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Abstract. Unsupervised validation of anomaly-detection models is
a highly challenging task. While the common practices for model
validation involve a labeled validation set, such validation sets can-
not be constructed when the underlying datasets are unlabeled. The
lack of robust and efficient unsupervised model-validation tech-
niques presents an acute challenge in the implementation of auto-
mated anomaly-detection pipelines, especially when there exists no
prior knowledge of the model’s performance on similar datasets. This
work presents a new paradigm to automated validation of anomaly-
detection models, inspired by real-world, collaborative decision-
making mechanisms. We focus on two commonly-used, unsuper-
vised model-validation tasks — model selection and model evalu-
ation — and provide extensive experimental results that demonstrate
the accuracy and robustness of our approach on both tasks.

1 Introduction

Anomaly detection (AD) is the task of identifying the minority of
data observations that deviate significantly from the majority of the
observations. While anomaly-detection tasks are challenging, they
can be well-managed when the underlying datasets are labeled: train-
ing is performed using either supervised or semi-supervised models;
the best model (i.e. model selection) is chosen using a labeled vali-
dation set; and the performance of the model is assessed (i.e. model
evaluation) using a (second) labeled validation set.

The above no longer holds when the anomaly-detection task at
hand is unsupervised and labeled datasets are not available. Though
the pool of unsupervised anomaly-detection models has been steadily
increasing over the past few years thus reducing the requirement
of labeled training sets, two acute challenges remain: unsupervised
model selection and unsupervised model evaluation. Due to the lack
of a labeled validation set, standard model selection and evaluation
practices cannot be applied while research on methods that do not
require a labeled validation set is surprisingly scarce.

In this work, we aim to fill this gap by introducing a new ap-
proach to model selection and evaluation of anomaly-detection mod-
els which does not require any labeled data. Our approach is based
on the following key ideas:

1. In cases where the ground truth is not available, a representa-
tive majority’s opinion is a good-enough approximator for the ground
truth.

2. One way to obtain a representative majority’s opinion is build-
ing an Accurately-Diverse ensemble: an ensemble of unsupervised
models that sufficiently balances the ensemble’s accuracy and diver-
sity.
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3. In order for an ensemble to be Accurately-Diverse, the ensem-
ble’s decisions must exhibit both heterogeneity and homogeneity in
a complementary manner: we require a strong intra-ensemble agree-
ment on the general trend of each ensemble member’s predictions,
while encouraging a strong intra-ensemble disagreement on the ex-
act ordering of each ensemble member’s predictions.

4. The exact ordering of a model’s predictions is approximated
by the ranked anomaly-score indices of the least distinctive obser-
vations in the dataset: non-extreme inliers. The general trend of a
model’s predictions is approximated by its "fuzzy ranks": ranked
anomaly-score clusters of the most distinctive observations in the
dataset: strong outliers. The level of agreement among ensemble
members is approximated using a rank correlation metric, computed
separately on fuzzy ranks of strong outliers and on exact ranks of
non-extreme inliers.

5. The rank correlation metric should be carefully designed so that
it can both be applied to M > 2 lists, and so that it can account
for the unique structure of anomaly score lists compared to other
ranked lists. We design multiple multi-way correlation metrics that
are specifically suited to measuring the correlation among ranked
anomaly scores.

We provide a thorough evaluation of our approach using ten pub-
licly available datasets. Our experimental results demonstrate the fol-
lowing two claims:

1. An Accurately-Diverse ensemble yields better results than the
average unsupervised anomaly-detection model; the results prove
that using the Accurately-Diverse ensemble practically eliminates
the need for a model-selection procedure of unsupervised anomaly-
detection models.

2. Our Accurately-Diverse-ensemble-based unsupervised evalua-
tion metric yields results that are on par with those of supervised
evaluation metrics; the results prove that the Accurately-Diverse en-
semble can be used for unsupervised evaluation of anomaly detection
models.

This work is the first to develop and experimentally test the “com-
plementary homogeneity-heterogeneity” criteria: the criteria of a
strong intra-ensemble agreement on the general trend of each ensem-
ble member’s predictions and a strong intra-ensemble disagreement
on the exact ordering of each ensemble member’s predictions, as a
proxy for the ensemble’s validity and its ability to be used for unsu-
pervised, anomaly-detection model selection and evaluation. Impor-
tantly, from our experiments, it is clear that both homogeneity and
heterogeneity on complementary parts of the dataset are necessary
for achieving a high degree of accuracy; ensembles that meet only
one criterion, such as those described in prior work, demonstrate poor
and unstable results.
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2 Related work

As the limitations of unsupervised anomaly detection have been
widely acknowledged, there have been multiple recent attempts to
design more effective unsupervised AD models: probabilistic meth-
ods [18, 17], neural-network-based methods [27, 19, 31] and even
graph-based methods [11]. Works such as [10, 12] provide bench-
marks of the most prominent unsupervised anomaly-detection mod-
els as well as create practical rules of thumb on the best settings for
using each model based on different criteria such as the dataset’s do-
main and quality.

