. Cooperation levels for different fractions A/Z of fixed-strategy
Artificial Agents with a Discriminator strategy (FSA-Disc) present in the
population, for each social norm. We observe that even low fractions of
FSA-Disc improve cooperation under the SS and SJ norms; the effect of
FSA-Disc is limited with IS and SH. For IS, after an initial cooperation
peak, further introducing FSA-Disc slightly reduces cooperation for IS.
Z = 100, Z′ = 25, b = 2, c = 1, ε = α = χ = 0.01, γ = 0.01.

In this section, we present the results on the cooperation index,
when artificial agents (AAs) are introduced in the population.

Figure 2 presents the cooperation index for the previously men-
tioned social norms, as a function of the fraction of introduced Disc

Fixed-Strategy Agents (FSAs), in a scenario of low cooperation ben-
efits (b/c = 2). As well known from previous work (and for com-
pleteness illustrated in Figure 1 of the Supplementary Material [1]),
under low values of b/c (b/c < 2.5) cooperation cannot be achieved.
Figure 2 reveals that, however, even under b/c = 2 cooperation can
be facilitated by introducing agents with a Disc strategy. We observe
that introducing a small fraction of FSAs with a Disc strategy in-
creases cooperation levels for SS, SJ and IS.

To better understand the positive effects on cooperation of intro-
ducing FSAs, we analyze the most prevalent states of the strategy
Markov chain before and after the introduction of Disc FSAs. In
Figures 3 and 4, with and without FSAs, respectively, we observe
the resulting gradient of selection, average reputation and stationary
distribution at each strategy state, under IS, SS and SJ – this corre-
sponds to the transition presented in Figure 2. We observe that, while
reputations necessarily stay equal in each state throughout both sce-
narios, the gradient of selection is remarkably different, resulting in
entirely distinct cooperation indexes. The cause of such an abrupt
transition is further illustrated when studying the gradient of selec-
tion among the AllD-Disc edge (Figure 5, Supplementary Material
[1]), where we observe that a small fraction of Disc AAs is enough
to make selection promote discriminators, thus resulting in the rapid
transition towards cooperation when reputations are good.

In Figure 5, we study the consequence of having a biased repu-
tation towards AAs. Whenever G FRSAs are introduced, the prior
effects under IS, SS and SJ are again present, as under these norms
the reputations of Disc agents is often good. Most importantly, G
FRSAs stand as the only type of agent that can sharply increase co-
operation across all the social norms tested, including SH, even when
comprising a large fraction of the population. As for B FRSAs, de-
spite promoting cooperation when present in low fractions, a greater
incidence of these agents leads to a drop in cooperation, suggesting
a saturation effect, as these AAs will often be uncooperative towards
each other and hinder overall reputations.

To understand the effects of discriminator FSAs, in Figure 2 of
the Supplementary Material [1], we expand to a more challenging
scenario, where b/c = 1.1. We observe a similar influence of dis-
criminating FSAs in cooperation. However, for FSAs and G FRSAs,
a greater fraction (around 0.15% as opposed to 0.05%) is necessary
to trigger the transition to almost system-wide cooperation under SS
and SJ. Crucially, G FRSAs remain effective at lower fractions of
the population across all norms. Furthermore, B FRSAs have a lower
overall capacity to improve cooperation, with low peaks of cooper-
ation happening at high fractions of FSAs. Additionally, we investi-
gate the scenario where b/c = 5 (Figure 3, Supplementary Material
[1]), as it presents moderately elevated cooperation without the pres-
ence of AAs under SS and SJ. In this setting, while the influence of
dynamic-reputation FSAs and G FRSAs follows prior experiments,
we observe drops of cooperation with the addition of B FRSAs under
SJ and a rise-and-fall behavior in both SS and IS, similar to Figure 2
for IS. Finally, we note that AG shows a predictable pattern across all
experiments, as adding discriminator FSAs when every agent is con-
sidered good leads to their consistent cooperation: since these agents
cannot effectively outperform AllD until in high enough numbers, co-
operation rises proportionally to the fraction of Disc added, showing
little capacity to increase the cooperation of adaptive agents.

