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Abstract. Machine Learning models are getting more accurate, yet
their complexity and opacity are also increasing. Explainable AI im-
proved their general interpretability by quantifying the contributions
of input features to predictions. Despite these advancements, prac-
titioners still seek to gain causal insights into the underlying data-
generating mechanisms. To this end, a possible solution is to rely
on classical probabilistic causal analysis, which offers tools to quan-
tify causal effects. However, causal analysis assumes a sufficient
knowledge of causal structure, which is often unreachable from data
alone. Indeed, causal discovery algorithms produce, at most, par-
tial causal structures, namely Completed Partially Directed Acyclic
Graphs (CPDAG). The conventional approach involves fully orienting
the structure with exogenous causal knowledge through expert inter-
action or real-world experiments. In this paper, we focus on quanti-
fying a specific total causal effect. Within this context, we empha-
size that a partial structure can be sufficient to answer the query, and
can be reached by different sequences of additional causal knowl-
edge. Whether coming from an expert or an experiment, each addi-
tion has a cost difficult to assess a priori. The contribution of this
paper is twofold: given a CPDAG and a specific query, we identify
a set of irrelevant edges, and we introduce an algorithm for ranking
the remaining informative edges, providing a guide to iteratively ob-
tain a partial structure sufficient for resolving the query. Simulations
show that these two contributions significantly reduce the number of
requests for exogenous causal information, corroborating the feasi-
bility of a causal impact quantification with very limited exogenous
information.

Introduction

In recent years, the multiplication of sophisticated machine learning
(ML) models has driven remarkable advancements in artificial intel-
ligence (AI) across diverse domains. Despite their notable success in
achieving state-of-the-art performance across numerous tasks, these
models often function as opaque "black boxes", leaving users in the
dark regarding the complexity of their process. The lack of inter-
pretability and transparency impedes their adoption in critical appli-
cations and raises ethical and fairness concerns [2, 5].

Explainable Artificial Intelligence (XAI) has emerged as a key field
addressing these challenges by developing methods to clarify the
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decision-making mechanisms of complex AI systems. Despite sig-
nificant progress made by current XAI techniques in quantifying how
observed feature values influence predictions [22], estimating the
actual impact of an intervention on the underlying data-generating
mechanism remains a challenge.

When the underlying causal model is fully known, employing
the causal framework and specialized tools like do-calculus [15]
provides a solution to common causal questions, such as identify-
ing causes and effects, predicting intervention effects, and address-
ing counterfactual questions. When the complete causal structure is
known but not its parameters, various works such as causal Shap-
ley values or Shapley Flow [11, 23] focus on quantifying causal
effects (direct and/or indirect) from a given predictive model. Es-
pecially, to quantify a specific causal effect [8] introduced a query-
driven methodology involving the do-calculus and estimates from a
tailored predictive model. A common assumption in those works is
the knowledge of the complete causal structure.

Yet obtaining such a structure is challenging. Many causal discov-
ery algorithms, such as PC, FCI, RFCI [3, 12, 20, 21] yield only a
partially directed causal graph defined as a Completed Partially Di-
rected Acyclic Graph (CPDAG).

Our contribution is twofold. Firstly, we identify, among the undi-
rected edges of CPDAG, a subset that prevents the application of the
Generalized Backdoor criterion [13]. Secondly, we propose an inter-
active algorithm that iteratively sorts pending undirected edges and
propagates exogenous information.

More precisely, we propose extending the query-driven methodol-
ogy presented in [8] to CPDAGs, leveraging previous results from (i)
the Generalized Backdoor criterion [13], which proposes conditions
for the extension of quantification of causal effects in such graphs,
and (ii) [14], which defines the Meek rules that propagate orienta-
tions. Indeed, combining Meek rules with parsimonious enrichment
of the learned causal structure (CPDAG) by the addition of exogenous
causal information (the orientation of an edge) helps reach a CPDAG

where [13] is applicable and ensures that the causal model remains
consistent.

The first section presents a guiding thread example for our con-
tributions. The second section offers essential background concepts.
The third section gives some intuition about the possible issues that
may arise and their solutions. The fourth section demonstrates how
we can narrow the questions proposed to the expert. Finally, the last
section shows experimental results that assess the relevance of our
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approach.

1 Motivating example

Suppose a complete causal model with structure as Fig.1a, we can
then use this model to estimate the effect of X on Y thanks to do-
calculus [15, 16, 17].