The use of ensembles for AD has been explored in multiple works.
Yet, those works significantly differ from ours: either they assume a
supervised or a semi-supervised setting where labels are available
[30, 32]; use ensembles based on feature diversification [15, 23];
use homogeneous ensembles [5, 14, 3] or histogram-based ensem-
bles [25]. Ensembles that do support fully unsupervised, heteroge-
neous ensemble members assume that the list of individual models is
known in advance; thus, they focus on methods for combining mod-
els’ predictions [1, 8] or on researching optimal transformations that
can be applied to individuals predictions [35, 34] rather than on re-
searching optimal ways for choosing an optimal composition of the
ensemble; that is, which models should be included in the ensemble.
Importantly, no prior work aims at designing an AD ensemble model
that can function as an unsupervised model selector, while the latter
is the main goal of Accurately Diverse ensembles.

The research on unsupervised evaluation methods of anomaly-
detection models has been surprisingly scarce. The fully unsuper-
vised evaluation approaches that we are aware of are the method
described in [21], based on soft-margin classifiers, and the method
described in [9], based on excess mass and mass volume curves. All
other methods that we are aware of, such as the p-value-based evalu-
ation method in [4], require a labeled validation set.

Contrary to the above, our work focuses on a purely unsupervised
setting in which ensemble members are heterogeneous and no fea-
ture transformation is performed. Our work is the first to develop
and experimentally test the criteria of a strong intra-ensemble agree-
ment on the general trend of each ensemble member’s predictions
and a strong intra-ensemble disagreement on the exact ordering of
each ensemble member’s predictions as a proxy for the ensemble’s
validity and its ability to both replace the model selection procedure
of unsupervised anomaly-detection models and be utilized for unsu-
pervised evaluation of anomaly-detection models.

3 Accurately Diverse Ensembles

The diversity-accuracy tradeoff is an inherent challenge in ensemble-
based approaches. In unsupervised settings, it becomes an even big-
ger challenge since the common practices for testing the accuracy of
amodel such as using a labeled validation set can not be applied. Our
assumption is that when evaluating our ensemble, we do not have ac-
cess to any source of "ground truth". We, therefore, need to design a
metric that will enable us to balance the accuracy and diversity of an
ensemble without any access to labels.

Our core idea used for designing such a metric is inspired by [6],
which lists three requirements from a judicial ensemble: opinion het-
erogeneity, opinion homogeneity, and independence of errors. At first
glance it is unclear how a single unsupervised ensemble can meet all
three requirements: first, opinion homogeneity and heterogeneity, as
well as opinion homogeneity and independence of errors, seem to be
mutually exclusive. Second, in order to evaluate the independence-

of-errors requirement we must have access to the ground truth of a
subset of observations so we can determine which predictions were
"mistakes". This requirement cannot be accommodated in the unsu-
pervised case. Nevertheless, we claim that an unsupervised ensemble
that meets all three requirements not only exists, but can also be eas-
ily identified using the following key observation:

To balance accuracy and diversity, the ensemble’s decisions must
exhibit both heterogeneity and homogeneity in a complementary
manner that highlights the general, common shape of the ensemble
member’s decision boundary and at the same time blurs their indi-
vidual peculiarities. This conceptual observation can be practically
approximated by requiring a strong intra-ensemble agreement on the
general trend of each member’s predicted anomaly scores, while en-
couraging a strong intra-ensemble disagreement on the exact order-
ing of each member’s predicted scores. In such a case, the individual
errors of the ensemble members will be sufficiently independent so
that the aggregated decision coincides with the ground truth. We re-
fer to such an ensemble as an Accurately-Diverse ensemble.
Specifically, for an ensemble to be Accurately-Diverse two condi-
tions must hold:

(1) The ensemble members should strongly agree on high-level
features of highly-distinctive observations in the dataset.

(2) The ensemble members should strongly disagree on low-level
features of lowly-distinctive observations in the dataset.

Our main claims are the following:

Claim 3.1. In unsupervised AD settings where a supervised
model-selection procedure — a procedure that compares the perfor-
mance of N candidate AD models on a given dataset — cannot be
performed due to the lack of labeled data, an Accurately Diverse
ensemble yields better results than the average anomaly-detection
model thus eliminating the need for a model-selection procedure.

Claim 3.2. In unsupervised AD settings where the only model that
can be used is a single model rather than an ensemble (for instance,
due to regulatory requirements) yet due to the lack of a labeled vali-
dation set a supervised evaluation of the model cannot be performed,
an Accurately-Diverse ensemble can be used to evaluate the model’s
predictions in an unsupervised manner, yielding results that are on
par with those of supervised evaluation metrics.

Combining the two claims, once we have built an Accurately-
Diverse ensemble we can use it in two ways: first, we can use an
aggregation of the set of models that were selected for the ensemble
as our unsupervised predictive model. Second, we can use the ensem-
ble to evaluate other models in an unsupervised manner. In the next
sections, we provide both the technical procedure for building an Ac-
curately Diverse ensemble and algorithms for using the ensemble for
the two above applications.

