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Abstract. We consider a Gaussian process (GP) bandit optimiza-
tion problem when the objective function lives in a reproducing
kernel Hilbert space (RKHS), assuming that the payoffs follow a
heavy-tailed distribution with a bounded (1+ε)-th moment for some
ε ∈ (0, 1]. Existing algorithms for this setting face practical chal-
lenges due to their significant computational demands and inconsis-
tent theoretical guarantee to translation of noise distribution. To ad-
dress these issues, we introduce two robust algorithms. The first algo-
rithm utilizes a truncation estimator, achieving the same regret bound
as that of the existing algorithm up to logarithmic terms with reduced
time complexity. The second algorithm employs a median-of-means
estimator and achieves more stable regret bound to alteration of noise
distribution with lower time and space complexities compared to ex-
isting methods. Finally, we empirically validate the performance of
our proposed algorithms against previous methods in both synthetic
and real-world datasets.

1 Introduction

Black-box optimization is the problem of finding an optimum of
an unknown target function with expensive and noisy evaluations,
which generally arises in numerous real-world applications, such as
experimental design [32], hyper-parameter optimization [31], mate-
rial discovery [12], and robotics [20]. Gaussian process (GP) bandit
optimization, which is one of the most popular method to solve this
problem, leverages a surrogate model in a reproducing kernel Hilbert
space (RKHS), evaluates the target function to update the surrogate
model, selects the next evaluation points by using some specific sam-
pling strategy, and repeat this process towards reaching the optimum
of the target function. Many GP bandit algorithms generally aim to
design an efficient sampling strategy that allows reaching the opti-
mum with the minimal evaluations.

To design an efficient sampling strategy, algorithms in GP bandit
optimization often make assumptions on noise distribution that rep-
resents inherent uncertainty and randomness present in real-world
applications. Previous studies in GP bandit optimization have com-
monly assumed sub-Gaussian noise characterized by a light-tailed
distribution [32, 22, 8, 9, 19]. However, the sub-Gaussian noise as-
sumption may not entirely encompass the range of real-world scenar-
ios encountered in practice, where heavy-tailed noises often occur. In
addition, it is known that algorithms designed for the sub-Gaussian
noise often suffer from a decrease in convergence speed or a failure
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to find an optimum when applied in heavy-tailed noise settings [6].
This issue has been addressed by a significant body of researches in
bandit literature from multi-armed bandits to GP bandit optimization
[6, 26, 30, 37, 23, 25, 2]. Pioneeringly, Chowdhury and Gopalan [10]
were at the forefront of addressing this challenge within the context
of GP bandit optimization. Chowdhury and Gopalan [10] proposed
two robust algorithms designed to handle heavy-tailed noise: the
truncated GP-UCB (TGP-UCB) and the adaptively truncated approx-
imate GP-UCB (ATA-GP-UCB). These algorithms employ strate-
gic truncation of extreme observations contaminated by heavy-tailed
noise through carefully calibrate truncation thresholds, which allows
heavy-tailed observations to be treated like sub-Gaussian noise.

The robust algorithms in [10] have reached a sub-linear regret
bound with respect to total trials T , which ensures convergence
to the optimum. Despite this progress, each algorithm still suffers
from its own drawbacks. First, the regret bound of TGP-UCB, de-

noted as Õ
(
ν̄

1
1+ε γTT

2+ε
2(1+ε)

)
, leaves a theoretical gap with the

lower bound suggested in [10]. Here, γT is a maximum informa-
tion gain, ν̄ is a raw moment of noise distribution, and ε ∈ (0, 1].
To eliminate this gap, Chowdhury and Gopalan [10] introduced the
ATA-GP-UCB whose regret bound, denoted as Õ(ν̄

1
1+ε γTT

1
1+ε ),

matches the lower bounds in terms of T . Despite matching the op-
timal regret bound, ATA-GP-UCB incurs substantial computational
costs due to its approximate truncation technique using Nyström
approximation [38]. Unlike TGP-UCB, which truncates raw obser-
vations directly, ATA-GP-UCB adaptively trims weighted observa-
tions using truncation weights. This delicate approach allows ATA-
GP-UCB to achieve the tight regret bound. However, when defining
the truncation weights, ATA-GP-UCB utilizes features which repre-
sent a mapping from input space to high-dimensional space (in this
case, RKHS). Then, ATA-GP-UCB truncates all historical weighted
observations across all dimensions of the features. This technique
presents a challenge in RKHS where the feature space can be infinite-
dimensional. Thus ATA-GP-UCB necessitates an additional step to
embed the infinite-dimensional features into a finite-dimensional
space for calculating weights, which induces extra computations and
the Nyström approximation is used for this feature embedding step.
Moreover, the regret bounds of both TGP-UCB and ATA-GP-UCB
depend on the raw moments of the noise distribution ν̄, making the
algorithms sensitive and unstable to translations in the noise distribu-
tion, potentially impairing their performance. These constraints have
motivated us to devise algorithms with lower computational com-
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plexity and a more stable theoretical guarantee.
In this paper, we introduce two GP bandit optimization algorithms

for handling heavy-tailed noise. The first algorithm, named contex-
tual adaptive truncated GP-UCB (CA-TGP-UCB), deals with heavy-
tailed noise using a truncation method [6]. Importantly, it has been
shown that adaptively truncating weighted rewards leads to a better
regret bound compared to directly truncating raw rewards [30, 37].
While both CA-TGP-UCB and ATA-GP-UCB employ the adaptive
truncation method, the primary distinction lies in the definition of
the truncation weights. In particular, the truncation weights of CA-
TGP-UCB can be directly computed by using a kernel function. The
basic idea is to adjust them differently for each input along with the
truncation threshold. By doing so, it is possible to define more re-
fined weights and truncation thresholds for different inputs, achiev-
ing a similar effect to the weights in ATA-GP-UCB with more re-
duced time complexity. However, although CA-TGP-UCB achieves
the tight regret bound of O(ν̄γTT

1
1+ε ), it still scales with the raw

moment of the noise, similar to other truncation algorithms.
The second algorithm, median-of-means GP-UCB (MoM-GP-

