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Abstract. Graph Neural Networks (GNNs) are important across
different domains, such as social network analysis and recommenda-
tion systems, due to their ability to model complex relational data.
This paper introduces subgraph queries as a new task for deep graph
learning. Unlike traditional graph prediction tasks that focus on in-
dividual components like link prediction or node classification, sub-
graph queries jointly predict the components of a target subgraph
based on evidence that is represented by an observed subgraph. For
instance, a subgraph query can predict a set of target links and/or
node labels. To answer subgraph queries, we utilize a probabilis-
tic deep Graph Generative Model. Specifically, we inductively train
a Variational Graph Auto-Encoder (VGAE) model, augmented to
represent a joint distribution over links, node features and labels.
Bayesian optimization is used to tune a weighting for the relative im-
portance of links, node features and labels in a specific domain. We
describe a deterministic and a sampling-based inference method for
estimating subgraph probabilities from the VGAE generative graph
distribution, without retraining, in zero-shot fashion. For evaluation,
we apply the inference methods on a range of subgraph queries on six
benchmark datasets. We find that inference from a model achieves
superior predictive performance, surpassing independent prediction
baselines with improvements in AUC scores ranging from 0.06 to
0.2 points, depending on the dataset.

1 Introduction: Subgraph Queries

Due to the importance and ubiquity of graph data, deep graph learn-
ing is a growing field with many applications. Typical graph learning
tasks include link prediction (predicting the existence of a target link
given as evidence other links and node attributes) and node classifica-
tion (predicting a node label given the node links and labels of other
nodes). This paper addresses subgraph prediction, which is a signif-
icant novel generalization of the link prediction and node classifica-
tion tasks [9]. A subgraph query aims to estimate the probability of
a target subgraph (i.e., a set of links, node labels, and node features),
given an observed subgraph as evidence. Since subgraph components
are not independent of each other, optimal subgraph prediction is
different from predicting each target link/node label independently.
We introduce VGAE+, an extension of the VGAE base generative
model [13]. To answer subgraph queries, the trained VGAE+ models
takes an attributed evidence graph as input and returns a probability
for the target subgraph.

Examples. We provide some examples to illustrate the power of
subgraph prediction, describe use cases, and clarify the relationship
to link prediction and node classification. Figure 1 shows a scenario
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Figure 1: Example of joint link prediction and node classification:
predicting potential actors for Christopher Nolan’s new movie and
its genre. Target links are dashed lines marked with "?". Solid links
are specified as evidence.

with a new film directed by Christopher Nolan. Previously, he collab-
orated with Cillian Murphy, Christian Bale, and Tom Hardy in "The
Dark Knight Rises," and with Cillian Murphy in "Oppenheimer."
Suppose our evidence stipulates that Cillian Murphy is cast in this
new movie, and we want to predict which previous collaborators will
join him in the movie, and which type of movie it will be. The sub-
graph prediction task is to jointly predict (i) the movie’s genre and
(ii) which additional actors will join the cast.

Predicting the genre of the new movie is an instance of single node
classification, an extensively studied task [30, 2]. Predicting whether
Tom Hardy will be in the new movie (independent of other actors)
is an instance of single link prediction, an equally extensively stud-
ied task [9]. Predicting whether Tom Hardy, Cillian Murphy, and
Christian Bale will all join the movie, is an instance of joint link pre-
diction, a recently introduced task [16] that generalizes single link
prediction. Our example query illustrates how subgraph prediction
generalizes both joint link prediction and node classification.

For another example, consider fraud detection in financial net-
works. A node classification approach is to label a network node
as “suspicious" or “normal" [23]. However, recent attack types in-
volve collusion among many network nodes controlled by the at-
tackers [14]. Detecting collusion can be achieved by a more powerful
approach based on joint node classification. Moreover, attack nodes
exchange messages at a substantially higher frequency than normal
nodes [27]. Subgraph prediction can capture joint association pat-
terns among node labels and links to model both which nodes are
suspicious and how suspicious nodes interact with each other.

Motivation. Subgraph queries are substantially more expressive
than the previously studied link prediction and node classification
tasks. They allow users to choose as prediction target a set of links
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and a set of node features or labels rather than assuming a fixed-size
prediction target (e.g., single link, single label), instead of choosing
one of them. Second, users can provide different kinds of evidence,
depending on what is known, and use a single system for answering
the query. In contrast, previous researchers have developed a separate
customized method for different evidence types. Answering general
relational queries, including subgraph queries, is a major use case
for non-neural statistical-relational models, such as Markov Logic
networks [3], which motivates our goal of expanding the prediction
tasks to which neural models can be applied.

Recent generative AI models have shown the usefulness for many
users of a single multi-task system. For deploying graph learning, a
single query answering system is important in a production environ-
ment where we do not know in advance which graph queries will
be important, and users may not have the resources to build a cus-
tomized machine learning solution for different query types. In this
work, we are proposing VGAE+, a generative model that supports
inference to return a probabilistic answer to a subgraph query whose
target and evidence set can be specified by the user. A generative
model, unlike a discriminative model, supports prediction with tar-
gets of varying sizes.

Figure 2: After training a single GGM, the approximate inference
methods described in this paper can answer a user query.

Approach. Figure 2 shows our system design. Our approach is
a form of domain-specific pre-training: We learn a probabilistic
Graph Generative Model (GGM) from data in a deployment do-
main. The model is used to answer queries with no further learn-
ing required. The deployment domain can be large (e.g., 1M nodes),
whereas queries are typically small (e.g., involving 10-100 nodes).
Specifically, we train a generative Variational Graph Auto-Encoder
(VGAE) [13, 9] inductively, so that the VGAE can be applied to
query targets of different sizes that may involve unseen nodes. The
generative probabilities over graphs (implicitly) define a conditional
probability P (target_subgraph|evidence_subgraph) for every sub-
graph query. The VGAE utilizes an encoder-decoder architecture
with a Graph Neural Network (GNN) as an encoder, augmented to
generate node labels/features as well as links. We describe and eval-
uate approximate inference methods for estimating conditional sub-
graph probabilities from a trained VGAE.