4 Building an Accurately Diverse Ensemble
4.1 Distinctive observations
We define highly distinctive observations as follows:

Definition 1. A highly distinctive observation is an observation to
which at least one ensemble member gave a high anomaly score.

Given the above definition, a natural definition of lowly-distinctive
observations is the following:

A lowly-distinctive observation is an observation to which none
of the ensemble members gave a high anomaly score.

Indeed, our first experiments were conducted under the above def-
inition of lowly-distinctive observations. However, we found the re-
sults to be unsatisfactory. Upon further analysis, we have noticed that
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unsatisfactory results are obtained on datasets of a very specific type,
which we refer to as "synthetic" anomaly-detection datasets: standard
multi-way classification datasets where different classes are synthet-
ically merged to create the outlier and inlier classes (e.g. mnist [16],
pendigits [2], efc).

Our requirement of complimentary homogeneity and heterogene-
ity from the ensemble members is based on the key observation that
the outlier class has well-defined characteristics that make its identifi-
cation coincide with an "absolute truth" while the inlier class does not
have such well-defined characteristics. A classic example is the task
of financial transaction classification: it is rather easy to list common
features of fraudulent transactions, while normal transactions lack
such features and are rather described by negating fraudulent trans-
actions’ features. Thus, ranking inliers for their degree of normality
is more of a subjective task than an objective one. This observation
indeed holds in original anomaly-detection datasets (e.g. fraud [24]).
However, in synthetic anomaly-detection datasets this observation no
longer holds since the inlier class does have well-defined character-
istics, independently of the outlier class and thus ranking of inliers
becomes an objective task rather than a subjective one; for this rea-
son, we cannot expect to see a strong intra-ensemble disagreement
on the most extreme inliers since their identification in such datasets
also constitutes an "absolute truth".

To accommodate that important observation, we change our defi-
nition of lowly-distinctive observations:

Definition 2. A lowly-distinctive observation is an observation to
which non of the ensemble members gave a high anomaly score, but
neither member gave an extremely low anomaly score.

4.2 High-level features

Anomaly-detection models are usually just the first step in a pipeline;
oftentimes, the anomaly scores predicted by the model will not serve
as the final output of the pipeline but instead will serve as the input
for another step in the pipeline, in which a human analyst assigns
a given treatment to a subset of the observations in the dataset. In
such cases, due to the large amount of time and cost of treating all
the observations that received a high anomaly score by the model,
the analyst will perform the treatment in a top-to-bottom manner.
For instance, if the treatment is simply a manual validation of the
top-ranked observations in terms of predicted anomaly scores, the
analyst will first manually validate the top an-ranked observations
on the list of predicted anomaly scores; then, depending on various
factors such as time and degree of error tolerance, she will manually
validate the top 2an-ranked anomalies; this process will continue
until the top @ = nd-ranked observations are validated, where 7
denotes the contamination factor, and for 1 +€ >= 6 >= 1.

In such a setting, the main factor that determines the treatment
probability of an observation is not its absolute position, but instead,
the cluster — a set of rank indices — within which it lies on the
ranked list. The most common formalization of clusters parametrizes
« using 77 and partitions the dataset into C = 4 clusters:

Cluster #1: [1,7y1n],0 < v1 < 1: highest-confidence outliers.

Cluster #2: [(ny1n) 4+ 1, nn]: lowest-confidence outliers.

Cluster #3: [(nn) + 1, nny2], v2 > 1: lowest-confidence inliers.

Cluster #4: [(nn~2) 4+ 1, n]: highest-confidence inliers.

In our experiments, we found 0.25 <=1 <=0.5,3 <=2 <=5
to work best.

In a real-world production environment, the question of whether
an observation, i, was mapped to rank cluster 1 or rank cluster C is

significantly more important than whether it was ranked in position =
or position x + 1, since the decision whether 7 will be treated before
it is sent out to the next pipeline’s node is solely determined by the
cluster to which ¢ is mapped and the hyperparameters 1, 2. This
illustrates the fact that oftentimes, the most informative features of a
model’s predictions are not low-level features such as the exact scores
each observation received by the model, but rather more high-level,
generalizable features such as the cluster to which the exact score
was mapped. In the next subsection, we show how both low-level
features such as rank index positions and high-level features such as
rank cluster positions can be used to design new correlation metrics
that better capture intra-ensemble agreement.

4.3 Agreement among ensemble members

The simplest method to define agreement among ensemble members
is via the intersection of their binary predictions. Such a method,
however, is too coarse-grained and thus might fail to capture the
underlying structure of the decision-making mechanism of each en-
semble member. Thus, instead of using the binary prediction vec-
tors of each model for measuring intra-ensemble agreement, we use
the models’ score vectors. We apply the rank transformation to the
score vectors for normalization purposes so that the correlation is
not biased toward one of the members. The task of measuring the
agreement among ensemble models is therefore reduced to defining
a proper notion of correlation between the M ranked anomaly score
lists, {rm|m € M}.