UCB), which employs the median-of-means estimator [6], addresses
this problem. Importantly, the median-of-means estimator has been
widely used in various fields such as heavy-tailed bandits [6, 26, 30,
37], regression [16, 17], and robust kernel density estimation [18],
but it has not been utilized in GP bandit optimization previously. The
basic idea is to divide all trials into multiple episodes, repeatedly per-
form a fixed input within each episode to obtain means corresponding
that input, and then update the surrogate model for the target function
based on the median of the obtained means. When using the median-
of-means (MoM) estimator, the performance of algorithms depends
on how means are defined. For example, in cases of stochastic ban-
dits [6] and linear bandits [26] where the MoM estimator is used,
the mean is defined as the empirical mean. While this formulation
ensures robustness against heavy-tailed noise, it fails to yield a tight
regret bound. Similar to truncation-based methods, we set mean of
MoM-GP-UCB as weighted mean where the weight has a depen-
dency on input. This technique allows us to achieve a tighter regret
bound. Furthermore, MoM-GP-UCB requires updating the surrogate
only once per episode, resulting in lower computational complexity
compared to truncation-based algorithms that need updates at every
time step. Additionally, in contrast to truncation-based algorithms
where the regret bound grows with raw moments, the regret bound of
MoM-GP-UCB increases with central moments of noise distribution.
The complete paper with supplementary and corresponding code are
available at this reference [1]. Now, we highlight our contributions
as follows:

• We introduce CA-TGP-UCB, a robust GP bandit algorithm with
a truncation estimator. It achieves a cumulative regret bound of
Õ(ν̄γTT

1
1+ε ), where ε ∈ (0, 1] and ν̄ represents a raw moment of

heavy-tailed noise. This algorithm reduces time complexity com-
pared to previous methods while keeping the same regret bound,
up to logarithmic terms.

• We develop MoM-GP-UCB, a robust GP bandit optimization al-
gorithm that uses the median-of-means estimator. MoM-GP-UCB
achieves a regret bound of Õ(ν

1
1+ε γTT

1
1+ε ), where ν repre-

sents a central moment of heavy-tailed noise. Additionally, MoM-
GP-UCB improves time and space complexities compared to
truncation-based algorithms.

• We experimentally demonstrate that CA-TGP-UCB and MoM-
GP-UCB perform better than TGP-UCB and ATA-GP-UCB under
heavy-tailed noise, both in synthetic and real-world datasets, with

reduced execution times.

2 Related Work

Gaussian process (GP) optimization can be approached in two ways:
the Bayesian setting, with functions sampled from a GP prior, and
the frequentist setting, assuming functions lie in a reproducing kernel
Hilbert space (RKHS). While this paper primarily focuses on the fre-
quentist setting, our methods can be easily extended to the Bayesian
setting using similar techniques as in [32]. This section introduces
research on the frequentist setting.

GP optimization involves iteratively selecting points and optimiz-
ing an unknown objective function based on the feedback obtained
at those points. Thus the classification of GP optimization depends
on the form in which feedback is provided during this process, such
as Thompson sampling [9, 34], expected improvement [7, 15], and
upper confidence bound (UCB) [32, 9]. In particular, the formula-
tion of GP optimization with UCB-style bandit feedback was first
introduced by Srinivas et al. [32]. They proposed a GP bandit opti-
mization algorithm called GP-UCB and analyzed it in both Bayesian
and frequentist settings, establishing Õ(

√
TγT ) and Õ(

√
TγT ) re-

gret bounds where Õ ignores dimension-independent logarithmic
terms, γT is a maximum information gain and T denotes total tri-
als. Building upon this research, the subsequent studies have focused
on improving the regret bound of GP-UCB [36, 9, 19] or extending
its application to more general settings; e.g., contextual GP bandits
[22], corruption-tolerant GP bandits [5], misspecified GP bandits[4],
and more on. In particular, Chowdhury and Gopalan [9] designed
two GP bandit optimization algorithms, named IGP-UCB and GP-
TS which are designed under frequentist and Bayesian settings, re-
spectively. The regret bounds of both algorithms are improved from
that of GP-UCB by a factor of O(lnT ). Following this work, Janz
et al. [19] introduced a GP bandit algorithm that ensures a sublin-
ear regret bound for the Matérn kernel with specific kernel param-
eters, although its practicality is compromised by a large constant
factor multiplied to the regret bound. In discrete action spaces, Valko
et al. [36] introduced SupKernelUCB, a sublinear GP bandit algo-
rithm based on SupLinUCB [11]. Recent practical methods in GP
optimization, such as tree-based domain shrinking [28], pure explo-
ration [33], and batched pure exploration [24, 35], have achieved re-
gret bounds of Õ(

√
γTT ). Additionally, Scarlett et al. [29] and Cai

and Scarlett [8] proposed kernel-specific lower bounds for GP bandit
algorithms under sub-Gaussian noise.

We emphasize that attempts to improve the regret bound of GP-
UCB typically rely on the sub-Gaussian noise assumption. However,
in GP bandit optimization, Chowdhury and Gopalan [10] recently
proposed robust algorithms for heavy-tailed payoffs, a topic less ex-
plored in GP bandits compared to other bandit fields. Chowdhury and
Gopalan [10] adapted GP-UCB using truncation estimator [6], origi-
nally employed in stochastic bandits to deal with heavy-tailed noise,
to develop two robust GP bandit algorithm: TGP-UCB and ATA-
GP-UCB. These algorithms achieve the cumulative regret bounds

Õ(ν̄
1

1+ε γTT
2+ε

2(1+ε) ) and Õ(ν̄
1

1+ε γTT
1

1+ε ), respectively. However,
TGP-UCB shows a gap in regret bounds compared to kernel-specific
lower bounds [10], and, while ATA-GP-UCB closes this gap, it de-
mands significant computational resources.