However, if we only have access to a database generated by this
causal model, learning the complete structure is complex. Although
several algorithms are available for causal structural learning [7], pre-
cisely determining the causal DAG proves inaccessible in numerous
scenarios. Indeed, from data alone, some patterns can not be distin-
guished by the conditional independence tests used to recover the
structure. Thus, these algorithms lead to a partially oriented graph,
which is representative of the Markov Equivalence class [1, 14]. A
Markov equivalence class contains all DAGs sharing identical con-
ditional independences as the original causal DAG, and can be rep-
resented as a distinct graph structure known as an Essential Graph
(EG) or a Completed Partially Directed Acyclic Graph (CPDAG). For
instance, when attempting to learn the DAGs in Fig.1a and Fig.1c, we
end up with the same CPDAG of Fig.1b.
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(a) A DAG where X
has a direct and indi-
rect effect on Y .
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(b) CPDAG C.
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(c) A DAG where X
has only a direct ef-
fect on Y .

Figure 1: Two DAGs that result in the same CPDAG when learned. The
direct effects are in red, and the indirect effects are in blue.

Even if the learning produces identical CPDAG, the effect we aim
to calculate may be different. For instance, in Fig.1a,X influences Y
both directly and indirectly through the red and blue paths. Whereas
in Fig.1c, X has solely a direct effect on Y through the red path.

Our main objective is to answer the causal query, i.e., to quan-
tify a causal effect, even in situations involving a partially oriented
CPDAGs. To discern between these cases, additional information is
required to adequately address the request. Further, we assume we
can obtain exogenous causal knowledge such as expert knowledge to
obtain missing information within the CPDAG.

In this paper, we aim to reduce the expert knowledge needed to an-
swer our causal query. We assume fairly realistically that acquiring
expert information is quite difficult. This paper then focuses on defin-
ing and estimating the relevance of each external causal information
with respect to the causal query, providing a ranking that helps the
expert to choose the next causal knowledge to assess.

2 Background and Notations

The notations and definitions are derived from [13].
Graphs A graph denoted by G is composed of a node set V =

{V1, . . . , Vn}. The nodes represent random variables, and the links

indicate dependencies and causal relationships. Two nodes can be
connected by either an arc, denoting a directed relationship, or an
edge, representing an undirected relationship The relations are rep-
resented as ” → ” for arcs and ” − ” for edges. We use the term
link to refer to a relationship, regardless of whether it is directed or
undirected. This discussion focuses solely on graphs without directed
cycles, categorizing them into two types: directed acyclic graphs
(DAGs), which only contain arcs, and partially directed acyclic
graphs (PDAGs), which allow for both relation types.

A partially directed graph G is a chain graph if it contains no par-
tially directed cycle. A graph G is chordal if every cycle of length
k ≥ 4 contains a chord, i.e., a link that is not part of the cycle but
connects two nodes of the cycle.

Let G′ be the undirected graph we get by removing all arcs from
a chain graph G. The set of all nodes that are connected to X in G′

is called the chain component of X: TG′(X). The completed par-
tially directed acyclic graphs (CPDAGs) are a subset of chordal chain
graphs [1].

Paths Two nodes are adjacent if connected by a link. A path
is a sequence of distinct, adjacent nodes, represented as p =
〈Vi, Vi+1, . . . , Vi+l〉. The direction of the arc between Vi and Vi+1

determines whether the path is considered to go "out of" Vi or "into"
Vi+1. If, for every k ∈ {1, . . . , l}, the arc Vi+k−1 → Vi+k ex-
ists, the path is classified as a directed path from Vi to Vi+l. If, for
each k ∈ {1, . . . , l}, the link between Vi+k−1 and Vi+k does not
point into Vi+k−1, it is considered a partially directed path from Vi

to Vi+l. If it contains only edges, it is classified as an undirected path.
Node relations If there is an arc Vj → Vi, we define Vi as the

child of Vj and Vj as a parent of Vi. The corresponding sets of par-
ents and children are denoted as pa(Vi,G) and ch(Vi,G), respec-
tively. If there is an edge Vj − Vi, we define Vi and Vj as neighbors.
If a (partially) directed path exists from Vi to Vj , Vi is regarded as a
(possible) ancestor of Vj , and conversely, Vj is a (possible) descen-
dant of Vi.