4.3.1 Rank correlation metrics

The most commonly-used rank correlation metrics are Spearman’s p
and Kendall’s 7. Kendall’s 7 measures correlation as the number of
opposite ("discordant") pairs in the two lists. The notion of a "discor-
dant" pair, expressed using &, is used to define Kendall’s 7 (73 ):

21 2> 1££1,r2 (4.4)
n(n—1)/2

&) = {1 it sgn(ra[i] = rals]) = sgn(rali) = rali))
: 0 if sgn(rii] = r1[j]) = —sgn(rali] — r2[5])

For simplicity of notation, we denote observations %, j using their in-
dex in the dataset, D. For instance, 71 [¢] denotes the ranked anomaly
score which model m; predicted for the observation residing at the
ith index of the dataset.

We argue that existing rank correlation methods cannot be used
for accurately measuring the correlation between multiple lists that
represent predicted, ranked anomaly scores. First, Kendall’s 7 im-
plicitly assumes that all the observations have an equal contribution
to the correlation between the two ranked lists. That implicit as-
sumption oftentimes doesn’t accurately represent the correlation we
would like to capture between the predicted anomaly scores of two
models. Assume that we have only two models in the ensemble and
for two observations, 7, j, we observe the following ranks: r1[i] =
1,71[j] = n — 1,72[i] = n — 2,7r2[j] = 2. ¢ and j will be consid-
ered a discordant pair, and their contribution to the final correlation
will be 0. Now assume we are given the ranks of another pair, ¢*, j*:
rifi*] =n/2,r1 "] = n/2+1,r2[i"] = n/24+1,7r2[j7] = n/2.7"
and 7" will also be considered a discordant pair, and their contribu-
tion to the correlation score will be the same as the contribution of ¢
and j. When attempting to quantify the correlation between two AD
models using their anomaly scores, the discordance of ¢, j should be
penalized much heavier than the discordance of i*,5*.

Ty =

(€))
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But there is another, more profound reason why existing rank cor-
relation methods cannot fully capture the agreement among AD mod-
els. A discordant pair is defined to be one such as sgn(f(r1[i]) —
flrild])) = —sgn(f(rz2ld]) — f(r2[4])). In Kendall’s 7, f is the
identity function, Z. A discordant pair is a pair such that s is ranked
higher than j in 71, whereas ¢ is ranked lower than j in r. We claim
that such a definition of discordance is too fine-grained for measur-
ing the agreement among anomaly-detection models. Let us look at
the following example:

nlil =3, nlil=3+1 nll=20+2 nil=22+1Q)
Lk n 1 _ k1]

nli’] =3, nlifl=2+1 ri]=22+2, r271=3 @

For 4,j,i*,5° € D. Both 7,35 and i*, j* will be con91dered dis-

cordant pairs according to Kendall’s 7. But do those two notions of
"oppositely ranked", the one represented by the relation of ¢ and j
and the one represented by the relation of ¢* and j*, have a similar
contribution to the agreement between the two models? we claim that
they do not: the opposite rank relation of 4* and j* in r; and 72 is a
much stronger indicator of a disagreement between the two models
compared to the opposite rank relation of ¢ and j.

Let us try to formalize this observation. In Subsection 4.2, we have
discussed the rank cluster access pattern commonly used when ana-
lyzing AD models’ output. Instead of determining the relation be-
tween a pair of observations according to the relation between their
rank indices, we can determine the relation between them according
to the rank clusters to which their rank indices are mapped. Defin-
ing the relation between observations using their clusters — a gen-
eralization of their exact rank position on the ranked list, serves as
the basis of a fuzzy rank correlation metric, a generalization of an
exact rank correlation, in which for a pair of observations to nega-
tively contribute to the correlation it must reflect an opposite rank
cluster position relation, rather than an opposite rank index posi-
tion relation. A discordant pair in this case will defined as follows:
sgn(B(rili]) — B(ril5])) = —sgn(B(r2[il) — B(r2[j])) where § is
the cluster-mapping function 8 : R— > C, |R| = nand |C| = C.
That is, f is now the cluster-mapping function instead of the iden-
tity function. Assuming the existence of 4 clusters as described in
Subsection 4.2, we can see that although according to the prior def-
inition of discordance, both 7, j and i*, j* are marked as discordant,
according to the new discordance definition only i*, j* are marked
as discordant, while ¢, j are marked as concordant.

Combining the two observations, we present a generalization of
Kendall’s 7, suited to measuring the correlation between two
anomaly-detection models — a weighted, fuzzy correlation metric
based on rank clusters instead of rank indices:

i Jgiﬁ*(w(ﬂ(ﬁ[i]v7”2[1]))711)(9(7”1 Fhr2liDNlee (i)

T1,T9

Ty =

(5)

o1 2 gsi Qe (w(Qra[i]s r2[i])), w(Q(r1[5], 2 [4])))
sgn(B(rali]) = B(r2[7]))
—sgn(B(r2[z]) —B(r2[5]))

sil,w(zxj):{é
©

Each pair of observations is weighted: first, we compute an aggre-
gated rank index of ¢ over models m1,m2 using an aggregation func-
tion 2 and then map the aggregated index into a weight, resulting in
the term Q(7) = w(Q(r1[], 72[i])). This term represents 4's aggre-
gated distinctiveness score over all M models. Next, we compute a
similar aggregated weight for j. Finally, we aggregate both 4’s and
j’s weights using €2, this yields the final weight of the pair 7, j. In

sgn(B(r1[i])—B(r1[5]))
sgn(B(r1[i])—B(r1l5])

our experiments, we set {2, to the maz() operator to bias the com-
bined weight towards the more anomalous observation among ¢ and
j. The reader is referred to Subsection 4.4 and the Appendix [13] for
concrete realizations of €2 and w.