Evaluation. We evaluate a variety of query types on six benchmark
homogeneous graphs, depending on whether 1) the target subgraph
involves a single neighbor or multiple neighbors of a target node, and
2) the evidence comprises only links among training nodes (transduc-
tive), or also links that connect training and test nodes (inductive).
Our main baseline is to estimate link probabilities and node labels
independently using SOTA node classification/link prediction meth-
ods. For subgraph queries, we find that the VGAE model achieves

superior or competitive performance on all datasets and settings, es-
pecially inductive inference. For node classification/link prediction
problems, we find that inference from the augmented VGAE model
is competitive with custom methods.

Contributions. Our main contributions are as follows.

• Introducing the task of conditional subgraph prediction.
• Approximate inference methods, including sampling, for answer-

ing subgraph queries from a single trained GGM.
• Introducing VGAE+, which is an augmented VGAE for jointly

modeling links and node features/labels. VGAE+ is trained with
a new objective that utilizes Bayesian optimization to weight link
prediction and node classification.

Paper Organization. We review related work, then define subgraph
queries. We describe inductive training of a VGAE based on the
Evidence Lower BOund (ELBO ) likelihood approximation and in-
ference methods for answering subgraph queries from the trained
VGAE. An extensive empirical evaluation compares subgraph pre-
diction from a VGAE model to 6 baselines on 6 benchmark datasets.

2 Related Works

Link Prediction. For deep graph models, the most common setting
is single link completion: predict a single target link given a set of
known links, which typically include a large set of training links.
Other recent variants include the following single link tasks. (1) Con-
dition on the attributes of the two target nodes only [10]. (2) Condi-
tion on links among other test nodes only [24]. (3) Condition on links
among training and test nodes [35]. These single-link tasks are gen-
eralized by the recently introduced joint link prediction task [16]. In
joint link prediction, the target is a set of links to be predicted jointly,
given another set of links and node features as evidence. Joint link
prediction is the closest predecessor to our work in that it aims to
answer a large class of graph queries from a single model. How-
ever, joint link prediction does not provide the capability of predict-
ing node labels or features, which is important in many applications.
Subgraph prediction requires training a generative model to support
the dual task of joint link prediction and joint node classification,
which we address with Bayesian optimization in this paper.

Node Classification. Node classification is one of the most com-
mon tasks in graph analysis. The goal is to predict a class for each
unlabelled node in the graph based on available graph evidence [12],
which usually includes all links and node features. Graph neural
networks (GNNs) achieve state-of-the-art performance [30]. We in-
clude a recent method [11] in our baseline comparisons. The com-
mon semi-supervised node classification task is similar to a subgraph
query in that it requires a joint prediction of node labels. It is different
in that a subgraph query requires predicting links as well.

Two-Task GNNs vs. Inference from a Model. There is a recent trend
towards two-task GNNs that support both node classification and
link prediction [29]. We include the recent two-task method GiGa-
MAE among our baselines [21]. While two-task GNNs are designed
to support both node classification and link prediction, they require
separate training for each. In contrast, we train a single model for the
large set of diverse tasks that can be represented as subgraph queries.
To our knowledge, inference from a generative model to estimate
subgraph probabilities is a new application of GGMs. The only other
paper that addresses inference from a deep GGM is [16], which cov-
ers link prediction only. We develop a novel augmented variant of
the VGAE to generate node labels and features as well as links. The
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Graph Variational Auto Encoder (GVAE) [22] also generates node la-
bels and features, but it cannot be applied to a single training graph.
Also the GVAE does not utilize Bayesian optimization to balance the
relative importance of modeling links vs. node labels/features.

As we mentioned in the introduction, statistical-relational models
also support subgraph queries, but they are based on very different
assumptions and model classes (e.g. exponential graph models) from
deep GGMs, so we leave a direct comparison for future work.

Graph Queries. Powerful (non-probabilistic) graph query lan-
guages have been developed, such as Cypher and SPARQL [6, 19, 7].
Such graph queries typically return a set of nodes or links that satisfy
a complex condition. In contrast, subgraph queries return a probabil-
ity for a target subgraph.

Inductive Graph Training. Inductive graph learning has been a ma-
jor topic in recent research [8, 33, 20]. To support link prediction
for nodes not seen during training, our query answering approach
can be used with any inductive encoder-decoder graph neural net-
work architecture, trained with the variational ELBO objective de-
scribed below. To our knowledge, this is the first use of the variational
ELBO objective to support inductive subgraph prediction.

Graph Generative Models. Inference from a model requires
the following properties of a GGM. (1) Supports the computa-
tion/estimation of explicit graph probabilities. (2) Admits a condi-
tional variant. (3) Applies to graphs of different sizes. As we show
in this paper, VGAEs meet these requirements, so we base our ex-
periments on them. Specifically, we employ the most recent VGAE
designed for link prediction [16]. Another advantage of the VGAE
is that it is designed for a single large dataset, as are most meth-
ods for link prediction and node classification, so we can employ the
same benchmark datasets. In contrast, other deep GGMs are usually
trained on datasets with many disjoint graphs [4] (e.g., molecules).
We believe that developing deep GGMs so that they support answer-
ing subgraph queries is a fruitful new direction for GNNs.

Subgraph Classification. Alsentzer et al. [1] identify subgraph pre-
diction as an important task. Like our approach, their query targets
and evidence are subgraphs. However, their system addresses only
classifying the target subgraph with a single label. In contrast, we
assign a subgraph probability.