3 Problem Formulation

We now introduce Gaussian process (GP) bandit optimization with
bandit feedback under heavy-tailed payoffs. Let us define a com-
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pact set X ⊆ R
d for some d ∈ N and let f : X → R be the

objective function. Then we define a positive definite kernel func-
tion k : X × X → R and a feature mapping φ : X → H where
H is a Hilbert space. In particular, the Hilbert space H is called a
reproducing kernel Hilbert space (RKHS) associated to a kernel k if
k(x, x′) = 〈φ(x), φ(x′)〉H holds for all x, x′ ∈ X and the reproduc-
ing property 〈f, k(·, x)〉H = f(x) is satisfied for all f ∈ H where
〈·, ·〉H is an inner product on H. Throughout this paper, we assume
that the objective function f lies in a RKHS associated with squared
exponential (SE) kernel and Matérn kernel, which are widely-used
ones in GP optimization [21] and defined by

kSE(x, x
′) = exp

(
−‖x− x′‖2

2l2

)
(1)

kMatérn(x, x
′) =

21−ω

Γ(ω)

(√
2ω‖x− x′‖

l

)ω

Jω

(√
2ω‖x− x′‖

l

)
.

(2)

Here, l denotes the characteristic length scale, ω is a smoothness
parameter, and Jω is a modified Bessel function. We now present
the standard assumptions in GP bandit optimization [32] and heavy-
tailed bandits [6].

Assumption 1 (Boundedness). There exists a positive constant B
such that ‖f‖H ≤ B for all f ∈ H.

Note that this assumption implies
√

k(x, x) ≤ B since
‖k(x, ·)‖H =

√
k(x, x).

Assumption 2 (Heavy-tailed noise). Let Ft be a filtration generated
by {xi}ti=1∪{ηi}ti=1, where xi is an action played and ηi is a noise
at round i ∈ [t], respectively. Then xt and ηt are Ft-measurable,
respectively. Suppose that E[ηt|Ft−1] = 0 holds and there exists
some constant ν < ∞ such that E[|ηt|1+ε|Ft−1] ≤ ν for any ε ∈
(0, 1]. In addition, define ν̄ = (ν+B)1+ε. Then, E[|yt|1+ε|Ft−1] ≤
ν̄ holds for all t ∈ N.

Assumption 2 represents the (1 + ε)-th moment assumption on
noisy observations, where ε ∈ (0, 1]. It is worth noting that Assump-
tion 2 encompasses the sub-Gaussian noise assumption posed in [32],
especially when p = 2. Based on Assumptions 1 and 2, GP bandit
optimization is formulated as follows: at each time step t ∈ [T ], the
learner (i.e., bandit algorithm) selects an action xt ∈ X and observes
a noisy reward yt = f(xt) + ηt where f ∈ H is an (fixed) unknown
objective function and noise ηt follows Assumption 2. Then the goal
of the learner is to minimize a cumulative regret over total rounds
T , RT :=

∑T
t=1 f(x∗) − f(xt), where x∗ is an (not necessarily

unique) optimal point of f . We note that minimizing the cumula-
tive regret is equivalent to maximize the expected cumulative reward∑T

t=1 f(xt). For any n ∈ N, let [n] := {1, 2, . . . , n}. Further, we
will denote by ‖ · ‖p the p-th norm for any p ∈ N. Õ indicates big O
notation that hides logarithmic terms.

4 Algorithms

In this section, we propose two Gaussian process (GP) bandit op-
timization algorithms under heavy-tailed payoffs. Both algorithms
employ upper confidence bound (UCB) strategy [3] to select an ac-
tion and utilize a Gaussian likelihood as the surrogate model for the
objective function. In this context, the objective function is sampled
from GP prior GP(0, k) and specified by posterior mean μ and co-
variance σ functions where k is a kernel function. Note that the GP
surrogate model is only used for algorithm design and we still as-
sume that the fixed objective function f lies in RKHS. Particularly,

Algorithm 1 Contextual Adaptive Truncated GP-UCB (CA-TGP-
UCB)

1: Input: T , X , αt ∈ R
+, λ > 0, k, ε ∈ (0, 1], δ ∈ (0, 1], B

2: Initialization: Set μ̂0 = 0 and σ2(x) = k(x, x) for all x ∈ X
3: for t = 1, 2, . . . , T do

4: Set αt := B+λ−1/2t
1−ε

2(1+ε)

(
2λ−1/2

√
2
(
γt + ln

(
1
δ

))
+ ν̄

)
5: Play action xt = argmaxx∈X μ̂t−1(x)+αtσt−1(x) and ob-

serve payoff yt
6: Set truncation threshold h(xt) = ‖kt(x)

ᵀ(Kt + λIt)
−1‖1+ε

7: Compute ŷt = yt�{|btyt|≤h(xt)} where bt is the t-th element
of kt(x)(Kt + λIt)

−1 and set Ŷt = [ŷ1, ŷ2, . . . , ŷt]
8: Compute μ̂t(x) = kt(x)

ᵀ(Kt + λIt)
−1Ŷt and σt(x) =√

k(x, x)− kt(x)ᵀ(Kt + λIt)−1kt(x)
9: end for

previous GP bandit algorithms in sub-Gaussian noise setting select
an action based on the following rule:

xt = argmax
x∈X

μt−1(x) + αtσt−1(x) (3)

where μt(x) = kt(x)
ᵀ(Kt + λIt)

−1Yt is the posterior mean,
σ2
t (x) = k(x, x) − kᵀ

t (x)(Kt + λIt)
−1kt(x) is the posterior vari-

ance when t observations are given, and αt is a confidence param-
eter. Here, we denote by the kernel matrix Kt = [k(xi, xj)]i,j∈[t],
stacked kernel functions kt(x) = [k(x, xi)]

ᵀ
i∈[t], and a vector con-

taining observations Yt = [y1, . . . , yt]
ᵀ, respectively. In addition, we

formally define the maximum information gain that is used to repre-
sent the regret bounds in GP bandit optimization as follows.

Definition 1 (Maximum Information Gain [32]). Let f be a function
sampled from Gaussian process prior GP(0, k) adding with i.i.d.
Guassian noises N (0, λ) where k is a kernel function and λ > 0.
Then the maximum information gain is defined as

γT := max
A⊂D:|A|=T

1

2
ln |I + λ−1KA| (4)

where D ⊂ R
d is compact and convex set.