Given the well-mixed setting we assume here, there are three com-
ponents at play when considering the impact of AAs on cooperation:
1) the change in the number of role models that can be imitated,
2) the resulting payoffs after interacting with a different distribution
of strategies, and 3) the higher incidence of a given reputation as a
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Figure 3. Evolutionary dynamics under a) IS, b) SS, and c) SJ without the presence of FSAs. Each circle corresponds to a possible combination of strategies.
Arrows indicate the direction and magnitude (through the size) of the gradient of selection, �v (Eq. 16). The large simplex indicate the stationary distribution
over each strategy-combination state, where darker colors represents the states in which the system spends more time in. The smaller simplex illustrates the
average reputation of an individual in each state, where blue indicates reputations are good, and red that reputations are bad. Given the low b considered (see

Figure 1 of the Supplementary Material [1]), we observe, across all norms, a high prevalence of strategy AllD, leading to low cooperation rates.
Z = 100, Z′ = 25,A = 0, b = 2, c = 1, ε = α = χ = 0.01, γ = 0.01.

Figure 4. Evolutionary dynamics under a) IS, b) SS, and c) SJ in the presence of a small fraction (A/Z = 0.04) of artificial agents. We use the same
notation and parameters as Figure 3, except A = 4. States with gray crosses indicate unreachable states, due to the presence of FSAs. By introducing
Disc-FSA agents, the gradient of selection now favors Disc and, in IS, AllC individuals, leading to a considerably higher cooperation across all norms.

consequence of the social norm and, when applicable, the fixed repu-
tation. In the case of discriminator FSAs, these two components will
cause either a raise in good or bad discriminators, which then lead
to a prevalence of either cooperation or defection, an effect that be-
comes more prominent as the fraction of FSAs increases. As such,
the increased cooperation stemming from introducing Disc FSAs is
a natural consequence of a higher prevalence of cooperative discrim-
inators, which are sustained in the presence of defectors. This higher
fraction of Disc agents, considerably greater than the fraction of Disc
FSAs introduced, is, in turn, what allows social norms such as SH to
foster cooperation under G FRSAs, as these will be necessarily la-
beled good, allowing other Discs to become good too.

To clarify which of these effects is more relevant, additional ex-
periments were conducted (Figures 6 and 7, Supplementary Material
[1]) where adaptive agents were not allowed to imitate AAs. This
was done by altering Equation (12) to prevent adaptive agents from
imitating artificial agents. Our results show that when AAs have no
effect on the number of role models available for imitation, their
overall effect is weaker. However, the changes in cooperation fol-
low the same patterns as when imitation is possible, suggesting that
the change in dynamics introduced by AAs is due to both the changes
in payoffs after increasingly interacting with Disc agents and the in-
crease in the number of Disc role models.

Additionally, we conduct experiments with dynamic-reputation

FSAs using the other available strategies. In the scenario with AllD
FSAs (Figure 8, Supplementary Material [1]), whatever cooperation
exists before the introduction of artificial agents is quickly shattered
by their presence. Even in scenarios where the donation benefit is
high, under no social norm can cooperation be sustained for small
fractions of FSAs. The introduction of AllC FSAs (Figure 9, Supple-
mentary Material [1]), although seemingly the most adequate choice
to promote cooperative behavior, results in direct exploitation of the
introduced agents. In fact, when accounting solely for the coopera-
tion from the adaptive agents – that is, discarding the increased co-
operation stemming from adding the FSAs – we observe that coop-
eration remains largely unchanged in the adaptive population.

We also analyze the robustness of FSAs to various types of errors
[14, 39]. These are: execution errors, corresponding to the inability
to cooperate correctly; assignment errors, where the resulting repu-
tation is incorrectly assigned; and assessment errors, corresponding
to a failure to recognize the reputation of the other agent. Figures 10
to 13 of the Supplementary Material [1] show the resulting cooper-
ation index under all social norms for a varying rate of each type of
error, on scenarios with and without dynamic-reputation FSAs and
G FRSAs. For SJ, we observe that, as opposed to the environment
without artificial agents, the presence of FSAs is negatively influ-
enced by high error rates. However, a considerably high assignment
and assessment error rates are necessary for cooperation to lower, at
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Figure 5. Cooperation levels for different fractions A/Z of Discriminator
Fixed-reputation-and-strategy artificial agents (FRSAs) in the population, for
each social norm. a) FRSAs are introduced with a G reputation. b) FRSAs
have a B reputation. Compared to FSAs, G FRSAs are more effective in

improving cooperation under IS and SH. In the case of bad FRSAs, although
they initially promote cooperation across IS, SS and SJ, as more agents are

introduced (higher A/Z), cooperation lowers. The same parameters as those
used in Figure 2 are applied.