4.3.2  Multi-way correlation metrics

We now describe how to extend both 75 and 75 to the multi-way case
that is needed for measuring the degree of correlation among the M
models in the ensemble.

Our multi-way, exact correlation metric, 7;,m, extends 75 to
the multi-way case using the notion of the "largest concordant set"
where the agreement among the M models is quantified as the largest
subset of models that induces the same type of relation on ¢, 5. As
75, Tyrm 1s weighted so the correlation can be biased towards certain
observations based on their distinctiveness level (Subsection 4.4). A
pseudocode of Tj;m can be found in the Appendix [13].

Our multi-way, fuzzy correlation metric, 7j5;, extends 75 by
combining the advantages of exact-rank-based discordance and
fuzzy-rank-based discordance thus balancing the correlation so it is
neither too general nor too fine-grained using the following two key
ideas:

1. Unlike &7, ,.,, we enable discordance that is based on oppo-
site rank index positions; however, unlike &, ,.,, discordance that
is based on opposite rank index positions is only allowed between
observations ¢, j that belong to the same cluster both in ;1 and r».
That is, we only consider intra-cluster exact-rank-based discordance.
Inter-cluster exact-rank-based discordance is not considered.

2. The definition of exact-rank-based discordance is relaxed; for
each pair, ¢, j, the relaxation is proportional to the cluster size to
which ¢ and j are mapped.

The discordance level of ¢ and j is measured as follows:

0 5("'1[?])75,3 ra[i]) vV B(r1[j]) # B(ra[i])
L B(rali]) = B(r2[i]) A B(r1lj ])—B(Tz[J])
A B(r1li]) # B(r1[j])
&g (1,5) =41 B(rufi]) =8 (ralil) = ,3(7"1[ 1) = B(r 2[]]) A
sgn(r1[i] —r1[j]) = sgn(rali ]—T2[J] o|B(ra[iD)
0 ﬁ(h[l])[:ﬁ(rz[ll)—ﬁ(rl[ J]) = B(rals]) A
1

sgn(ra[i]—r1(j]) = —sgn(rali] —raljl £o|8(r i) )
(7

Our multi-way, fuzzy correlation metric is based on the two-way
discordance definition in &7 .5, extended to the multi-way case using
the notion of the "largest concordant set" as shown in Algorithm 1:
the largest concordant set is the set of models M’ C M such that for
every two models in M’, m*, m™™*, B(rm=[i]) = B(rm=+[i]) = a1
and B(rm=[j]) = B(rm=*[j]) = c2, and either ¢; # c2 or, 1 = c2
and within that cluster, sgn((rm=[i] — (rm=[j]) = sgn((rm==[i] —
(rm==[j] £ 6|(c1)|). Further details on both 73, and &7 .5 are given
in the Appendix [13].

4.4 Putting it all together

The key idea for measuring the extent to which an ensemble is Ac-
curately Diverse is assessing the degree of both the exact rank cor-
relation and fuzzy rank correlation of its members’ predictions, each
time using a different weighted version of the dataset. Specifically,
we use two multi-way rank correlation metrics: an exact-rank cor-
relation metric based on rank indices, 73;m, and a fuzzy-rank cor-
relation metric based on rank clusters, 7;,. Each correlation metric
is computed using a different set of weights, which bias the correla-
tion towards a different type of observations in the dataset based on
the observations’ distinctiveness level: when computing a fuzzy-rank
correlation metric based on rank clusters, we assign higher weights
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Algorithm 1 73,

Algorithm 2 U/ED score

Input: M: {ry,|m € M} M ranked anomaly score lists
Output: 73,: a Fuzzy, multi-way correlation coefficient

1: for i € range(0,n) do

2 ind; = Q(i, M)

3 w; = w(ind;)

4 for j € range(i,n) do

6: w; = w(ind;)

7 wij = Qu(wi, wy)

8: SUMy = SUMy + Wij
9: smaller = |C]

10: bigger = [C]

11: equal = [C][C]

12: for m € range(0, M) do

1 if (<B(ron[i)) = A(rm[j])) then

14: equal[B(rm[i]) — 1][B(rm[j]) = 1]+ =1
15: else

16: if |7 [i] — rm[j]| <= 8 x |B(rwm[i])| then
17: smaller[B(rm[i]) — 1]+ =1

18: bigger[B(rmli]) — 1]+ =1

19: else

20: if 7 [i] < rm[j] then

21: smaller[B(rm[i]) — 1]+ =1

22: else

23: bigger[B(rmli]) — 1]+ =1

24: MAT smaller = Max(smaller)

25: MaTpigger = max(bigger)

26: MATequal = Max(equal)

27: maXrel = max(maxsmallera MmaTvigger, mamequal)
28: corr = corr + (M — mazyer) * wij

29 76 =1— —corr

sumqx(M—[
30: return 7y,

D

c+c?

to observations which at least one model found to be highly anoma-
lous; on the other hand, when computing an exact-rank correlation
metric based on rank indices we assign higher weights to observa-
tions which (a) all the models found to be inliers and (b) no model
found to be an extreme inlier.