The sets of neighbors, ancestors, descendants, possible ances-
tors, and possible descendants for a node Vi in G are repre-
sented as Nei(Vi,G), An(Vi,G), Desc(Vi,G), possAn(Vi,G), and
possDesc(Vi,G), respectively (we sometimes omit specifying the
graph in these notations when the context is clear). If Vj is a possible
descendant of Vi, the path from Vi to Vj is undirected or partially
directed and is called a possible descendancy path.

3 Quantifying causal impact in a CPDAG

This section explores three key points. First, we discuss causal effects
in entirely directed graphs and highlight how these computations in-
tersect with XAI frameworks to provide interpretable insights into
complex causal structures. Next, we present established methods for
quantifying causal effects in partially directed graphs and show their
continued relevance to XAI. Finally, we explore strategies for scenar-
ios where these methods do not apply directly. Henceforth, we will
consider a CPDAG C, with a node set V = {V1, . . . , X, · · ·Vn, Y }.

3.1 Interpretability with Complete Causal Knowledge

Starting with a DAG as a complete causal structure, causal effects can
be identified and estimated from observational data using do-calculus
tools. For instance, the Backdoor criterion [17] is a sufficient condi-
tion for effective adjustment, stating that a set of variables is suitable
if it meets some graphical criteria within the DAG. If identifiable, with
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the classic Backdoor criterion, the causal effect of X on Y is given
by the following adjustment:

P (Y |do(X=x)) =
∑
z

P (Y |X=x, Z=z)P (Z=z) (1)

With Z ⊂ V, a set that satisfies the Backdoor criterion relative to
(X,Y ).

Renaming P (Y |X=x, Z= z) as f(x, Z), Equation 1 above can
be seen as an expectation of f over Z.

P (Y |do(X=x)) = EZ [f(x, Z)] (2)

Thus, to compute this quantity one can rely on a Monte-Carlo in-
tegration over the distribution of the set Z and get Equation 3:

P (Y |do(X = x)) � 1

D

D∑
i=1

Zi∼Z

f(X = x, Zi) (3)

In the context of ML, Zhao and Hastie established the analogy be-
tween the backdoor adjustment and the partial dependence plot (PDP)
[24]. Indeed, one can estimate f by building a predictive model f̂ ,
and the data gives a collection of Zi ∼ Z. Thus we can approximate
Equation 3 by:

P (Y | do(X = x)) � 1

D

D∑
i=1

f̂(X = x, Zi) (4)

Given a predictive model f̂(X), a partial dependence plot (PDP)
[6] grants visualization and analysis of the dependence of the pre-
dictions on an input feature of interest X (let X̄ be its complement).
The PDP can be computed as shown in Equation 5.

PDPX(x) = EX̄ [f̂(x, X̄)] =

∫
f̂(x, x̄)dx̄ (5)

� 1

D

D∑
i=1

f̂(x, X̄i) (6)

The Monte-Carlo integration in Equation 6 and Equation 4, are
identical when the set Z is identified with X̄ .

This implies that a sufficient condition to obtain a causal interpre-
tation from the PDP is to have trained the predictive model on a set
of variables that satisfies the backdoor criterion.

In this regard, [8] proposes to use predictive models to quantify
causal effects with XAI techniques.

One significant advantage of predictive models is that they are
not limited by graphical model structure constraints. For instance,
Bayesian networks sometimes limit the number of parents because
the size of the conditional probability tables grows exponentially in
the number of parent nodes. Some also only deal with discrete vari-
ables, thus necessitating a discretization of the data. In contrast, pre-
dictive models can handle numerous inputs with greater flexibility
and manage both continuous and discrete variables.

3.2 Interpretability with Partial Causal Knowledge

The previous results assume perfect knowledge of the entire causal
graph. However, as previously mentioned, the outcome of causal dis-
covery methods does not always yield a fully directed graph.

From this point forward, we limit ourselves to the CPDAG. Note
that this is a weaker assumption than knowing the complete structure
but still quite strong, as it assumes the perfection of all independency
tests employed to recover the structure from the data.

Maathuis and Colombo [13] and Perković [18, 19], expand the
identification and estimation of causal effects in CPDAG.

Maathuis and Colombo extended the concept of backdoor adjust-
ment to CPDAG, and other types of graphs. Given our sole focus on
CPDAG, our analysis will exclusively consider results about this spe-
cific graph type, particularly the findings in Corollary 4.2 of [13]
(referred here as Theorem 1).