Contextual Adaptive Truncated GP-UCB. The first algorithm,
named Contextual Adaptive Truncated GP-UCB (Algorithm 1) lever-
ages the truncation estimator [6]. The intuitive idea underlying this
method is to trim extreme-valued rewards. Therefore, determining
which term to trim and what threshold to use becomes a crucial fac-
tor in the performance of the algorithm. Specifically, CA-TGP-UCB
truncates heavy-tailed rewards as follows:

ŷt = yt�{|btyt|≤h(xt)} (5)

where � is the indicator function, bt is a truncation weight, and
h(xt) is truncation threshold defined as h(xt) = ‖kt(x)

ᵀ(Kt +
λIt)

−1‖1+ε with ε ∈ (0, 1]. Then, by using the truncated rewards,
CA-TGP-UCB select an action, at every round t ∈ [T ], with the
following selection rule:

xt = argmax
x∈X

μ̂t−1(x) + αtσt−1(x) (6)

where μ̂t(x) := kt(x)
ᵀ(Kt + λIt)

−1Ŷt is the truncated posterior
mean with truncated observations Ŷt = [ŷ1, . . . , ŷt]

ᵀ and αt is a
confidence parameter defined in Lemma 3.

In the case of TGP-UCB [10], raw observations are truncated di-
rectly, such as ŷt = yt�{|yt|≤gt}. Here, gt is a truncation threshold
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defined as gt = ν̄
1

1+ε t
1

2(1+ε) where ν̄ is a raw moment of heavy-
tailed rewards and ε ∈ (0, 1]. This approach leads to a loose regret

bound in terms of T , Õ(ν̄
1

1+ε γTT
2+ε

2(1+ε) ), leaving a gap with kernel-
specific regret lower bounds for squared exponential (SE) and Matérn
kernels. To overcome this problem, Chowdhury and Gopalan [10] in-
corporated a dimension-wise truncation method, which was given by
Shao et al. [30] in linear stochastic bandits, into GP bandits and in-
troduce a novel GP bandit algorithm ATA-GP-UCB. In constrast to
TGP-UCB, ATA-GP-UCB trims rewards in each feature dimension
considering all historical rewards. Note that, in GP bandit setting,
where a feature φ(x) can have an infinite-dimension, such trunca-
tion technique cannot be directly applied. Therefore, Chowdhury and
Gopalan [10] employed Nyström [38] and QFF projection techniques
[27] to embed infinite-dimensional features into finite-dimensions
before the applying truncation. More precisely, let [uᵀ

1, . . . , u
ᵀ
mt

]

be the rows of Ṽ
−1/2
t Φ̃t

ᵀ
where φ̃t denotes the embedded fea-

ture, mt is the dimension of φ̃t, Φ̃ᵀ
t = [φ̃t(x1), . . . , φ̃t(xt)], and

Ṽt = Φ̃ᵀ
t Φ̃t + λImt . Then the truncated reward is calculated as fol-

lows:

r̂i =
t∑

τ=1

ui,τyτ�|ui,τyτ |≤at . (7)

where at := (ν̄/ ln(4mtT/δ)
1

1+ε t
1−ε

2(1+ε) ) is a truncation
threshold. While ATA-GP-UCB achieves a tighter regret bound
Õ(ν̄

1
1+ε γTT

1
1+ε ) using the dimension-wise truncation method, this

approach comes with extra computational costs. It requires embed-
ding feature vectors and calculating the weight matrix Ṽ

−1/2
t , which

cannot be updated online using the Sherman-Morrison formula [14].
We point out that utilizing an adaptive truncation technique (5) for

features can reduce the computational cost of ATA-GP-UCB, while
still achieving a favorable regret bound Õ(ν̄γTT

1
1+ε ). In contrast to

TGP-UCB and ATA-GP-UCB, the weighted truncated term btyt and
truncation threshold h(xt) of CA-TGP-UCB depend on the action
played (i.e., the feature φ(xt)), which helps us to obtain the tight re-
gret bound in terms of T . Specifically, employing an adaptive thresh-
old for features results in a narrow confidence interval.

Lemma 3 (Confidence interval of Algorithm 1). Suppose that As-
sumptions 1 and 2 hold. Let δ ∈ (0, 1] and ε ∈ (0, 1], and let

αt := B + λ−1/2t
1−ε

2(1+ε) (2λ−1/2
√

2(γt + ln(1/δ)) + ν̄). Then,
the confidence interval of Algorithm 1 is as follows, with probability
at least 1− δ, uniformly over all t ≥ 1,

|μ̂t(x)− f(x)| ≤ αtσt(x). (8)

The complete proof is deferred to the supplementary. It is worth
noting that in GP bandits, the regret bound takes the form of
Õ(αt

∑T
t=1 σt−1(xt)), where σt−1 represents the posterior stan-

dard deviation and αt serves as a confidence parameter. Notably, the
summation of the posterior standard deviations over T rounds can
be bounded by Õ(

√
γTT ). Therefore, the order of αt determines

the regret bound of GP bandits. For instance, TGP-UCB has a
confidence parameter αt,TGP = Õ(t

1
2(1+ε)

√
γT ) which induces a

suboptimal regret bound Õ(T
2+ε

2(1+ε) γT ) in terms of T . Addition-
ally, while ATA-GP-UCB obtains the same order of confidence

parameter as ours in terms of t, αt,ATA = Õ(t
1−ε

2(1+ε)
√
γT ), it

requires additional feature embedding steps for ensuring the desired
order, resulting in additional computational costs. We argue that the
feature adaptive threshold can simply yield the confidence parameter

αt,CA = Õ(t
1−ε

2(1+ε)
√
γT ) which deduces the favorable regret bound,

Õ(T
1

1+ε γT ), in terms of T and can be obtained without extra
computational costs. For the sake of completeness, we present a
proof sketch of Lemma 3.