The requirement for a strong intra-ensemble agreement on the
general trend of each ensemble member’s predictions is approxi-
mated by the ensemble obtaining a high degree of fuzzy rank corre-
lation computed using a multi-model weighting scheme, Q°, that up-
weights strong outliers. The requirement for a strong intra-ensemble
disagreement on the exact ordering of each ensemble member’s pre-
dictions is approximated by the ensemble obtaining a low degree
of exact rank correlation computed using a multi-model weighting
scheme, QT, that upweights non-extreme inliers.

As noted in Subsection 4.3, our multi-model weighting scheme, Q,
is composed of two components: a rank index aggregation function,
2, and a weighting scheme, w, applied to the aggregated rank index.

Weighting scheme The weighting scheme, w, that we found to
work best for upweighting highly-distinctive observations — strong
outliers, is an exponential weighting scheme:

w(i) =1 (1 (@) ®)

where § € [1 4+ ¢,2] and b € [2,10]. Such a weighting scheme
assigns high weights only to strong, predicted outliers; the definition
of "strong" can be controlled using ¢.

The weighting scheme that we found to work best for upweight-
ing lowly distinctive observations is a bell-shaped weighting function

Input: M: M anomaly-detection models, D: dataset
Output: U/ED: evaluation score of model m*

: E = BuildEnsemble(M)

ra = GetAggregated RankedPredictions(E, D)
: R(ra) = Rank(r4)

rm* = RankPredict(m*, D)

: for i € range(0,n) do

d; = D(rp- i), R(r.ali]))

Ci = C(ZvM)

w; = (e [, R(r 4 li)))
score = score + (d; * ¢; * w;
: UED =1 — (score/N)

: return UED

SO VRN AL

—_—

based on the Subbotin distribution: a Gaussian-shaped curve with a
plateau in its center. The size of the plateau can be set using A to con-
trol the amount of uniformity among highly-weighted observations:
R ©
where 1 € [0.5,0.75], ¢ € [0.1,0.3], and A € [2,10]. Such a
weighting scheme assigns high weights only to "normal" inliers: in-
liers that are strong enough but are also not the most extreme inliers
in the dataset.

Rank index aggregation function (2, the rank index aggregation
function that we use must be such that is biased towards smaller rank
indices; that is, biased towards ensemble members that assigned the
observation the highest anomaly scores. The rank index aggregation
function we found to yield the best results is the harmonic mean.

w(i) =e

The multi-model weighting scheme that we found to work best for
upweighting lowly distinctive observations is:
[ & —np|

> m=1M1/r,[i] A

QO (i) = e ) (10)

The multi-model weighting scheme that we found to work best for
upweighting highly distinctive observations is:

M
m=1M1 /. i
Qi) =1 — (1 — (e "m0 (11
To conclude, we assess the extent to which an ensemble is Accurately
Diverse using two criteria: (1) a high degree of fuzzy rank correlation
on strong outliers and (2) a low degree of exact rank correlation on
non-extreme inliers. The higher the correlation in (1) and the lower
the correlation in (2), the more Accurately Diverse the ensemble is.

5 The "Unsupervised Ensemble Divergence' score

In Section 3, we developed the criteria that an ensemble of AD mod-
els must follow in order to be Accurately-Diverse and claimed that it
will perform better than the average single model on unsupervised
AD tasks. However, there could be situations where an ensemble
model cannot be used. For instance, regulatory constraints might
require the use of a single model. In such cases, though a model-
selection procedure is not required, a model-evaluation method is
crucial for assessing the true performance of the model. Because
we assumed an unsupervised setting, supervised evaluation meth-
ods using a labeled validation set cannot be used. In this section, we
use our Accurately-Diverse ensemble to design a new unsupervised
evaluation metric for evaluating anomaly-detection models. The core
idea of the "Unsupervised Ensemble Divergence" score, UED, is to
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Figure 1. Accurately Diverse Ensembles: System Diagram

use a distance metric, tailored specifically to AD tasks, measured
between the prediction of the model to be evaluated, m™, and the
aggregated prediction of an Accurately-Diverse ensemble. Specifi-
cally, for each observation, 7, we first compute D, the distance be-
tween the Accurately-Diverse ensemble’s aggregated prediction and
the candidate model’s prediction. We then compute (, the ensem-
ble’s confidence level on observation i, approximated by the degree
of unanimity of the ensemble members on the prediction of 4. Fi-
nally, since we are evaluating an AD model and thus interested more
in its accuracy on outliers, we compute the relative importance of ¢
to the score by assigning ¢ a weight that aggregates the position of
¢ in both the ranked score list predicted by the candidate model and
the ranked score list predicted by the Accurately-Diverse ensemble.
Here, w is a rank-inverse weighting scheme in which if r[i] > r[j],
w(i) < w(j). Concrete rank-inverse weighting schemes based on
a cosine or a logarithmic reduction factor can be found in the Ap-
pendix [13]. The final contribution of 7 to the overall evaluation score
is proportional to a combination of the distance, the confidence, and
the weight of observation ¢. Finally, the score is normalized using a
distance-dependent normalization factor, V.