Structure-Conditioned Graph Generation is a recently studied
variant where the user specifies an induced subgraph (the evi-
dence) and a conditional graph generation process completes it [26,
Sec.D.1], [5]. Our definition of joint link prediction allows that nei-
ther evidence nor target links define a complete graph, and that they
may share nodes, which raises special challenges (see Section 5.1).
In addition, our aim is to output an explicit probability over a joint
link assignment, not output a graph. The fact that this recent work has
studied a related task beyond single component prediction supports
our motivation for more complex queries.

3 Subgraph Queries

In this section we formally define our problem, answering probabilis-
tic subgraph queries (SQs). SQs specify a set of links and attributes
for a set of query nodes. The specification can involve a language
as complex as first-order logic [3]. In this paper we introduce a rela-
tively simple SQ syntax—essentially, conjunctions of links, and/or
node attributes and labels—that suffices to express the prediction
tasks that have been previously studied in graph learning ( Section 2).

Data Format. An attributed labelled graph is a pair G = (V,E)
comprising a finite set of nodes V with features and labels, and links
E, which may be positive (present) or negative (absent). Each node is

assigned a k-dimensional attribute xi with k > 0 and a node label li.
A graph with N nodes can be represented by the following objects.

• An N ×N adjacency matrix A with {0, 1} Boolean entries.
• An N × k node feature matrix X with {0, 1} Boolean entries.
• An N×l node label matrix L with a one-hot encoding of l discrete

labels for each node.

A target subgraph of graph G = (V,E) is a graph GY =
(V Y , EY ) where V Y ⊆ V and EY ⊆ E. Similarly, an evidence
subgraph of graph G is a graph GE = (V E , EE) where EE ⊆ E
and EE ∩ EY = ∅. We refer to the nodes V E that appear in
the evidence as evidence nodes, to the nodes V Y that appear in
the target as target nodes, and to their union as query nodes (i.e.,
V = V E ∪ V Y ).

Definition of Subgraph Queries. A relational random variable
corresponds to either a node attribute or an adjacency. Let A =
{A[u, v] : u ∈ V, v ∈ V } be the set of link variables, and
L = {L[u] : u ∈ V } be the set of node label variables, and
X = {X[u] : u ∈ V } be the set of feature variables.

A subgraph query P(target |evidence) is of the form

P(AY = aY ,LY = lY ,XY = xY |AE = aE ,LE = lE ,XE = xE)

where

• AY = {A[ui, vi] : i = 1, . . . , |AY |,A[ui, vi] ∈ EY } is the
list of binary target links, each assigned a value ai ∈ {0, 1}. Sim-
ilarly, AE = {A[ui, vi] : i = 1, . . . , |AE |,A[ui, vi] ∈ EE} is
the list of binary evidence links.

• LY = {L[ui] : i = 1, . . . , |LY |, ui ∈ V Y } is the list of target
node labels, each assigned a one-hot encoding of the l class labels
li ∈ {0, 1}l. Similarly, LE = {L[ui] : i = 1, . . . , |LE |, ui ∈
V E} is the list of evidence node labels.

• XY = {X[ui] : i = 1, . . . , |XY |, ui ∈ V Y } is the list of
target node features, each assigned a feature vector xi ∈ R1×k.
Similarly, XE = {X[ui] : i = 1, . . . , |XE |, ui ∈ V E} is the
list of evidence node features.

The indices i index elements in a query not nodes in a graph. Given
a partition of nodes into observed training nodes and unobserved test
nodes, a query is inductive if a test node appears in the target nodes.

Note that the target and evidence specifications can be and typi-
cally are partial in that some graph components are unspecified. For
example, for two evidence nodes u and v, the evidence may spec-
ify their features, but not whether there exists a link between them or
not. Our definition treats a node feature x[u] as a group, in that either
all or no features of node u are specified in a query. This restriction
is not essential; we use it mainly to simplify notation.

Example Figure 3(Right) shows an example of the most complex
SQ type we consider in this research.

• The query nodes are 1–6.
• The query target subgraph comprises:

– two positive target links defined by the pairs (1, 4), (5, 4).

– two negative target links defined by the pairs (3, 4), (6, 4).

– the labels of nodes 1, 3, 5, 6,

• The query evidence subgraph comprises:

– five positive evidence links defined by the pairs
(1, 2), (1, 3), (2, 3), (3, 6), (1, 5).
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– four negative evidence links defined by the pairs
(3, 5), (2, 6), (2, 5), (1, 6).

– The features of all query nodes (not shown).

• The presence/absence of links (2, 4) and (6, 4) is unspecified.

The perfect query answer is to assign probability 1 to the ground
truth subgraph shown on the Figure 3(Left). The query is inductive
because nodes 4,5,6 are not observed during model training.

Figure 3: Left: Input graph with partition of nodes. Node labels are
green and blue. Right: Neighborhood query: Target labels and links
are colored red. Black dashed links are unspecified links in evidence.

4 Variational Graph Auto-Encoder Training

We describe our generative model, a VGAE augmented with fea-
ture and label reconstruction, with training and implementation de-
tails. Figure 4 shows the VGAE training architecture.

Figure 4: Encoder-Decoder Training Architecture

4.1 Augmented VGAE Generative Model

Let Z be an N ×d matrix that represents latent node embeddings. In
the VGAE model, links are generated independently given node em-
beddings. Following the GraphVAE approach [22], we generate node
classes and node features independently as well given node embed-
dings. We thus utilize three decoder models (see Figure 4):

pθ(A|Z) =
∏

u,v

pθ(A[u, v]|z[u], z[v])

pψ(X|Z) =
∏

u

pψ(X[u]|z[u])

pφ(L|Z) =
∏

u

pφ(L[u]|z[u])

(1)

where pθ : Rd × Rd → [0, 1] is a trainable link decoder, and pψ
resp. pφ denotes a trainable feature decoder resp. label decoder.

The graph encoder qφ(Z|X,A) is implemented by a GNN that
takes as input an attribute graph and returns latent node embeddings.
For compatibility with baseline methods, the encoder does not re-
ceive node labels as input, but adding them is straightforward.