Proof sketch of Lemma 3. By the definition of μ̂t and triangle in-
equality, we have

|μ̂t(x)− f(x)| ≤ |φ(x)ᵀW−1
t Φᵀ

t N̂t| − |f(x)− ζt(x)| (9)

where ζt(x) := kt(x)
ᵀ(Kt + λIt)

−1ft for all x ∈ X and ft =
[f(x1), f(x2), . . . , f(xt)]

ᵀ is a vector of evaluations of f up to time
step t. Then, the second term of RHS of (9) bounded by Bσt(x)
where B is some constant such that ‖f‖H ≤ B (Assumption 1). The
first term of (9) can be decomposed by

|φ(x)ᵀW−1
t Φᵀ

t N̂t|

≤
∣∣∣∣∣

t∑
i=1

bitη̂
i
t − E

[
t∑

i=1

bitη̂
i
t|Gt,i−1

]∣∣∣∣∣+
∣∣∣∣∣E

[
t∑

i=1

bitη̂
i
t|Gt,i−1

]∣∣∣∣∣
(10)

where bit is the i-th element of kt(x)
ᵀ(Kt+λIt)

−1, η̂i
t is a truncated

noise, and Gt,τ := σ({x1, x2, . . . , xt} ∪ {y1, y2, . . . , yτ}) is a σ-
algebra with τ ∈ [t]. To bound the first term of RHS of (10), we em-
ploy the self-normalized inequality [13], which yields Õ(h(xt)

√
γt)

regret upper bound where h(xt) is a truncation threshold for the
played action xt. Furthermore, the second term of (10) is bounded
by ν̄h(xt) where ν̄ is the (1 + ε)-th moment of noisy observations
as defined in Assumption 2. Recall that the truncation threshold is
defined as h(xt) = ‖kx(x)

ᵀ(Kt + λIt)
−1‖1+ε. Then we have that

h(xt) ≤ λ−1/2t
1−ε

2(1+ε) σt(x) for all t ∈ [T ]. By using this property
of h(xt) and combining the inequalities (9) and (10) with their upper
bounds, the lemma is established.

Intuitively, truncating rewards introduces bias and this can be con-
trolled mathematically by (10). Since both TGP-UCB and ATA-GP-
UCB employ the truncation technique, similar to our approach, they
also have a form of (10) in their proofs. However, the method of
bounding this inequality varies depending on the definition of the
truncation threshold and the term to be truncated, thereby altering
the order of t in confidence interval. For instance, TGP-UCB bounds
the second term of RHS of (10) by using the property of their trunca-
tion threshold gt = ν̄

1
1+ε t

1
2(1+ε) where ν̄ is the (1+ε)-th moment of

noise (Lemma 8 in [10]) and the fact that raw reward observation yt

is truncated. In their proof, that term is bounded by Õ(t
1

2(1+ε)
√
γt),

which is less tighter than our bound Õ(t
1−ε

2(1+ε)
√
γt).

On the other hand, ATA-GP-UCB shares the same bound as ours
up to logarithmic terms. The bound of the inequality in ATA-GP-
UCB is Õ(a−ε

t ‖ui‖1+ε
1+ε), where ui is a truncation weight such that

‖ui‖1+ε
1+ε ≤ t

1−ε
2(1+ε) and at = Õ(t

1−ε
2(1+ε) ) is a truncation thresh-

old. Thus the order of truncation threshold is same as ours and the
truncation weight ui plays a role of the context adaptive trunca-
tion weight in our algorithm. However, as earlier mentioned, the
weight ui is defined as the i-th column of Ṽ −1/2

t Φ̃ᵀ
t where Φ̃ᵀ

t =
[φ̃t(x1), . . . , φ̃t(xt)], Ṽt = Φ̃ᵀ

t Φ̃t + λImt , and mt is the dimension
of embedded feature φ̃t(x). Therefore, an additional step is neces-
sary for embedding all arms, which requires Õ(m3

t + m2
t |X |) time

complexity. Additionally, constructing Ṽt requires Õ(m2
t t) time, and

computing Ṽ
−1/2
t takes Õ(m3

t ) time. Hence, the inclusion of embed-
ding steps to achieve a tighter bound increases the time complexity of
ATA-GP-UCB. In contrast, by employing context-adaptive weights
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which serve as the embedded weight in ATA-GP-UCB, we can attain
the same regret bound with much less time complexity as follows.

Theorem 4 (Cumulative regret bound of Algorithm 1). Suppose that
Assumptions 1 and 2 hold. Let δ ∈ (0, 1] and ε ∈ (0, 1]. Then, for
any T ∈ N, the cumulative regret bound of Algorithm 1 after T
rounds is

RT ≤ O
(
(BγT + ν̄

√
γT )T

1
1+ε

)
(11)

with probability at least 1− δ.

The complete proof is deferred to the supplementary. This the-
orem shows the cumulative regret bound of CA-TGP-UCB. Ignor-
ing logarithmic and constant terms that are independent of dimen-
sion d, we can write the regret bound as Õ(γTT

1
1+ε ). This regret

bound is same as that of ATA-GP-UCB up to logarithmic terms in
terms of T . In addition, when variance is finite (ε = 1), the regret
bound becomes Õ(γT

√
T ) which matches the previous best result

in GP bandits [32, 9] under sub-Gaussian noise. The kernel specific
lower bounds for GP bandits under heavy-tailed payoffs have been
proposed by Chowdhury and Gopalan [10], particularly for SE and
Matérn kernels. For the SE kernel, the regret bound of CA-TGP-UCB
is Õ((lnT )dT

1
1+ε ) which closes the gap between the lower bound

Ω̃((lnT )
dε
1+ε T

1
1+ε ) up to (lnT )

ε
1+ε . For the Matérn kernel, the re-

gret bound of CA-TGP-UCB is Õ(T
1

1+ε
+ d

2ω+d (lnT )
2ω

2ω+d ), which
is sublinear when d

2ε
< ω is satisfied. Compared to the lower bound

Ω̃(T
1

1+ε
+ dε2

ω(1+ε)2+dε(1+ε) ), it still has a gap.