As seen in Algorithm 2, we start by building an Accurately-
Diverse ensemble as explained in previous sections and combining
its members’ predictions using an aggregation function (see Section
6), resulting in the list of aggregated predictions, 7.4, for each ob-
servation in the dataset. We then re-rank the aggregated-prediction
list, resulting in a new ranked list, R(r.4), and compute the distance
between the following ranked lists: the ensemble’s re-ranked aggre-
gated predictions, R(r4), and the candidate model’s ranked predic-
tions, r,,~. We have experimented with multiple rank distance met-
rics, and found a fuzzy rank distance metric based on rank clusters,
D¢, to yield the best results:

D (rm=,1a) = Z |B(rm=[i]) = B(R(rali))]  (12)

After experimenting with multiple confidence metrics ({) we have
found the following metric to yield the best results:

2 mem MEDZAN ({rmi]}mert) — rmli]])

(W=1- (n—1)[0M/2]

13)

That is, the difference between each ensemble member’s rank of ob-
servation 7, and the ensemble’s median rank of .
The reader is referred to the Appendix [13] for further details.

6 Experimental results

Our first experimental task is to evaluate the performance of our
Accurately-Diverse ensemble when used as a standalone unsuper-
vised predictive model. This task is not straightforward, as it is
not immediately clear which benchmarks are appropriate for the
unsupervised setting. For instance, an inappropriate benchmarking

methodology would be to compare the results of the Accurately-
Diverse ensemble to those obtained by other unsupervised AD mod-
els and report the ensemble as having a high performance if its per-
formance is better than the other models that we benchmark. This
method is not a valid evaluation method as it is not representative
of the true setting in which the ensemble will be used: specifically,
when the analyst performs the model selection process in the unsu-
pervised setting she has no way of knowing which model out of the
N candidate models performs the best. Thus, even if one of the N
models, m’, performs better than the Accurately-Diverse ensemble,
this does not imply that the ensemble is inferior to m’ since m’ will
probably not be selected as the model of choice. In fact, under our
no-prior-knowledge assumption, it will be chosen only with a prob-
ability of 1/N. For the evaluation results to be representative of the
true unsupervised setting in which our ensemble will be applied we
compare our results to those of the average anomaly-detection model
— the average single model. Assuming that we are given the option
to choose a model out of N candidate unsupervised AD models, the
average single model can be evaluated in two ways:

1. Average Score (AS): evaluate the performance of each one of
the N candidate models using a supervised evaluation metric. Then
average the results.

2. Randomly-Sampled Prediction Score (RSPS): given the predic-
tions of each of the N candidate models and an observation, ¢, we
randomly sample one of the N predictions of %; by repeating this
process for every observation, we form a new, randomly-sampled list
of predictions. We then use a supervised metric to evaluate the per-
formance of that list.

The idea behind AS and RSPS is simulating the real-world, unsu-
pervised use case in which our ensemble will be used and in which,
given N candidate models, the analyst’s choice of model is practi-
cally random.

Table 1 compares our ensemble model results with the results of
the average single model over different datasets. For each dataset,
given a pool of unsupervised models, we first build an Accurately-
Diverse ensemble of size M, where, in our experiments, M = 5. We
train the ensemble on the dataset and then use it to form predictions
by aggregating the individual predictions of the ensemble members.
After experimenting with multiple aggregation methods we found the
arithmetic mean to perform best. We then re-rank the aggregated pre-
dictions and use the result as the final ensemble’s output. Our pool of
models is composed of N = 25 of the most commonly-used unsu-
pervised AD models; specifically, we followed [12] and used most of
the models that they used, as well as some newer models [19, 11, 31].
All models were implemented using PyOD [33]. The results of the
average top Accurately-Diverse ensemble and the average bottom-
Accurately-Diverse ensemble for each dataset are shown in Table 1
and are compared against the results of the average single model ap-
proximated using the AS and RSPS. For evaluation purposes, we use
the PR AUC and prec@n scores. The heuristic that we used in or-
der to choose the top Accurately-Diverse ensembles is the following:
we first sort the ensembles by the degree of their fuzzy rank corre-
lation; then, out of the top-ranked ensembles in terms of fuzzy rank
correlation, we choose those with the lowest exact rank correlation.