Theorem 1 (Generalized backdoor criterion for CPDAG). Let X and
Y be two distinct nodes in a CPDAG C. We note CX be the graph
obtained from C by removing all arcs out of X in C. Then there exists
a generalized back-door set relative to (X,Y ) and C if and only if:

1. Y /∈ pa(X, C)
2. and Y /∈ possDe(X, CX)

Moreover, if such a generalized back-door set exists, then pa(X, C)
is such a set.

If a set satisfies the Generalized Backdoor criterion, the effect
is computed using the classic backdoor adjustment formula (Eq.1),
therefore the parallel with Eq.4 still holds. Thus, we can compute the
causal effect within a CPDAG by employing an adapted PDP.

3.3 Analyzing conditions in Generalized Backdoor

The Generalized Backdoor criterion may not be satisfied for two po-
tential reasons:

(i) if Y ∈ pa(X, C), given that arrows represent the flow of causality,
the causal effect ofX can not go backward to Y ; we can conclude
that X has no effect on Y .

(ii) If Y is a possible descendant of X in the graph CX , some addi-
tional causal knowledge (orientation of edges) is required to apply
Theorem.1.

This subsection aims to provide insights into potential solutions
for addressing the second item.

X

V1 V2

V3

V4

V5

V6

Y

(a) CPDAG C

X

V1 V2

V3

V4

V5

V6

Y

(b) CX with a possible descen-
dancy path in red.

Figure 2: A CPDAG C where condition (2) of Theorem 1 is not satis-
fied.

Consider the example in Fig.2, Y is a possible descendant of X
through the path 〈X,V3, V5, Y 〉 causing the Generalized Backdoor
to be not applicable. However, this issue can be resolved by clarifying
whether or not Y is a descendant of X in CX .
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For instance, if the edge X − V3 is oriented as X → V3 (Fig.3a),
the arc is no longer in CX and thus Y ceases to be a possible descen-
dant in this graph. Therefore, Theorem 1 is applicable and results in
{∅} as the adjustment set. Conversely, if orienting V3 → X (Fig.3b),
Y is not a possible descendent anymore, and thus, the Generalized
Backdoor can be used and, for instance, results in {V3} as the adjust-
ment set. Therefore to resolve the ambiguity regarding whether Y is
a descendant of X in CX , some edges have to be oriented.

X

V1 V2

V3

V4

V5

V6

Y

(a) X → V3: Backdoor set {∅}

X

V1 V2

V3

V4

V5

V6

Y

(b) X ← V3: Backdoor set {V3}
Figure 3: Identifying the direction of causality between V3 − X en-
ables the Generalized Backdoor.

Nevertheless, not all orientations carry the same level of informa-
tion, for instance:

• Orienting V1 → X forces the orientation X → V3 due to Meek
rule 1 (Fig.4). Similarly, orienting V2 → X forces X → V3.

• Conversely, orienting X → V1 (or X → V2) does not trigger
any Meek rules. Therefore, the orientation for V3 − X remains
unknown. Resolving this ambiguity requires supplementary infor-
mation to determine the orientation.

Rule 1

B

A

C B

A

C

Rule 2

B

A

C B

A

C

Rule 3
B

A

C

D

B

A

C

D

Rule 4
B

A

C

D

B

A

C

D

Figure 4: Meek rules for orientation in PDAGs [14]. A dashed line
represents a link (it can be an arc or an edge).

Thus, if the Generalised Backdoor cannot be applied in an initial
CPDAG, we can incrementally add orientations and then propagate
them until Theorem 1 is applicable for our causal query. As a re-
minder, the initial CPDAG already contains the maximum amount of
information that can be retrieved from data. Therefore, it is necessary
to seek out information from other sources, such as expert knowledge
or experiments. Previous studies suggest leveraging experimental in-
terventional data from randomized controlled trials [4]. In many real-
world applications, experimental interventions are time-consuming
and/or expensive. In this paper, we propose substituting external ex-
perience with expert knowledge. Yet, the expert may not always
know how to orient the required edges. Despite this, we can propose
a set of edges that could lead to the necessary orientations for prob-

lem resolution. Doing so opens up multiple possibilities for resolving
the issue.