Computational complexity of CA-TGP-UCB. Recall that the
truncation threshold of CA-TGP-UCB is defined as ‖kt(x)(Kt +
λIt)

−1‖1+ε, where ε ∈ (0, 1]. The truncation threshold can be com-
puted in O(t3+ t|X |), where |X | denotes the cardinality of the input
space X . Using the computed value kt(x)(Kt + λIt)

−1, we can es-
timate the mean and posterior variance in O(t) and O(t|X |) time,
respectively. Consequently, the per-step time complexity is O(t3 +
t|X |). Since we need to store kt(x), Kt and kt(x)(Kt + λIt)

−1

for all x ∈ X , the per-step space complexity is O(t2 + t|X |).
Therefore the total time and space complexities over T rounds are
O(T 4 + T |X |) and O(T 3 + T |X |), respectively. In comparison,
the total time complexity of ATA-GP-UCB is O(m2

t (T
2 + T |X |)),

where mt is the dimension of the embedded feature vector φ̃t(x).
It is important to note that ATA-GP-UCB requires both feature em-
bedding and the construction of a weight matrix Ṽt that defines the
truncation weight, which is a row vector of Ṽt. These steps lead to an
additional time complexity of O(m3

t + m2
t |X | + m2

t t). Moreover,
since ATA-GP-UCB needs to store the square inversion of weight
matrix Ṽ

−1/2
t and feature embedding φ̃t(x) for all x ∈ X , it incurs

additional per-step space complexity O(mt(mt + |X |)).
If mt is much smaller than T , the overall time complexity is lower

than ours in terms of big-O sense. However, when mt is too small,
performance of ATA-GP-UCB degrades because the embedded fea-
ture space fails to adequately capture the information from the origi-
nal feature space. As a result, ATA-GP-UCB needs to keep mt suffi-
ciently large, which incurs significant additional computational costs,
particularly when mt ≈ T . This demonstrates that the time com-
plexity of CA-TGP-UCB is an improvement over ATA-GP-UCB, as
empirically shown in experiment section 5.

Median-of-means GP-UCB. Another way to handle heavy-tailed
payoffs is to use the median-of-means estimator [6] and the second
algorithm (Algorithm 2), median-of-means (MoM) GP-UCB, takes
this approach. For a given total time step T , MoM-GP-UCB first

Algorithm 2 Median-of-means (MoM) GP-UCB

1: Input: T , X , αt ∈ R
+, λ > 0, k, ε ∈ (0, 1], δ, δ′ ∈ (0, 1], B

2: Initialization: Set � = 8 ln( 2T
δ′ ), N = �T

�
�, μ̃0 = 0

3: for n = 1, 2, . . . , N do

4: Set αn = n
1−ε

2(1+ε) (4ν)
1

1+ε

(
2Bλ− 1

2

√
γn + ln( 1

δ
) + 1

4

)
+

B
5: Select action xn = argmaxx∈X μ̃n−1(x) + αnσn−1(x)
6: Play xn with � times and observe payoffs yn,1, yn,2, . . . , yn,�

7: Compute kn(x)
ᵀ(Kn + λIn)

−1Y j
n for each j ∈ [�]

8: Compute μ̃n(x) = median{kn(x)(Kn + λIn)Y
j
n}�j=1

9: Set σn(x) = kn(x)
ᵀ(Kn + λIn)

−1kn(x)
10: end for

divides T into N = �T
�
� episodes where � is the length of each

episode. Then, for each episode n ∈ [N ], MoM-GP-UCB plays the
chosen arm � times and observes � rewards. After that, MoM-GP-
UCB finds the median of means as follows:

μ̃n(x) = median{kn(x)
ᵀ(Kn + λIn)

−1Y j
n}�j=1 (12)

where Y j
n := {y1,j , y2,j , . . . , yn,j} for any j ∈ [�]. It is worth not-

ing that the definition of means, kn(x)
ᵀ(Kn+λIn)

−1Y j
n , is used to

derive a tight confidence interval. In other words, similar to the trun-
cation method, adaptively considering raw rewards within the con-
text, rather than directly, helps in achieving a tight regret bound as
follows.

Lemma 5 (Confidence interval of median-of-means estimator). Sup-
pose that Assumptions 1 and 2 hold. Let δ, δ′ ∈ (0, 1], and ε ∈ (0, 1].
Let us denote the median of means estimator in the n-th episode of
Algorithm 2 by μ̃n for any n ∈ [N ]. Then the following holds for all
x ∈ X and uniformly over all n ≥ 1,

P{|μ̃n(x)− f(x)| ≤ αnσn(x)} ≥ 1− δ′/T (13)

where αn := n
1−ε

2(1+ε) (4ν)
1

1+ε

(
2Bλ− 1

2

√
γn + ln( 1

δ
) + 1

4

)
+B.

The complete proof is deferred to the supplementary. Note that

the order of confidence parameter αn = Õ(n
1−ε

2(1+ε)
√
γn) is same

as that of CA-TGP-UCB (Lemma 3), resulting in the same order of
regret bound with respect to T (Theorem 6). However, unlike CA-
TGP-UCB, where the regret bound scales with the (1 + ε)-th raw
moment of noise ν̄, MoM-GP-UCB has the regret bound scaled with
the (1 + ε) central moment of noise ν. Due to this property, MoM-
GP-UCB obtains a regret bound that is invariant to the translation of
the noise distribution. Now, we present a proof sketch of Lemma 5.

Proof sketch of Lemma 5. Before proving the confidence interval of
median-of-means, we need to establish the confidence interval of the
means. In MoM-GP-UCB, the mean represents a weighted observa-
tion μn,j(x) := kn(x)

ᵀ(Kn + λIn)
−1Y j

n , i.e., the posterior mean
for each j ∈ [�] evaluations. Then, by the same argument in the proof
of Lemma 3, we have for all x ∈ X ,

|μn,j(x)− f(x)| ≤ |φ(x)ᵀW−1
n Φᵀ

nÑ
j
n|+ |f(x)− ζn(x)| (14)

where Ñ j
n := [η̃1,j , η̃2,j . . . , η̃n,j ]

ᵀ with η̃n,j = yn,j − f(xn,j) for
all n ∈ [N ] and j ∈ [�], and ζn(x) := kn(x)

ᵀ(Kn + λIn)
−1fn

with fn = [f(x1), f(x2), . . . , f(xn)]
ᵀ. Again, with Assumption 1,

the second term of RHS of (14) can be bounded by Bσn,j(x) where
σn,j(x) is a posterior standard deviation of the j-th mean in the n-th
episode. The proof strategy of bounding the first term of (14) differs
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from that of truncation method. Note that for some c ∈ R

|φ(x)ᵀW−1
n Φᵀ

nÑ
j
n| =

∣∣∣∣∣
n∑

i=1

biη̃i,j

∣∣∣∣∣
≤

∣∣∣∣∣
n∑

i=1

biη̃i,j�{|biη̃i,j |≤c} − E[biη̃i,j�{|biη̃i,j |≤c}|Gi,j ]