which point it drops sharply. As for the remaining social norms: SS
shares a very similar error profile to SJ; under IS, cooperation low-
ers across the three cases as the assignment and assessment errors in-
crease; and, under SH, cooperation slightly increases without FSAs
and with dynamic-reputation FSAs for certain ranges of errors, while
with G FRSAs it consistently decreases as the errors increase. While
the behavior of dynamic-reputation FSAs and G FRSAs aligns in IS,
SS and SJ – both increase or decrease under the same error rates –,
the presence of dynamic-reputation FSAs aligns instead with the sce-
nario without FSAs under SH. We also note that IS and SH are more
sensitive to noise than the remaining social norms considered, having
noticeable effects in cooperation starting at error rates of 10−2.

5 Discussion and Conclusion

In this work, we have investigated cooperation in adaptive popula-
tions under the presence of artificial agents in the context of indirect
reciprocity. The study of IR is of particular interest, given the impor-
tance of this mechanism in explaining cooperation among unrelated
individuals [27] and the possibility that artificial agents impact IR
dynamics by acting as donors, receivers or observers. It is unclear if
IR will work effectively when artificial systems permeate society.

To understand this, we developed a model to study the impact of
artificial agents, implemented with a fixed strategy, integrated in a
well-mixed population of adaptive agents, under four well-known so-
cial norms: IS, SS, SH and SJ. Our results indicate that the effects
of such AAs depends primarily on the strategy they employ and on

the social norm at play, as well as if these agents are seen in a biased
manner or if their reputation is defined by the social norm at play. We
draw several conclusions: Firstly, the presence of dynamic-reputation
Disc FSAs allows increased cooperation in previously uncooperative
scenarios, under IS, SS and SJ. This result is of particular impor-
tance for IS, which is a first-order social norm with low cognitive
complexity [42]. Furthermore, if Disc FRSAs are observed with a
positive bias, always being assessed with a good reputation, the pre-
viously uncooperative SH enables high cooperation levels; coopera-
tion levels under IS increase as well. Additionally, we highlight that
negative biases towards Disc FRSAs result in two opposite forces:
an increase of discriminators, which could increase cooperation, and
a reduction of good individuals, which typically reduces coopera-
tion. The effect of these agents is thus dependent on the social norm,
but also on the benefit of cooperation versus that of defection – we
do note that, in general, introducing a low fraction of these agents
is still beneficial to cooperation. These findings align with the con-
clusions of other works on cooperation in hybrid populations out-
side indirect reciprocity [40, 4, 17, 45], where low fractions of (pro-
social) seeding agents appear to considerably boost cooperation. We
also remark the different robustness of FSAs in the presence of er-
rors. These findings show that G FRSAs, while providing the greatest
values of cooperation across all error rates, are also the most influ-
enced by noise when compared to scenarios without FSAs, or with
dynamic-reputation FSAs. Additionally, artificial agents are more ro-
bust to errors under SS and SJ, and more sensitive under IS and SH.
We thus note that this type of errors should be of particular concern
when considering physical autonomous systems [22, 6], where mis-
interpretations and operational errors are more common.

The effect of AAs which unconditionally defect is also of great
importance, as it highlights a vulnerability of cooperative behavior
to uncooperative agents. Our experiments demonstrated that coop-
eration does not evolve if a low fraction of agents are unconditional
defectors. This poses the question of how to develop mechanisms that
are resilient against these agents. Furthermore, we also highlight the
inefficacy of AllC FSAs, which, due to the dominance of AllD in the
adaptive population, lead to the exploitation of these agents, and pre-
vent increasing the cooperation levels of the adaptive agents. While
a purely theoretical model, these results provide a clear framework
and baseline for future human-AI experiments, which can help steer
AI development towards a focus on promoting pro-social behavior.

Finally, one must be cautious when extracting results from game
theoretical models to inform real-world applications and policies
[52]. We highlight the need for more thorough human-AI interac-
tion studies [36] in order to bridge the gap between theoretical and
experimental results. Despite suggesting that discriminating agents
can promote cooperation, it is important to note the ethical concerns
involved in having autonomous systems dictate what constitutes an
acceptable action [47], as well as the fundamental difference in hav-
ing systems that opt not to cooperate versus ones that actively defect.
In addition, we note that the increased cooperation observed with ar-
tificial agents unconditionally deemed good should not be read as
an argument for an acritical assessment of AI. Our results are con-
strained to the scope of donation games and indirect reciprocity, dis-
carding eventual risks of over-trusting AI systems.
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