4 Eliciting Sufficient Background Knowledge

This section provides the key contributions of the article. As a re-
fresher, the challenge lies in determining the orientation of the edges
that induce incompatibility with condition (2) of the Generalized
Backdoor, i.e., the edges that provoke possible descendancy. Gain-
ing knowledge about the orientation of these blocking edges would
lead to a structure where Theorem 1 becomes applicable. To this
end, we introduce several theoretical findings aimed at identifying
and excluding edges that do not contribute to solving our problem.
Subsequently, we propose a methodology for ranking edges to reduce
the amount of additional exogenous causal knowledge, i.e., requested
orientations from an expert.

Firstly, we report an established proposition that states that any
CPDAG can be divided into components that can be oriented inde-
pendently.

Proposition 1. (From [10]) Every essential graph is a chain graph
with chordal chain components. Moreover, orientations in one chain
component do not affect orientations in other components.

For instance, in the chain graph of Fig.5c, edges are either in the
component {V1, V2, X, V3} or the component {V4, V5}. Orienting
edges in one component does not affect the edges of the other.

4.1 Informative Edges Given a Specific Query

The subsection is dedicated to exploring the impact of X on Y in
a CPDAG C such as Y ∈ possDesc(X, CX) where CX is the graph
obtained by removing all directed edges out of X in C.

To assess the possible descendancy fromX to Y , we need to orient
some edges to transform all the possible directed paths from X to Y
into:

• Either a path starting with an arrow out of (or into) X:
X → · · ·Y or X ← · · ·Y

• Or into a path in the form:
X − · · ·Vi ← Vi+1 · · · − Y

Thus, we are interested in the edges that, once oriented, can resolve
the question of possible descendancy from X to Y , directly or by
propagation. To this end, we will use two new concepts.

Definition 1. (Informative edges) An edge is informative if its orien-
tation can contribute to the resolution of possible descendancy from
X to Y .

Definition 2. (Bypass path) Let p = 〈U1, · · · , Ul〉 be a partially
directed path. If there exists a directed path p′ from U1 to Ul, then p′

bypasses p (and p is bypassed by p′).

In Fig.5c, the red path 〈V3, V5, Y 〉 bypasses the blue path
〈V3, V4, V5, Y 〉.

In the following development, we will demonstrate that informa-
tive edges are only in the component of X (TC(X)). Initially, we
prove that all edges within the intermediate components between X
and Y are bypassed via an entirely directed path. Then, we show that
every edge in a bypassed component is non-informative. Lastly, we
conclude that the only component containing informative edges is
TC(X).
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(c) Bypassed paths in
CX

Figure 5: Example of components and bypass paths
Lemma 2. (Bypassed paths are irrelevant.)

Let Y ∈ possDesc(X, C), and p be a partially directed path on a
possible descendancy path from X to Y .

If a directed path p′ bypasses p, then orienting an edge in p can
not resolve the question of possible descendancy from X to Y .

Proof. Consider paths p partially directed and p′ totally directed,
such that p and p′ are on possible descendancy paths. Let U1 (re-
spectively, Ul) be the start (respectively, end) node of p.

Since p′ bypasses p, a directed path exists from U1 to Ul. Hence,
any edges oriented on path p will not revoke the descendancy of Ul

from U1. Consequently, orienting any edges on p will not resolve the
possible descendancy from X to X .

In Fig.5c, the partially directed path 〈V3, V4, V5, Y 〉 is on a pos-
sible descendancy path from X to Y . The directed path 〈V3, V5, Y 〉
bypasses the path 〈V3, V4, V5, Y 〉 so the edge V4 − V5 is irrelevant,
i.e. it is not necessary to seek for the causality between these two
nodes to assess the effect of X on Y .

Lemma 3. (Parent of a chain component)
Let C be a CPDAG with a node set V = {V1, · · · , Vp}, and TC

be the set of components of the graph. For Vi ∈ V, TC(Vi), is the
component containing node Vi.

Let V in ∈ V such that V in /∈ TC(Vi).
If an arc V in → Vi exists, then for all V ∈ TC(Vi), an arc V in →

V exists.
We denote such a node V in as a parent of the chain component

TC(Vi).

Proof. Let C be a CPDAG. Thus, in C, orientations have already been
propagated using the Meek rules.

Let V in, Vi ∈ V such that V in /∈ TC(Vi) and there exists a di-
rected arc V in → Vi. Nei(Vi) is the set of nodes that are connected
to Vi with an edge.

