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Abstract. In this paper, we study the “dataset bias” problem from a
statistical standpoint, and identify the main cause of the problem as
the strong correlation between a class attribute u and a non-class at-
tribute b in the input x, represented by p(u|b) differing significantly
from p(u). Since p(u|b) appears as part of the sampling distribu-
tions in the standard maximum log-likelihood (MLL) objective, a
model trained on a biased dataset via MLL inherently incorporates
such correlation into its parameters, leading to poor generalization
to unbiased test data. From this observation, we propose to miti-
gate dataset bias via either weighting the objective of each sample
n by 1

p(un|bn)
or sampling that sample with a weight proportional to

1
p(un|bn)

. While both methods are statistically equivalent, the former
proves more stable and effective in practice. Additionally, we estab-
lish a connection between our debiasing approach and causal reason-
ing, reinforcing our method’s theoretical foundation. However, when
the bias label is unavailable, computing p(u|b) exactly is difficult. To
overcome this challenge, we propose to approximate 1

p(u|b) using a
biased classifier trained with “bias amplification” losses. Extensive
experiments on various biased datasets demonstrate the superiority
of our method over existing debiasing techniques in most settings,
validating our theoretical analysis.

1 Introduction

In recent years, Deep Neural Networks (DNNs) have achieved re-
markable performance in Computer Vision and Natural Language
Processing tasks. This success can be attributed to their capability
of capturing various patterns in the training data that are indicative
of the target class. However, when the training data exhibits strong
correlation between a non-class attribute and the target class (often
referred to as “dataset bias” [3, 4, 18, 23]), DNNs may overly rely
on the non-class attribute instead of the actual class attribute, espe-
cially if the non-class attribute is easier to learn [23]. This leads to
biased models that struggle to generalize to new scenarios where the
training bias is absent. For instance, consider a dataset of human face
images where men typically have black hair and women usually have
blond hair. If we train a DNN on this dataset for gender classification,
the model might take a “shortcut” and use hair color (a non-class at-
tribute) as a primary predictor. As a result, when the model encoun-
ters a man with blond hair during testing, it erroneously predicts the
individual as a woman.

To tackle the dataset bias problem, earlier approaches rely on the
availability of bias labels [14]. They employ supervised learning to
train a bias prediction model to capture the bias in the training data,
and concurrently learn debiased features that share the smallest mu-
tual information with the captured bias. The debiased features are
then utilized for predicting the target class. On the other hand, al-
ternative approaches relax the assumption of bias label availability
and focus on specific types of bias [4, 32]. They introduce special-
ized network architectures to capture these specific types of bias.
For example, Bahng et al. [4] leverage convolutional networks with
small receptive fields to capture textural bias in images. However,
acquiring human annotations for bias can be laborious, expensive,
and requires expertise in bias identification, making it challenging
in practical scenarios. Furthermore, bias labeling may not encom-
pass all forms of bias present in the training data, particularly those
that are continuous. As a result, recent approaches have shifted their
attention to settings where no prior knowledge about bias is avail-
able [3, 13, 15, 16, 20, 23]. Many of these methods exploit knowl-
edge from a “biased” model trained by minimizing a “bias amplifi-
cation” loss [34] to effectively mitigate bias [3, 20, 23]. They have
achieved significant improvement in bias mitigation, even surpassing
approaches that assume bias labels. However, the heuristic nature of
their bias correction formulas makes it difficult to clearly understand
why these methods perform well in practice.

In this paper, we revisit the dataset bias problem from a statis-
tical perspective, and present a mathematical representation of this
bias, expressed as either p(u|b) �= p(u) or p(b|u) �= p(b) where u,
b refer to the class attribute and non-class (bias) attribute, respec-
tively. Our representation characterizes the common understanding
of dataset bias as “high correlation between the bias attribute and
class attribute” [4, 20]. In addition, we demonstrate that dataset bias
arises naturally within the standard maximum log-likelihood objec-
tive as part of the sampling distribution, alongside the “imbalance
bias”. Building on this insight, we propose two approaches to miti-
gate dataset bias: weighting the loss of each sample n by 1

p(un|bn)
, or

sampling the sample with a weight proportional to 1
p(un|bn)

. Through
empirical analysis, we highlight the distinct behaviors of these meth-
ods, despite their statistical equivalence. Furthermore, we offer an in-
triguing perspective on dataset bias as a “confounding bias” in causal
reasoning, and theoretically show that our method actually learns
the causal relationship between the target class y and the class at-
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tribute u via minimizing an upper bound of the expected negative in-
terventional log-likelihood En [− log pθ(yn|do(un))]. However, ac-
curately computing 1

p(un|bn)
or p(un|bn) poses a significant chal-

lenge when bn is unknown and intertwined with un in the input xn.
To address this issue, we propose an alternative approach that ap-
proximates p(yn|bn), a proxy for p(un|bn), using a biased classifier
trained with “bias amplification” losses [23]. Our intuition is that if
the biased classifier pψ(yn|xn) is properly trained to use only the
bias attribute bn in the input xn for predicting yn, then pψ(yn|xn)
can serve as a reasonable approximation of p(yn|bn).