A VGAE+ is trained using the variational ELBO objective [13, 9]:

L(θ, φ) = −EZ∼qφ(Z|X,A)[α× ln pθ(A|Z)

+ β × ln pψ(X|Z) + γ × ln pφ(L|Z)
]

+KL
(
qφ(Z|X,A)||p(Z)

)
(2)

where KL(.||.) is the Kullback-Leibler divergence between two
probability distributions. Here α, β and γ are hyperparameters that
weight the importance of different reconstruction tasks. These hy-
perparameters are found by Bayesian optimization [17]. The Opti-
mizer tunes these hyperparameters so that they minimize the model
reconstruction loss on the validation graph. For details please see the
Appendix [15].

Inductive Training In order to answer inductive queries involving
unseen nodes, we train the VGAE+ without node IDs. We randomly
partition the nodes in the input graph into 1) 70% training nodes Vtr ,
2) 20% inductive test nodes Vte and 3) 10% validation nodes. We
train a VGAE+ model on the input subgraph induced by Vtr .

4.2 Implementation

Encoder The graph encoder qφ(Z|X,A) is implemented by a
GNN that takes an attributed labelled graph as input and returns node
embeddings Z. The node embeddings are independent, and for each
node, represent a conditional Gaussian distribution, such that

q(z[u]|X,A) ∼ N(μ[u], σ[u]) (3)

with mean and covariance μ[u], σ[u] for node u.

Link Decoder As a strong link decoder, we utilize a Stochastic
Block Model (SBM), which is defined as:

pθ(A[u, v]|z[u], z[v]) = z[u]�Λz[v] (4)

where Λ ∈ Rd×d is the trainable d-block matrix in the SBM.

Feature Decoder Nodes features are reconstructed independently,
given node embeddings. Our benchmark datasets comprise discrete
features, so our feature decoder is of the form pψ : Rd → {0, 1}k

pψ(X|Z) =
N∏

u=1

k∏

d=1

pψ(Xd[u]|z[u]) =
N∏

u=1

k∏

d=1

σ(x̃d[u]), (5)

where ψ are the parameters of a fully connected neural net feature
decoder that maps a node embedding z[u] to a k-dimensional node
feature reconstruction x̃[u].

Node Classifier The node classifier pφ : Rd → {0, 1}l, classifies
the node labels independently under a one-hot encoding, given the
same node embeddings:

pφ(L|Z) =
N∏

u=1

pφ(L[u]|z[u]) =
N∏

u=1

softmax (l̃[u]) (6)

where φ are the parameters of a fully connected node classifier that
maps a node embedding z[u] to a l-dimensional vector l̃[u].

5 Subgraph Inference from a VGAE Model

Consider a subgraph query Equation (1) with n query nodes
P(AY = aY ,LY = lY ,XY = xY |E = e) where E is a

list of evidence variables. We define two subgraph inference models,
deterministic and Monte Carlo, for the VGAE+ generative model.
Essentially, the deterministic method uses node embeddings com-
puted deterministically from the evidence, whereas the MC method
samples node embeddings conditional on the evidence.
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5.1 Inference Models

For a fixed set of n query node embeddings z, the target probability
is given by

Pη(AY = aY ,LY = lY ,XY = xY |z) (7)

and can be computed by multiplying the independent decoder
probabilities Eqs. (4) to (6) parametrized by η. The posterior dis-

tribution over the n node embeddings is a conditional Gaussian dis-
tribution, such that p(z[u]|E = e) ∼ N(μ[u], σ[u]) with mean and
covariance μ[u], σ[u] for node u. Equation (10) below shows how
to approximate the posterior using the GNN encoder. Let μE be the
mean node embeddings from the posterior distribution. Determinis-

tic inference utilizes the posterior mean embeddings:

P(AY ,LY ,XY |E = e) ≈ P(AY ,LY ,XY |μE). (8)

Monte Carlo (MC) inference samples S node embeddings from
the posterior distribution, and averages the subgraph probabilities:

P(AY ,LY ,XY |E = e) ≈ 1

S

S∑

s=1

P(AY ,LY ,XY |zs) (9)

where Zs ∼ ∏n
u=1 p(z[u]|E = e).

5.2 Computing the Posterior Distribution

Training a VGAE+ model M provides decoder models pη and an
encoder qφ. The challenge is that the encoder assumes as input an
adjacency matrix, or equivalently, a complete subgraph induced by
the query nodes. We bridge the gap between a partially specified
subgraph and a complete induced subgraph by imputing graph com-
ponents missing from the evidence with 0 as a default value. For
missing links, using the 0 default is the approach taken in previ-
ous work [16, 13]. As discussed by [16], 0 default is appropriate for
links: First, a message-passing encoder treats 0 links as uninforma-
tive, which is appropriate for for unspecified links. Second, because
of graph sparsity, the mode of the true link posterior given the evi-
dence is close to 0. For node features and labels, the 0 default is also
appropriate given our one-hot encoding, since the VGAE+ encoder
is trained not to propagate information from 0-valued features/labels.

Formally, to obtain evidence embeddings, we approximate the
posterior distribution using the trained encoder qφ:

p(Z|E = e) ≈ qφ(Z|AE,0,XE,0) (10)

where the evidence matrices AE,0 and XE,0 are defined as
follows: 1) The dimension of AE,0 is n × n. If AE specifies a
link assignment A[u, v] = ei, then AE,0[u, v] := ei; otherwise
AE,0[u, v] := 0. 2) The dimension of XE,0 is n × k. If XE spec-
ifies a feature vector X [u] = xi, then XE,0[u] := xi; otherwise
XE,0[u] := 0. Similarly we can assign a default value of 0 to un-
specified node labels, but our experiments do not utilize queries that
include node labels as evidence. Note that while the number of train-
ing nodes may be very large, the number of query nodes is typically
small (on the order of 10-100). Applying the same encoder to sub-
graphs of different sizes is possible because we train the VGAE+
model inductively. (For details please see the Appendix [15].)