• We start by establishing that for all N ∈ Nei(Vi), there exists a
directed arc V in → N .

– Suppose there is no link between V in and N , then V in →
Vi −N would form an unshielded triplet, thus by Meek Rule 1
(Fig.4), we would have V in → Vi → N , and hence N would
not be in Nei(Vi).

– Now suppose the arc V in − N is undirected, implying there
exists an undirected path between Vi and V in, hence V in ∈
TC(Vi), contradicting the hypothesis of Lem.3.

– Suppose now V in ← N , by Meek Rule 2 (Fig.4), we get Vi →
N , and hence N would not be in Nei(Vi).

Thus for all N ∈ Nei(Vi), there exists an arc V in → N . We now
know that for all neighbors N of Vi, a directed arc V in → N
exists.

• Now that we have an arc V in → N , N is in the same conditions
as Vi, so we can apply the same reasoning to all neighbors of Vi

and their neighbors, and so on, until we obtain an arc V in → V,
∀V ∈ TC(Vi).

In Fig.5c, since there is an arc V3 → V4, then there is an arc
V3 → V5 since V4 and V5 belong to the same chain component.

Lemma 4. (Bypassed Chain Component)
Let TC(Vi) be a chain component with a parent V in, i.e. with an

incoming arc V in → Vi, then any partially directed path from V in

to a node V ∈ TC(Vi) is bypassed by the directed path V in → V .

Proof. According to Lem.3, if an incoming arc enters component
TC(Vi) from node V in, this implies that source node V in is con-
nected to all nodes within the component, creating a bypass for each
node in the component.

In Fig.5a, V3 = V in is a parent of the component{V4, V5},the
path 〈V3, V5〉 bypasses the path 〈V3, V4, V5〉.

Theorem 5. (Non-Informative Chain Component)
Let TC(Vi) be a chain component with a parent V in, and with the

incoming arc V in → Vi that belongs to a possible descendancy path
p from X to Y , then any edge in TC(Vi) is non informative to assess
the effect of X on Y .

Proof. Let V in → Vi in a possible descendancy path p from X to
Y .

If Y ∈ TC(Vi) then Vin is a parent of Y by Lem.3. If Y /∈ TC(Vi),
then the component has an outgoing arc in p: V → V out, and the
directed path V in → V → V out bypasses all other paths from V in

to V out that go through the component.
In both cases, by Lem.2 and Lem.4, the edges in TC(Vi) are by-

passed on p.
Furthermore, for all possible descendancy path p′ that goes

through this component, p′ contains its own V ′in parent of the com-
ponent (otherwise TC(Vi) = TC(X) and then V in could not exist).
With the same argument as above, we see that the edges in TC(Vi)
are bypassed on p′.

Finally, the edges of TC(Vi) are bypassed on every possible de-
scendancy path that intersects the component. Then by Lem. 2 those
edges are non informative to assess the effect of X on Y .

For example, in Fig.5c, we consider the component TC(V4) =
{V4, V5} and the source node V in = V3. The edges within the com-
ponent TC(V4) are irrelevant regardless of their orientations because
the path 〈V in = V3, V5, Y = V out〉 (red path in Fig.5c) will always
create a descendancy path.

Theorem 6. (Localization of informative edges)
To assess the effect of X to Y , the informative edges are only in

the chain component of X .

Proof. Let C be a CPDAG where Y ∈ possDesc(X, CX), and T be a
chain component of C.

• If T does not contain any node that belongs to a possible descen-
dancy path from X to Y . Then, by Proposition 1, the orientations
in this chain component do not affect the other components and
so are non-informative.
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• If T intersects a possible descendancy path p and does not contain
X . Then there exists in p an incoming arc that enters T (otherwise
T = TC(X). Let us call this arc V in → V1. T = TC(V1) and
V in is a parent of T . By Th.5, the edges of this chain component
are then non-informative.

Thus, the only informative edges belong to the chain component that
contains X .

In Fig.5a, we only have to consider edges in TC(X) =
{V1, V2, V3, X}.

We have established that we can restrict exogenous information
to edges belonging to TC(X). It is worth noting that some of these
edges may become non-informative after adding exogenous informa-
tion, as discussed in the next section.