We conduct comprehensive experiments on four popular biased
datasets that encompass various forms of bias: Colored MNIST, Cor-
rupted CIFAR10, Biased CelebA, and BAR [23]. Experimental re-
sults show that our method achieves superior bias mitigation results
compared to many existing baselines. This validates the soundness
of our theoretical analysis and demonstrates the effectiveness of our
method in mitigating bias, especially when no bias label is available.
Additionally, our ablation studies reveal alignments between the op-
timal configurations of our method and the values indicated by our
theoretical analysis on simple datasets like Colored MNIST.

2 Related Work

Methods for mitigating dataset bias can be broadly categorized into
two groups: i) those that utilize the bias label or prior knowledge
about bias, and ii) those that do not. The two groups are discussed in
detail below.

Debiasing given the bias label or certain types of bias When
the bias label is available, a straightforward approach is to train a
bias prediction network or a “biased” network in a supervised man-
ner. The bias knowledge acquired from the biased network can then
be utilized as a form of regularization to train another “debiased”
network. One commonly used regularization strategy involves mini-
mizing the mutual information between the biased and debiased net-
works through adversarial training [4, 14, 36]. This compels the de-
biased network to learn features independent of the bias information,
which are considered unbiased. In the model proposed by [14], a
“biased” head is positioned on top of a “debiased” backbone with a
gradient reversal layer [7] in between to facilitate adversarial learn-
ing. The backbone is trained to trick the biased head into predicting
incorrect bias labels while the biased head attempts to make correct
bias predictions. Other works, such as [4, 32], do not make use of
the bias label; rather, they assume that image texture is the main
source of bias. This comes from the observation that outputs of deep
neural networks depend heavily on superficial statistics of the input
image such as texture [8]. The framework in [32] consists of two
branches: a conventional CNN for encoding visual features from the
input image, and a set of learnable gray-level co-occurrence matrices
(GLCMs) for extracting the textural bias information. Besides adver-
sarial regularization, the authors of [32] introduce another regulariza-
tion technique known as HEX, which projects the CNN features into
a hidden space so that the projected vectors contain minimal infor-
mation about the texture bias captured by the GLCM branch. [4], on
the other hand, use a CNN with small receptive fields as the biased
network, and the Hilbert-Schmidt Independence Criterion (HSIC) as
a measure of mutual information between the biased and debiased
classifiers’ features. [12] draw a probabilistic connection between
data generated by p(y)p(b) and by p(y|b)p(b), and utilize the as-
sumption that p(x|y, b) remains unchanged regardless of the change
in p(y, b) to derive an effective bias correction method called Bi-
asBal. They also propose BiasCon - a debiasing method based on

contrastive learning. In the case the bias label is not provided, they
assume the bias is texture and make use of the biased network pro-
posed in [4]. EnD [31] employs a regularization loss for debiasing
that comprises two terms: a “disentangling” term that promotes the
decorrelation of samples with similar bias labels, and an “entangling”
term which forces samples belonging to the same class but having
different bias labels to be correlated. EnD exhibits certain similarities
to BiasCon [12], as the “entangling” and “disentangling” terms can
be viewed as the positive and negative components of a contrastive
loss, respectively.

In visual question answering (VQA), bias can arise from the co-
occurrence of words in the question and answer, causing the model
to overlook visual cues when making predictions [1, 2]. To overcome
this bias, common approaches involve training a biased network that
takes only questions as input to predict answers. The prediction from
this biased network is then used to modulate the prediction of a de-
biased network trained on both questions and images [5, 6, 27].