To illustrate, consider Figure 3. Since the link between nodes 1
and 2 is specified to exist, the evidence adjacency matrix assigns
AE,0[1, 2] := 1. The link between nodes 3 and 5 is specified not

to exist, so the evidence matrix assigns AE,0[3, 5] := 0. Since the
link between nodes 5 and 6 is unspecified, the evidence matrix as-
signs AE,0[5, 6] := 0. If the feature vector for node 2 is unspecified,
the evidence matrix assigns the zero feature vector: XE,0[2] := 0.

6 Evaluation

We detail our methodology then discuss our empirical results. Our
GitHub repository provides a PyTorch implementation and datasets.1

6.1 Experimental Design.

We describe our benchmark datasets, the design of the test queries,
and how evaluation metrics are computed.

Datasets We utilize datasets from previous studies of GGMs
[13, 32, 10]. Cora, ACM, and CiteSeer are citation networks, IMDb
is a movies dataset, and Photo and Computers are co-occurrence net-
works based on Amazon data. The appendix presents dataset statis-
tics [15].

Data Preprocessing Following previous link prediction stud-
ies [13], we add self-loops and make all links undirected (i.e., if the
training data contains an adjacency, v → u, it also contains u → v.)
Cora, CiteSeer, Photo, and Computers are homogeneous datasets,
whereas ACM and IMDb are heterogeneous datasets. Since our com-
parison methods use homogeneous GNNs, we homogenize different
non-hierarchical edge types, such that every edge in the adjacency
matrix is represented by 0 for no link and 1 for link existence.

Test Query Design. We explain next our method for generating
test subgraph queries of different types. The appendix contains visual
examples of the test queries [15]. In all our test queries, the evidence
E does not contain node labels, but specifies 1) the node feature
vector for each query node, 2) the non-target links from the input
graph. To define query target nodes, we randomly select a set of 100
test nodes as target nodes from the test nodes Vte (cf. Section 4.1).

Single Neighbor Query For each target node u, we randomly se-
lect two test links, one positive pair (u, v+) from the neighborhood of
u, one negative pair (u, v−) from outside the neighborhood. The re-
sulting query is of the form P (L[u],A[u, v+],A[u, v−]|E): Which
of the two links is true and what is the label of the target node? In
inductive learning, the paired nodes v+, v− are both test nodes. In
semi-inductive learning, each paired node v+, v− may be either a
training node or a test node.

Neighborhood Query For each target node u with at least
one neighbor, let v+1 , . . . , v+deg(u) enumerate the nodes in
the neighborhood of u. We randomly select negative test
nodes v−1 , . . . , v−deg(u). The resulting query is of the form
P({L[v+i ],A[u, v+i ],L[v−i ],A[u, v−i ] : i = 1, . . . , deg(u)}|E) :
which nodes are neighbors and what are their labels? (cf. Figure 1.)
In semi-inductive learning, the paired nodes v−1 are training nodes.
In inductive learning, they can be either test nodes or training nodes.

Evaluation Metrics. For single-neighbor queries, we compute
the mean of each metric across all test queries. For neighborhood
queries, the metric is calculated separately for each query, over all
the components of the query (e.g., all the neighbors to be predicted).
We then report the mean of each metric across all neighborhood
queries. We separately score link prediction and node classification
using ROC-AUC. ROC-AUC is a good metric for evaluating both

1 https://github.com/erfmah/Answering_Graph_Queries
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link prediction and node classification because it provides a compre-
hensive and threshold-independent measure of model performance,
making it more robust to class imbalance than the accuracy metric.
Separate scoring is supported by the VGAE+ inference model (7),
but in fact favors the single-component prediction baselines over our
joint prediction model. The reason for independent scoring is that
our baseline methods are not designed for joint prediction, so we use
them only to obtain scores for individual components. The joint pre-
dictive performance for a subgraph query is measured by the average
AUC score over predicted links and node labels. Other metrics (Hit-
Rate@20% and F1-macro) are in the appendix [15].

6.2 Query Answering Comparison Methods.

Our VGAE+ approach We built on the VGAE implementation
for joint link prediction [16], following the authors’ recommenda-
tion of using MC inference for link prediction and a graph isomor-
phism network (GIN) encoder [31] with 2 layers and embedding di-
mension 128. We extended their VGAE architecture to include the
reconstruction of node features and labels, as described in Section 4.
Node labels are predicted using the node classifier Eq. (6), trained
end-to-end. We give results for deterministic prediction Eq. (8) and
MC prediction Eq. (9) with 30 samples.

We select baselines that are well established and represent a va-
riety of approaches to node classification or single link prediction.
Node classification methods perform joint label prediction (known
as semi-supervised node classification [30]) like our VGAE+ model.
We apply single-link prediction methods to a set of target links sepa-
rately to obtain a probability for each target link (cf. [16]). We orga-
nize methods according to whether they were originally evaluated on
both link prediction and node classification, or just one or the other.

Two-Task Methods train two separate link prediction and node
classification models using the same GNN architecture.
Generalizable Graph Masked AutoEncoder (GiGaMAE) [21] in-
troduces a novel graph encoder based on aligning different node em-
beddings that respectively encode structural and feature information.
We use the authors’ code to obtain node label and link prediction
probabilities. We train GiGaMAE inductively for inductive queries.

GraphSage [8] is an inductive model. We have used the DGL
implementation [28], with the supervised training mode, for node
classification, where the decoder sees the node labels. For link pre-
diction, we train an SBM link decoder end-to-end using their unsu-
pervised training. Graph Attention Networks (GAT) are a kind of
GNN that computes different weights for different nodes in a neigh-
borhood [25]. We used the DGL implementation (GAT) [28], in su-
pervised training mode, for node classification, where the decoder is
exposed to the node labels. The GAT embedding system was trained
with the same micro-F1 score as in the original paper [25]. For link
prediction, we train an SBM link decoder end-to-end using unsuper-
vised training.