4.2 Interactive Algorithm for Limiting Expert Input

Considering a CPDAG C where Y ∈ possDesc(X, CX), we can not
yet use the Generalized Backdoor in order to adjust for the impact of
X on Y . To address this issue, we propose to seek knowledge from
an expert. This search takes the form of questions regarding the ori-
entation (the causality) of specific edges. Due to the difficulty of this
task, it is necessary to reduce the number of questions asked. Theo-
rem 6 allows us to only focus on orientations in the chain component
of X .

Moreover, a causal orientation of an edge can propagate to mul-
tiple edges thanks to the Meek rules. We thus propose an iterative
approach consisting of asking a causal question, propagating the an-
swer to a new structure, and continuing until this structure is suffi-
cient to assess the impact of X on Y .

Not all edges carry an equal amount of information and some can
even become non-informative during this process.

For instance in Fig.6b, the edge V1 − V2 becomes irrelevant when
it gets completely separated from X by new arcs.

X

V1 V2

V3

V4

V5

V6

Y

(a) Original CPDAG

X

V1 V2

V3

V4

V5

V6

Y

(b) Adding X → V1

X

V1 V2

V3

V4

V5

V6

Y

(c) Adding X → V2

Figure 6: A sequence of additional orientations. Edges in red are still
relevant after each step.

Lemma 7. (Separated edges) An edge that does not belong to a pos-
sible descendancy path from X to Y , and that is not connected to a
possible descendancy path by an undirected path, is not informative.

Proof. Meek rules propagate an orientation either to an adjacent
edge, or through an intermediate edge. Thus, when an edge is not
part of a possible descendancy path p, and has no undirected path to
p, its orientation cannot propagate to p, and can only propagate to
similarly separated edges.

A classical approach to an interactive algorithm could be to pro-
pose a way to decide the best question to ask at each iteration. How-
ever, our aim is to leave some initiative to the expert while forewarn-
ing about the most complex scenarios. Therefore, we propose pre-
senting the edges (the causal questions) in ascending order based on
the maximum number of questions a scenario may induce.

This approach offers another advantage: if the expert encounters
difficulties answering questions along the most direct route, she can
switch to more accessible questions (i.e. questions with more causal
sense from a human point of view) while staying on paths that require
few questions.

To this end, the first step is to construct the tree of scenarios as
graphs successively enriched by orientations provided by the expert.
A detailed illustration of this construction is presented in Fig.7.

G

eG1 eG2
· · ·

eGn

G1 G2

←−e2 −→e2

Figure 7: Construction of Trees. eGk represents an informative edge in
G. ←−e2 and −→e2 are the orientations used respectively in the left child
of G: G1, and the right child of G: G2.

Starting with a CPDAG C, we initially assess whether the condi-
tions of the Generalized Backdoor are met. If it is the case, we halt
the process. If it isn’t, we select an undirected edge a−b (eGk in Fig.7)
from the set of candidate informative edges, defined as follows.

In a graph G obtained by adding orientations to C, candidate in-
formative edges are elements of TC(X) that have not yet been ori-
ented and remain informative (Lem.7); the set of candidate edges is
denoted as KG(X,Y ) (at the start of the algorithm KG(X,Y ) =
TC(X)).

Then, we create two new graphs, incorporating the orientations
a ← b or a → b (←−ek and −→ek in Fig.7). Following this, we apply the
Meek rules to both graphs, resulting in two newly partially oriented
graphs G1 and G2. These graphs are designated as the "left child"
and the "right child" of G.

Then, we recursively apply the process for the two new graphs,
until we reach a graph that satisfies the Generalized Backdoor crite-
rion.

We analyze the depth of the tree that led us to this point, i.e., the
number of questions asked to the expert. For any starting graph, we
can rank candidates edges based on the worst-case scenario that they
can induce. The Algorithm 1 proposes an implementation of the con-
struction of trees for such a process.

5 Experiments

To evaluate our approach, we propose a comparative analysis against
a baseline where the expert is solicited to determine the remaining
orientations of the CPDAG to apply the conventional causal calcu-
lation, which requires a DAG. The key objective is to quantify the
reduction in the number of expert interactions achieved through our
method.