∣∣∣∣∣
+

∣∣∣∣∣
n∑

i=1

E[biη̃i,j�{|biη̃i,j |≤c}|Gi,j ]

∣∣∣∣∣+
∣∣∣∣∣

n∑
i=1

E[biη̃i,j�{|biη̃i,j |>c}|Gi,j ]

∣∣∣∣∣
(15)

where Gn,j := σ({x1, . . . , xn})∪{η̃1,j , . . . , η̃n−1,j}) with n ∈ [N ]
and j ∈ [�]. Then, by using Cauchy-schwartz inequality and the self-
normalized inequality, the first term of RHS of (15) can be bounded
by Õ(2c

√
γn) with probability at least 1 − δ. By applying Hölder’s

inequality and Markov’s inequality, we can bound the second term
by h(xn)

1+ενc−ε where h(xn) := (
∑n

i=1 |bi,j |1+ε)
1

1+ε , ε ∈ (0, 1]
and ν is the (1 + ε)-th central moment of noise distribution. For the
third term of RHS of (15), we show that the following holds:

P{∃i ∈ [n] s.t. |biη̃i,j | > c|Gi,j} ≤ 1/4. (16)

This implies that we can bound the third term of RHS of (15) by 0
with probability at least 1 − 1

4
. In particular, by using union bound

and Markov’s inequality, we have

P{∃i ∈ [n] s.t. |biη̃i,j | > c|Gi,j} ≤ νh(xn)
1+ε

c1+ε
. (17)

Then, by setting c = (4ν)
1

1+ε h(xn), the inequality (16) is satisfied.
Combining the inequalities (14) and (15) with their bounds, we have,
with probability at least 1− 1

4
− δ,

|μn,j(x)− f(x)| ≤ αnσn,j(x) (18)

where αn := n
1−ε

2(1+ε) (4ν)
1

1+ε

(
2Bλ−1/2

√
γn + ln(1/δ) + 4−1

)
+

B. Now, we define the indicator function Xn,j :=
�{|μn,j−f(x)|>αnσn,j(x)} and pn,j := P{Xn,j = 1}. Note
that pn,j ≤ 1

4
+ δ holds by (18). Then applying Azuma-Hoeffding’s

inequality and union bound yields for all x ∈ X and uniformly over
all n ≥ 1,

P{|μ̃n(x)− f(x)| ≤ αnσn(x)} ≤ 1− δ′/T (19)

with δ′ ∈ (0, 1].

Theorem 6 (Cumulative regret bound of Algorithm 2). Suppose that
Assumptions 1 and 2 hold. Let δ, δ′ ∈ (0, 1] and let ε ∈ (0, 1]. For
a given total rounds T , Algorithm 2 proceeds N := �T

�
� episodes

where � := ( 8δ
5
) ln(2T/δ′) denotes the length of each episodes.

Then, for any N ∈ N, the cumulative regret bound of Algorithm 2
over N episodes is bounded by

RN ≤ O(Bν
1

1+ε γTT
1

1+ε ln(T )) (20)

with probability at least 1− δ′.

The complete proof is deferred to the supplementary. This
theorem presents the cumulative regret bound of MoM-GP-UCB.
We would like to note that unlike CP-TGP-UCB, TGP-UCB, and
ATA-GP-UCB, whose regret bounds scale with raw moments ν̄, the
regret bound of MoM-GP-UCB is scaled with central moments of
noise distribution, ν. This attribute makes MoM GP-UCB robust
to translations in the noise distribution. Disregarding dimension-
independent logarithmic and constant terms, the above bound can

be written as Õ(T
1

1+ε γT ). Note that if we set ε = 1, the regret
bound becomes Õ(

√
TγT ) which recovers the regret bound of

GP-UCB in sub-Gaussian noise setting [32, 9]. For the Matérn
kernel, the bound is Õ(T

1
1+ε

+ d
2ν+d (lnT )

2ν
2ν+d ). For the SE kernel,

the bound is Õ(T
1

1+ε (lnT )d). These are the same results as those
of CA-TGP-UCB.

Computational complexity of MoM-GP-UCB. By employing the
median-of-means estimator, MoM-GP-UCB achieves better compu-
tational complexity than truncation-based algorithms. A key property
is that MoM-GP-UCB divides the total rounds T into N episodes.
This division reduces the size of the kernel matrix from O(T 2) to
O(N2), resulting in reduced computational costs. In line 7 of Algo-
rithm 2, MoM-GP-UCB computes a posterior mean � times, where
� is a length of each episode. Note that kn(x)

ᵀ(Kn + λIn)
−1 need

to be computed only once in each episode, requiring O(n3 + n|X |)
time, where |X | is the cardinality of the input space X . Therefore, the
computation of � means has a time complexity of O(n3+n|X |+n�).
Then, in line 8, the median-of-means estimator is obtained in O(�2)
time. Finally, in line 9, we can compute σn(x) for all x ∈ X in
O(n|X |) time by using already computed kn(x)

ᵀ(Kn + λIn)
−1

and kn(x)
ᵀ. Since we need to store kn(x), Kn, and kn(x)(Kn +

λIn)
−1, the space complexity is O(n2). Therefore, the total time and

space complexities over N episodes are O(N4) and O(N2), respec-
tively. This can be rewritten in terms of T as O(T 4(8 ln(2T/δ′))−4)
and O(T 2(8 ln(2T/δ′))−2). Importantly, we claim that the term
(8 ln(2Tδ′))−4 multiplied by T distinctly reduces the actual execu-
tion time of MoM-GP-UCB. Additionally, unlike truncation-based
algorithms where |X | is multiplied by T in time and space complex-
ities, in MoM-GP-UCB, they are multiplied by N . This minimizes
the impact of |X | on the execution time of MoM-GP-UCB. We show
this experimentally in section 5.