Link prediction baselines include the following. SEAL is a well-
known method for transductive link prediction [34]. We train SEAL
inductively by omitting node ids (cf. [24, 16]). The basic idea of
SEAL is to embed the subgraph around a target link. DEAL was
designed for both transductive and inductive cold-start link predic-
tion tasks [10]. The distinguishing feature of the DEAL approach is
that at test time, it uses only the node attributes for link prediction.
This makes it a strong baseline for independent prediction since it is
not sensitive to the presence of evidence links.

Node classification baselines utilize the following encoders. MV-

GRL is an inductive self-supervised approach for learning represen-
tations of nodes and graphs by contrasting different structural views
of graphs [11]. We use the authors’ code to train a node classifica-
tion model. DeepWalk is a transductive graph embedding method
that learns node representations by treating random walks on the
graph as sentences and applying word embedding techniques [18].
It captures structural information of the graph by mapping nodes to
low-dimensional vectors in a continuous space. The reported results
are based on the DGL implementation [28]. Since DeepWalk cannot
be adapted for inductive queries, we trained it transductively on the
complete input graph. Node classification is performed by a logistic
regression model [18].

6.3 Experimental Results

We discuss our results for different types of test queries, starting with
the most complex subgraph queries. It is important to note that while
VGAE+ addresses link prediction and node classification simultane-
ously, the baseline models are customized for each task separately.
The VGAE+ is trained once for all subgraph queries, whereas the
baseline models are trained for a specific task. Because the VGAE+
model is solving a harder problem, matching the performance of the
baseline methods is a good result. Most baselines were developed for
transductive graph prediction, some only transductively, some both
transductively and inductively. We therefore expect them to perform
relatively better in the semi-inductive than in the (fully) inductive
setting. As we will see, our results confirm this expectation.

6.3.1 Subgraph Queries.

The reported AUC results for these baseline models are the average
AUC scores for both link prediction and node classification tasks. We
do not show standard deviations for simplicity, they range from 0.1 to
0.2. Table 1a shows the results for subgraph queries, which predict
both links and node labels. In the inductive setting, all target nodes,
and potentially some of their neighbors, are unseen during training.

Neighborhood Queries Considering the inductive setting, both
VGAE+ methods score more highly than both two-task baselines on
almost all datasets. The exceptions are the ACM and IMDb datasets,
where the VGAE-Det score is similar to the GiGaMAE baseline,
whereas VGAE-MC is clearly the best predictor. The biggest im-
provement for VGAE-MC is observed on the IMDb dataset (0.16
AUC points). The strong performance on inductive queries illustrates
how a generative model can generalize to data that may be incom-
plete or new, by inferring unseen information.

In the semi-inductive setting, where some target nodes are ob-
served during training, VGAE-MC achieves the highest score on 4
out of 6 datasets, and a competitive score on IMDb. The VGAE-MC
top scores are substantially higher than the baselines; for instance on
Computers it outperforms by more than 0.2 AUC points.

Our results show that for some datasets, inference through sam-
pling from an approximate posterior yields substantive accuracy im-
provements. However, sampling takes longer to produce query re-
sults. To give a sense of the difference, for the biggest Computers
dataset, sampling 30 node embeddings vs. using a single determinis-
tic one takes about 4 times as long (39.02s/query for VGAE-MC vs.
11.951s/query for VGAE-Det), using a single NVIDIA A40 GPU.
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Table 1: AUC scores on Test Queries

(a) AUC results for subgraph queries in semi-inductive and inductive settings.

Single Neighbor Queries Neighborhood Queries

Cora ACM IMDb CiteSeer Photo Computers Cora ACM IMDb CiteSeer Photo Computers

Semi-inductive

VGAE-Det 0.937 0.801 0.863 0.949 0.960 0.910 0.868 0.700 0.764 0.934 0.854 0.789
VGAE-MC 0.949 0.828 0.900 0.941 0.951 0.960 0.933 0.716 0.734 0.951 0.949 0.918

GAT 0.862 0.909 0.843 0.910 0.935 0.922 0.829 0.726 0.733 0.900 0.881 0.840
GraphSage 0.797 0.723 0.748 0.750 0.860 0.858 0.701 0.689 0.726 0.786 0.846 0.724
GiGaMAE 0.913 0.883 0.920 0.896 0.956 0.948 0.917 0.782 0.746 0.896 0.900 0.703

Inductive

VGAE-Det 0.932 0.751 0.880 0.963 0.947 0.945 0.825 0.697 0.823 0.943 0.884 0.885

VGAE-MC 0.925 0.832 0.900 0.912 0.953 0.954 0.866 0.781 0.865 0.889 0.825 0.819
GAT 0.728 0.841 0.760 0.798 0.849 0.866 0.681 0.573 0.650 0.648 0.630 0.582
GraphSage 0.810 0.783 0.644 0.702 0.761 0.712 0.710 0.475 0.463 0.709 0.684 0.566
GiGaMAE 0.896 0.668 0.715 0.896 0.788 0.805 0.828 0.716 0.700 0.885 0.816 0.718

(b) AUC results for link prediction in semi-inductive and inductive settings.