The simulation methodology follows these steps: The parameters
for graph generation range from 10 to 100 for the number of nodes
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Algorithm 1 Recursive Tree Construction

1: function CONSTRUCTTREE(graph G, X , Y )
2: if Y /∈ possDesc(X,GX) then

3: return tree(G, None), 0
4: else

5: dictTrees ← {}
6: for a− b ∈ KG(X,Y ) do

7: G1 ← ApplyMeekRules(G+ a � b)
8: t1, h1 ← CONSTRUCTTREE(G1, X , Y )
9: G2 ← ApplyMeekRules(G+ a � b)

10: t2, h2 ← CONSTRUCTTREE(G2, X , Y )
11: tree ← new tree(G, (a− b), t1, t2)
12: h ← max(h1, h2) + 1
13: dictTrees ← (tree,h)
14: end for

15: (tmin, hmin) ← minh{(t, h) ∈ dictTrees}
16: return (tmin, htmin)
17: end if

18: end function

and from 1.1 to 1.8 for the arc ratio. For each combination of these
parameters, we generate 50 DAGs and extract their CPDAGs (the code
is available on GitHub[9]).

Within each graph, a variable of interest (X) and a target (Y ) are
randomly selected. The identification of the causal effect of X on
Y with the Generalized Backdoor criterion is then assessed. If the
Generalized Backdoor criterion holds true, the graph is ignored. If
the Generalized Backdoor criterion is not satisfied, the total number
of edges in the CPDAG and the number of edges in the component are
counted; we then apply our algorithm to the edges in the component.

0 5 10
10−4

10−3

10−2

10−1

100

101

102

103

Number of Edges in TC(X)

R
un

tim
e
in

se
co

nd
s

Figure 8: Algorithm Runtime in seconds versus the number of edges
in the component of interest. (Note the log scale for the y-axis)

The algorithm 1 is clearly exponential since it involves the exhaus-
tive construction of scenario trees, as shown in Fig.8.

In Fig.9, the blue curve represents the average total number of
edges versus the size of the CPDAG, while the red curve illustrates
the average number of edges within TC(X). This red plot can be
seen as the maximum number of questions to be posed in the worst-
case scenario, assuming each orientation is independent. The plot in
green is the average number of questions asked to guide the expert in
assessing the effect ofX on Y (i.e., the average depth of the scenario
tree).

By application of Theorem 6, orienting the entire component ofX ,
TC(X), is sufficient to resolve possible descendancies and apply the
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Figure 9: Maximum edges to orient to assess a causal effect. Com-
plete orientation of the CPDAG (blue) and focus on T (X) (red).
Generalized Backdoor criterion. Thus, the maximum number of in-
teractions with experts is bounded by the number of edges in TC(X).
Experimentally, we observe that this number slowly increases with
the total size of the graph, up to 5 informative edges on average for
graphs containing 100 nodes.

In addition to this initial enhancement, we can further minimize
the number of questions by prioritizing those directly addressing the
issue. As the green graph suggests, with a suitable sequence of ori-
entations, it is possible to answer the query with 2 or 3 inputs from
the expert.

Finally, despite having an exponential algorithm, we never apply
it to scenarios larger than 5 or 6 possible questions, even for graphs
up to 100 nodes, with an acceptable runtime.

Conclusion

To extract causal insights from observational data, it is crucial to con-
sider the causal relationships between variables. However, acquiring
causal knowledge presents significant challenges. This paper focuses
on leveraging automatically learnable aspects of the causal structure,
particularly the CPDAG.

Obtaining a complete Directed Acyclic Graph (DAG) from a
CPDAG and then utilizing the tools of the do-calculus requires sub-
stantial exogenous causal information. Various studies have enabled
the utilization of these tools in partially oriented graphs.

Given a query about a causal effect, our first contribution, pre-
sented in Theorem 6, permits limiting the call for exogenous infor-
mation to a specific subset of the graph. Secondly, we propose an
algorithm to iteratively collect a sequence of expert-provided orien-
tations that lead to the resolution of the query.

Our experiments indicate that our proposal significantly decreases
the number of questions submitted to the expert; on average, the
interaction is drastically limited to 2 or 3 questions, even for large
graphs (up to 100 nodes).

This article establishes the validity of our approach, but there is
still room for improvement. For instance, generalizing the criterion
to do-calculus in a partial causal graph [18] or introducing dynamic
programming to speed up the exploration, are promising avenues
of research. Finally, our methodology, which assumes knowledge
of a flawless CPDAG, could be adapted to handle uncertainty about
learned (and therefore approximated) CPDAGs.
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