5 Experiment

In this section, we present the experimental results of the proposed al-
gorithms, CA-TGP-UCB and MoM-GP-UCB. The experiments were
conducted in both synthetic and real-world datasets. The comparison
algorithms include GP-UCB [32] proposed in the sub-Gaussian set-
ting, and TGP-UCB and ATA-GP-UCB [10] proposed in the heavy-
tailed setting. For both synthetic and real-world datasets, we generate
a heavy-tailed noise by using a Pareto random variable zt with the
moment parameter αz and the scale parameter λz . In addition, we
define a Redemacher random variable ζt with a 1/2 probability of
being 1 and a 1/2 probability of being −1. Then, the synthetic noise
ηt is defined as ζt(zt−E[zt]), whose support is (−∞,∞) and mean
is zero. We set αz := (1+ε)+0.01 to make the (1+ε)-th moment of
ηt is bounded. In our experiments, we test all algorithms for ε = 0.2
and ε = 0.8. For 1d function, we generate the target function f ∈ H
on [−10, 10], partitioned into 1000 equally spaced points. Especially,
f :=

∑10
i=1 aik(·, ci) is randomly generated by sampling ai and ci

from the normal distributions, 10(−1 + 2N (0, 1)) and N (0, 3), re-
spectively. For a d-dimensional, we define the Griewank function as
f(x) := 1+ 1

4000

∑d
i=1 x

2
i −

∏d
i=1 cos

(
xi√
i

)
. When d = 2, we set

the input space X as [−5, 5]2, where the interval is partitioned into
400 evenly space points along both the x and y axes. In addition,
for 5d function, we define X as 5000 points randomly sampled from
N (0, 1) with 5 dimensions.

Fig. 1 presents the experimental results on the synthetic datasets.
Overall, the algorithms CA-TGP-UCB and MoM-GP-UCB outper-
form TGP-UCB and ATA-GP-UCB across 1d, 2d, and 5d function
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(a) 1D RKHS, ε = 0.2 (b) 2D Griewank, ε = 0.2 (c) 5D Griewank, ε = 0.2

(d) 1D RKHS, ε = 0.8 (e) 2D Griewank, ε = 0.8 (f) 5D Griewank, ε = 0.8

Figure 1: Cumulative regret for synthetic datasets.

Table 1: Comparison of execution time of each algorithm (in seconds) when ε = 0.2. The average runtime across 10 seeds is reported, with
standard deviations shown in parentheses.

Problem GP-UCB TGP-UCB ATA-GP-UCB CA-TGP-UCB MoM-GP-UCB

1D RKHS func. 132.24s (±87.61) 73.04s (±8.86) 7745.75s (±2206.46) 107.24s (±26.50) 70.09s (±7.13)

2D Griewank 98.26s (±35.93) 32.49s (±10.45) 1535.51s (±1285.80) 10.12s (±1.71) 7.63s (±0.45)

5D Griewank 9564.76s (±7898.22) 9573.52s (±7746.40) 76103.21s (±41673.41) 3598.58s (±155.02) 1893.95s (±40.50)

settings, regardless of the moments of noise distribution. Signifi-
cantly, the cumulative regret of GP-UCB increases linearly across all
problem settings due to its inability to handle heavy-tailed noise. It is
noteworthy that CA-TGP-UCB shows the best performance among
the truncation-based algorithms in all setups. The improved perfor-
mance of CA-TGP-UCB over TGP-UCB aligns with theoretical re-
sults presented in Theorem 4. However, ATA-GP-UCB shows worse
performance than TGP-UCB in 1d and 2d function settings while it
marginally outperforms TGP-UCB in 5d function setting. This sug-
gests that the approximation truncation technique does not consis-
tently outperform naïve truncation and performance can vary de-
pending on the problem setting. Importantly, MoM-GP-UCB con-
sistently shows better performance than truncation-based algorithms
while it demands much less time and space complexities.

Table 1 provides the execution time of each algorithm when they
are conducted on the synthetic datasets with ε = 0.2. Across all
scenarios, ATA-GP-UCB has the slowest execution time due to the
need for additional feature embedding steps. GP-UCB and TGP-
UCB share similar execution speeds because the only additional
step in TGP-UCB compared to GP-UCB is a naïve truncation with
O(t) time complexity. MoM-GP-UCB shows the fastest execution
speed across all scenarios, attributed to updating the kernel matrix
per episode. This is in contrast to truncation-based algorithms, which
require updating the kernel matrix at every time step t ∈ [T ]. All
algorithms have the longest execution time at 5d function and the
shortest execution speed at 2d function. This difference arises from
the discretization method of the input space in each problem setup.
In the 5d function setting, the domain has 5000 points with 5 di-
mensions, while in the 2d function setting, the domain is partitioned
into 400 points with 2 dimensions. Considering that the cardinality
of the domain X is included in time complexities of all algorithms, it
is natural that MoM-GP-UCB, where N is multiplied by |X |, has
a shorter execution time compared to truncation-based algorithms

Table 2: Experimental results on real-world stock dataset.
Algorithm Cumulative regret (± std.)

GP-UCB 29.27 (±0.088)
TGP-UCB 28.42 (±0.055)

ATA-GP-UCB 29.04 (±0.026)
CA-TGP-UCB 27.79 (±0.002)
MoM-GP-UCB 26.88 (±0.029)

where T is multiplied. Table 2 shows the experimental results on
real-world stock dataset. Similar to synthetic data settings, CA-TGP-
UCB performs the best among the truncation-based algorithms and
MoM-GP-UCB outperforms other truncation-based algorithms. The
problem setting of real-world dataset is deferred to the supplemen-
tary.

6 Conclusion

In this paper, we have proposed two Gaussian process (GP) bandit
optimization algorithm under heavy-tailed noise. The first algorithm,
CA-TGP-UCB, utilizes a truncation estimator and achieves the same
regret bound as that of the best existing algorithm up to logarith-
mic terms with reduced computational complexity. The second al-
gorithm, MoM-GP-UCB, is the first to utilize the median-of-means
estimator in GP bandit optimization. Unlike truncation-based algo-
rithms, where the regret bound is expressed in terms of raw moments,
the regret bound of MoM-GP-UCB is formulated based on central
moments of noise distribution. This characteristic improves the ro-
bustness of the algorithm against shifts in noise distribution. In addi-
tion, we theoretically demonstrate that MoM-GP-UCB shows better
computational complexity than all truncation-based algorithms. We
support our theoretical findings through experimental results validat-
ing the performance of the proposed algorithms.
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