Single Link Queries Joint Link Queries

Cora ACM IMDb CiteSeer Photo Computers Cora ACM IMDb CiteSeer Photo Computers

Semi-inductive

VGAE-Det 0.898 0.956 0.937 0.941 0.947 0.871 0.759 0.962 0.894 0.910 0.798 0.753
VGAE-MC 0.912 0.954 0.957 0.952 0.956 0.935 0.886 0.960 0.901 0.941 0.940 0.928

SEAL 0.910 0.904 0.906 0.948 0.935 0.908 0.741 0.500 0.620 0.752 0.684 0.701
GAT 0.862 0.943 0.874 0.913 0.902 0.892 0.764 0.925 0.845 0.904 0.872 0.814
GraphSage 0.854 0.969 0.917 0.589 0.858 0.913 0.725 0.962 0.893 0.666 0.853 0.823
GiGaMAE 0.907 0.943 0.950 0.950 0.949 0.917 0.902 0.959 0.963 0.940 0.930 0.906
DEAL 0.800 0.986 0.981 0.914 0.832 0.823 0.676 0.979 0.962 0.910 0.857 0.826

Inductive

VGAE-Det 0.891 0.963 0.939 0.950 0.936 0.925 0.690 0.954 0.867 0.925 0.857 0.821

VGAE-MC 0.865 0.970 0.942 0.900 0.931 0.922 0.778 0.968 0.935 0.856 0.760 0.752
SEAL 0.756 0.666 0.854 0.627 0.924 0.972 0.693 0.681 0.830 0.679 0.506 0.450
GAT 0.667 0.870 0.796 0.731 0.796 0.835 0.491 0.699 0.632 0.470 0.453 0.380
GraphSage 0.561 0.593 0.492 0.504 0.552 0.444 0.543 0.535 0.467 0.512 0.528 0.507
GiGaMAE 0.887 0.732 0.929 0.943 0.798 0.764 0.725 0.920 0.918 0.921 0.854 0.706
DEAL 0.780 0.902 0.957 0.861 0.852 0.844 0.678 0.953 0.935 0.837 0.759 0.757

(c) AUC results for node classification in semi-inductive and inductive settings.

Single Node Queries Joint Node Queries

Cora ACM IMDb CiteSeer Photo Computers Cora ACM IMDb CiteSeer Photo Computers

Semi-inductive

VGAE-Det 0.977 0.615 0.789 0.957 0.973 0.948 0.977 0.425 0.634 0.959 0.910 0.824
VGAE-MC 0.986 0.701 0.842 0.930 0.946 0.986 0.980 0.471 0.568 0.960 0.959 0.909

GAT 0.861 0.876 0.813 0.907 0.967 0.951 0.893 0.526 0.621 0.896 0.889 0.866
GraphSage 0.740 0.477 0.580 0.911 0.863 0.804 0.677 0.416 0.460 0.907 0.840 0.626
GiGaMAE 0.920 0.823 0.890 0.842 0.963 0.941 0.932 0.604 0.529 0.852 0.871 0.500
MVGRL 0.888 0.708 0.788 0.807 0.963 0.980 0.853 0.715 0.767 0.815 0.953 0.892
Deep Walk 0.868 0.643 0.684 0.847 0.950 0.862 0.726 0.567 0.553 0.731 0.937 0.819

Inductive

VGAE-Det 0.974 0.540 0.821 0.976 0.958 0.965 0.961 0.441 0.780 0.961 0.912 0.890

VGAE-MC 0.986 0.693 0.856 0.924 0.976 0.987 0.954 0.595 0.796 0.922 0.890 0.886
GAT 0.790 0.812 0.724 0.865 0.902 0.896 0.870 0.446 0.668 0.826 0.806 0.784
GraphSage 0.970 0.973 0.797 0.900 0.970 0.980 0.877 0.416 0.460 0.907 0.840 0.626
GiGaMAE 0.906 0.604 0.501 0.850 0.778 0.847 0.932 0.513 0.482 0.850 0.778 0.730
MVGRL 0.650 0.804 0.684 0.550 0.835 0.801 0.614 0.679 0.632 0.534 0.892 0.827

Single Neighbor Queries The task is to predict the link and node
label for a single neighbor of a target node. VGAE-MC scores higher
than both baselines in the inductive setting. The improvement over
the next best baseline is substantive on 3 out of 6 datasets; for in-
stance on IMDb, the improvement is almost 0.2 AUC points.

GiGaMAE was designed for the transductive learning, and is
generally competitive with VGAE-MC on single neighbor semi-
inductive queries. VGAE-MC scores substantially higher than
GraphSage, for instance on CiteSeer by almost 0.2 AUC points.

In conclusion, inference from a VGAE model offers the best per-
formance for predicting jointly both links and node labels.

We next break down the subgraph AUC scores into their link pre-
diction and node label components. This allows us to understand the
results in more detail and to compare with more single-task baselines.

6.3.2 Link Prediction Queries.

Table 1b shows the AUC scores for link prediction queries. For
inductive joint link prediction, VGAE-MC achieves top scores on
4 out 6 datasets compared to the baselines. GiGaMAE scores bet-
ter on Photos and CiteSeer, although not as high as VGAE-Det in-
ference. VGAE-MC outperforms the link prediction baselines other
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than DEAL and GiGaMAE. For semi-inductive joint link prediction,
DEAL and GiGaMAE outperform VGAE-MC on 3 out of 6 datasets,
but only by 0.02 AUC points at most (on Cora).

For single-link inductive queries, VGAE-MC outperforms the
strongest baselines GiGaMAE and DEAL on 3 out of 6 datasets
(ACM, Photo and Computers) by 0.08 AUC points or more. On the
remaining 3 datasets, the VGAE-MC score is competitive. VGAE+
inference beats the other single-link prediction baselines, except for
Photo and Computers, where SEAL performs exceptionally well.
For single-link semi-inductive queries the VGAE-MC scores are the
highest on 4 out of 6 datasets, but similar in magnitude to the GiGa-
MAE and DEAL baselines.

In conclusion, inference from a VGAE model offers excellent link
prediction accuracy across a range of query tasks, including induc-
tive and joint link prediction.

6.3.3 Node Classification Queries.

Table 1c shows AUC scores for node classification queries. For in-
ductive joint node classification, VGAE-MC achieves a higher score
than the baseline methods on 4 out of 6 datasets, especially on IMDb
(at least 0.16 AUC points) and Cora (at least 0.07 AUC points).
On ACM the strong node classification baseline MVGRL achieves
a higher score. Similarly in the semi-inductive joint node classifica-
tion setting, VGAE+ has a higher score than the baselines on 4 out
of 6 datasets. The improvement is strongest on CiteSeer (0.06 over
GraphSage). MVGRL is exceptionally strong in the semi-inductive
setting on ACM and IMDb.