As shown in Table 1, the top Accurately Diverse ensemble con-
sistently outperforms the average single model using both the AS
and RSPS. In addition, there is a significant difference in perfor-
mance between the top Accurately-Diverse model and the bottom
Accurately-Diverse model. The results support Claim 3.1, accord-
ing to which an Accurately-Diverse ensemble yields better results
than the average anomaly-detection model. Thus, the process of cre-
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Table 1. A comparison of the Accurately-Diverse ensemble to the average single model (PR AUC, prec@n)

Best Worst % Improvement [25],[23],[35],[34]

Dataset ensemble ensemble AS RSPS w.r.t RSPS (PR AUC)
smtp [29] .39, .55 .02, .06 19, .35 11,2 254, 175 .2,.001,.09,.04
mnist [16] 41, .42 .15, .17 3,.31 .26, .3 57,40 .19,.24,.34,.27
backdoor [22] A8, .45 .04, .06 28,.29 2,.25 140, 80 .02,.2,.13,.27
gamma [7] A8, .43 .35, .38 39, .37 .37, .35 29,23 .35,.33,.44,.43
fraud [24] .29, .34 .02, .06 12,.19 12,18 141, 88 .08,.001,.27,.15
campaign [24] .34, .38 .13,.13 .25,.3 .23,.29 48,31 .21,.15,.24,.22
satellite [28] .6, .55 .25,.3 49, .46 A4, 44 36, 25 .5,.23,.45,.36
pendigits [2] .28, .35 .03, .03 .16, .2 12,18 133,94 .21,.05,.08,.08
shuttle [28] .92, .81 13,15 47, 48 .36, .47 155,72 .1,.08,.51,.65

Table 2. Spearman correlation (PR AUC)

Dataset Ours [21] 91
smtp [29] .9 72 .36
mnist [16] 91 75 .39

backdoor [22] .88 .68 32
gamma [7] 9 .61 .5
fraud [24] .84 7 .55

satellite [28, 26] .88 .68 .34

campaign [24] .93 .83 .6

pendigits [2] .96 .88 37
shuttle [28] .86 74 .55

ating an Accurately Diverse ensemble can be seen as the equivalent
of a model-selection procedure in the unsupervised setting where
no labeled data is available. Furthermore, even though existing AD
ensemble models are not designed to function as model selectors
per se, Table 1 shows the PR AUC results of three state-of-the-art,
fully-unsupervised AD ensemble models [35, 34, 25] as well as a
classic feature-bagging-based ensemble [23] on all datasets. Our re-
sults significantly outperform the results of all the ensemble meth-
ods used as baselines, demonstrating that our novel, "complemen-
tary homogeneity-heterogeneity"-based methodology is a superior
methodology for ensemble building compared to prior methods.
Table 2 shows the Spearman correlation results between the /ED
score and the PR AUC score. For each dataset, we used the top-
Accurately-Diverse ensembles and the procedure described in Al-
gorithm 2 to evaluate the performance of each of the /N candidate
models that were not selected to be part of the ensemble thus form-
ing a vector of unsupervised evaluation results. We also evaluated the
performance of the N models using the PR AUC, resulting in a vec-
tor of supervised evaluation results. We then computed the Spearman
correlation between the two vectors. The multiplicative weighting

scheme (Equation 4, Appendix [13]) yielded the highest Spearman
correlation results followed by the exponential weighting scheme
(Equation 5, Appendix [13]) with & = én and & € [2,4]. The re-
sults demonstrate a very high correlation between the UED scores
and the PR AUC scores when using a median-based confidence met-
ric (Equation 13). The results support Claim 3.2 according to which
an Accurately-Diverse ensemble can be used to evaluate the results
of other anomaly-detection models, yielding results that are on par
with supervised evaluation metrics. Finally, we compare our results
to the results obtained by the methods in [20, 21, 9]. As seen in Ta-
ble 2, the results obtained using the method presented in [20, 21] are
significantly lower than ours. The method presented in [9] yielded
extremely low results to the point of a non-existent correlation.

7 Conclusion and broader impact

Anomaly detection without access to labeled data is a highly chal-
lenging task. While the pool of unsupervised anomaly-detection
models has been steadily increasing, as was evident while perform-
ing our experiments there exists no model that achieves high per-
formance on all the datasets. Analysts and practitioners thus face an
acute problem: which model should be chosen out of all the avail-
able options? Moreover, how should the chosen model be evalu-
ated so that the risk associated with the model’s deployment can
be correctly assessed? This work aims to provide a robust, gen-
eralizable, and above all — accurate solution to the challenges of
unsupervised model selection and evaluation for anomaly detection
tasks. The novel idea of requiring the ensemble’s decisions to exhibit
both homogeneity and heterogeneity in a complementary manner, an
idea which we practically approximate by requiring a strong intra-
ensemble agreement on the fuzzy anomalous ranks of strong outliers
and a strong intra-ensemble disagreement on the exact anomalous
ranks of non-extreme inliers, is proven to serve as a reliable proxy
for the ensemble’s validity. We hope that the methodology presented
in this work will not only provide a viable solution to the challenge
of unsupervised model validation, but will also be used for address-
ing data-driven endeavors in other domains that can benefit from a
new approach to balancing accuracy and diversity.
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