For inductive single node classification, VGAE-MC again
achieves the top score on 4 out of 6 datasets. GraphSage was de-
signed for inductive node classification and is accordingly a strong
baseline, especially on the ACM dataset. However, VGAE-MC
outscores GraphSage by 0.06 AUC points on the IMDb dataset.

For semi-inductive single node classification, VGAE-MC achieves
the top score on 3 out of 6 datasets. The biggest improvement is
observed on Cora, 0.06 AUC points over GiGaMAE.

In conclusion, inference from a VGAE model offers strong node
classification accuracy across a range of settings, especially for joint
node classification.

Subgraph Queries vs. Node Classification and Link Predic-

tion. Reviewing the results of inductive subgraph prediction in terms
of link prediction and node classification, we observe that the high
score of VGAE-MC on IMDb is due to its excellent score on joint
node classification. On the ACM dataset, VGAE-MC achieves strong
subgraph prediction through a high joint link prediction score. The
strong AUC score on Computers is due to both high joint node clas-
sification scores and high joint link prediction scores.

Overall our experiments provide strong evidence that inference
from an augmented VGAE model, achieves an excellent balance be-
tween predicting links and node labels across different query types.
For single query types (e.g., link prediction), predictive performance
is very competitive with custom baselines.

Ablation Study. Table 2 examines the importance of the compo-
nents of our new training objective Eq. (2) for the augmented VGAE.
The second row (β = 0) shows that not reconstructing the node fea-
tures leads to worse scores, especially on the IMDb and Computers
datasets. This is remarkable since the neighborhood queries do not
contain node features as a target. Turning off label reconstruction
(γ = 0) or link reconstruction (α = 0) leads to bad scores.

Table 2: Ablation Study on the training objective Eq. (2).
Inductive Neighborhood Query

Cora ACM IMDb CiteSeer Photo Computers

VGAE-Det 0.825 0.697 0.823 0.943 0.884 0.885

(β = 0) 0.810 0.616 0.660 0.927 0.865 0.748
(β = 0, γ = 0) 0.611 0.652 0.710 0.688 0.653 0.574
(β = 0, α = 0) 0.656 0.417 0.483 0.686 0.667 0.580

7 Conclusion, Limitations, and Future Work

A subgraph prediction query asks for the probability of a target sub-
graph, given the information from an evidence subgraph. Supporting
inference to answer subgraph queries (SQs) is a new use case for
a deep Graph Generative Model (GGM). Such a query answering
system facilitates applying graph prediction in a production environ-
ment where multiple users pose a range of queries to be answered.
In this paper we showed how inference from a trained Variational
Graph Auto-Encoder (VGAE) model, augmented with feature/label
decoders, can be used to answer SQs, in zero-shot manner without re-
training the model. Bayesian optimization was effective in balancing
the relative importance of modeling links and node features/labels in
a dataset-dependent manner. We carried out an empirical evaluation
on six benchmark datasets and a range of test queries. The applica-
tion of joint prediction from a single VGAE yielded higher accuracy
than baseline methods that predict graph components independently.
The strong performance of VGAE+ highlights the value of using both
node features and graph structure as co-training objectives that im-
prove both node classification and link prediction.

Limitations. A limitation of our evaluation is that we considered
only homogeneous graphs with a single link type. Deterministic
and MC inference can be extended straightforwardly to knowledge
graphs using a relational VGAE model.

Future Work. While the VGAE is a well-established GGM for a
single training graph, other GGMs, especially auto-regressive and
diffusion models, are known to have greater modeling power to cap-
ture complex correlation patterns in graphs [16]. Leveraging the
greater expressive power of these GGMs to improve subgraph pre-
dictions over our strong VGAE baseline is a fruitful direction for
future research, especially if they can be trained on single graph in-
puts. Extending subgraph prediction to more complex graphs, such as
weighted and/or dynamic graphs, is a fruitful topic for future work.
Another valuable direction is to apply inference from a model to find
the most likely subgraph given evidence.
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anomalies and intrusions in communication networks. IEEE Journal on
Selected Areas in Communications, 2021.

[15] E. Mahmoudzadeh, P. Naddaf, K. Zahirnia, and O. Schulte. Deep gener-
ative models for subgraph prediction, 2024. URL https://arxiv.org/abs/
2408.04053.

[16] P. Naddaf, E. Mahmoudzaheh Ahmadi Nejad, K. Zahirnia, M. Jaeger,
and O. Schulte. Joint link prediction via inference from a model. CIKM,
2023.

[17] F. Nogueira. Bayesian Optimization: Open source constrained
global optimization tool for Python, 2014–. URL https://github.com/
bayesian-optimization/BayesianOptimization.

[18] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of
social representations. ACM, 2014.

[19] E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for
RDF. W3C Recommendation, 2008. URL http://www.w3.org/TR/
rdf-sparql-query/.

[20] R. A. Rossi, R. Zhou, and N. K. Ahmed. Deep inductive graph repre-
sentation learning. IEEE, 2018.

[21] Y. Shi, Y. Dong, Q. Tan, J. Li, and N. Liu. Gigamae: Generalizable
graph masked autoencoder via collaborative latent space reconstruction.
ACM, 2023.

[22] M. Simonovsky and N. Komodakis. Graphvae: Towards generation of
small graphs using variational autoencoders. ICANN, 2018.

[23] J. Tang, F. Hua, Z. Gao, P. Zhao, and J. Li. Gadbench: Revisiting and
benchmarking supervised graph anomaly detection. NeurIPS, 2024.

[24] K. Teru, E. Denis, and W. Hamilton. Inductive relation prediction by
subgraph reasoning. ICML, 2020.
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