Debiasing without prior knowledge about bias Due to the chal-
lenges associated with identifying and annotating bias in real-world
scenarios, recent attention has shifted towards methods that do not
rely on bias labels or make assumptions about specific types of bias.
LfF [23] is a pioneering method in this regard. It utilizes the GCE loss
[34], which is capable of amplifying the bias in the input, to train the
biased classifier, thereby eliminating the need for bias labels. This
strategy has been inherited and extended in numerous subsequent
works [3, 13, 15, 20, 21]. [20] emphasize the importance of diversity
in bias mitigation, and propose a method that augments the train-
ing data by swapping the bias features of two samples, as extracted
by the biased classifier. BiaSwap [15], on the other hand, leverages
SwapAE [25] and CAM [35] to generate “bias-swapped” images. Se-
lecMix [13] applies mixup on “contradicting” pairs of samples (i.e.,
those having the same label but far away in the latent space, or dif-
ferent labels but close), and uses the mixed-up samples for training
the debiased classifier. PGD [3] uses the biased network’s gradient
to compute the resampling weight. [21] aim to improve the biased
classifier by training it using bias-aligned samples only. LWBC [16]
trains a “biased committee” - a group of multiple biased classifiers -
using the cross-entropy loss and knowledge distilled from the main
classifier trained in parallel. Outputs from the biased classifiers are
used to compute the sample weights for training the main classifier.
[30] conduct an extensive empirical study about some existing bias
mitigation methods, and discover that many of them are sensitive to
hyperparameter tuning. Based on their findings, they suggest to adopt
more rigorous assessments.

3 A Statistical View of Dataset Bias

We consider the standard supervised learning problem which in-
volves learning a classifier pθ(y|x), parameterized by θ, that maps
an input sample x to the class probability vector. Let D :=
{(xn, yn)}Nn=1 denote the training dataset consisting of N samples.
The typical learning strategy minimizes the expected negative log-
likelihood (NLL) of y conditional on x, computed as follows:

LNLL
θ := EpD(xn,yn) [− log pθ(yn|xn)] (1)

In the above equation, we intentionally include the subscript n to
emphasize that xn and yn correspond to a particular sample n rather
than being arbitrary. Without loss of generality, we assume that each
input x consists of two types of attributes: the class attribute (denoted
by u) and the non-class attribute (denoted by b), i.e., x = (u, b). For
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example, in the ColoredMNIST dataset [4, 23], u represents the digit
shape and b represents the background color. Eq. 1 can be written as:

LNLL
θ = EpD(xn)pD(yn|xn) [− log pθ(yn|xn)] (2)

= EpD(xn)

[Lxent
θ (xn, yn)

]
(3)

= Ep(un)p(bn|un)

[Lxent
θ (xn, yn)

]
(4)

= Ep(bn)p(un|bn)

[Lxent
θ (xn, yn)

]
(5)

where Lxent
θ denotes the cross-entropy loss. Intuitively, if u is dis-

tinctive among classes, u can be generally treated as a categorical
random variable. In this case, we will have p(un) ≈ p(yn) and
p(bn|un) ≈ p(bn|yn). From Eq. 4, it is clear that there are two main
sources of bias in the training data. One comes from the non-uniform
distribution of the class attribute (i.e., p(u) is not uniform among
classes), and the other comes from the strong correlation between the
non-class attribute b and the class attribute u (i.e., p(b|u) is very dif-
ferent from p(b)). A highly correlated non-class attribute will cause
the model to depend more on b and less on u to predict y. The former
is commonly known as the “class-imbalance bias”, while the latter
is often referred to as the “dataset bias” [3, 4, 18, 23]. In this paper,
we focus exclusively on addressing the dataset bias due to its diffi-
culty, especially when no prior knowledge about the bias is available.
Besides, we decide to rename the dataset bias as “feature-correlation
bias” since we believe this name better characterizes the property of
the bias. We also refer to b as a bias attribute because it is the primary
factor contributing to the bias. In the next section, we will discuss in
detail our methods for mitigating the feature-correlation bias.

4 Mitigating Dataset Bias from Statistical and
Causal Perspectives

4.1 Bias mitigation based on p(u|b)
Eq. 5 suggests that we can mitigate the dataset bias (or feature-
correlation bias) by either weighting the individual loss Lxent

θ (xn, yn)
by 1

p(un|bn)
during training or sampling each data point (xn, yn)

with the weight proportional to 1
p(un|bn)

. We refer to the two tech-
niques as loss weighting (LW) and weighted sampling (WS), respec-
tively. The two techniques are statistically equivalent, and transform
the objective in Eq. 5 into Ep(bn) [Lxent

θ (xn, yn)], which no longer
contains p(un|bn).

We can approximate p(un|bn) using its proxy p(yn|bn). How-
ever, explicitly modeling p(y|b) pose challenges due to the typical
unknown nature of b. Meanwhile, modeling p(y|x) (or p(y|u, b)) is
straightforward. Therefore, we propose to model p(y|b) indirectly
through p(y|x) by training a parameterized model pψ(y|x) in a man-
ner that amplifies the influence of the bias attribute b (in x) on y. We
refer to pψ(y|x) as the biased classifier and train it for Tbias epochs
using a bias amplification loss. Specifically, we choose the general-
ized cross-entropy (GCE) loss LGCE

ψ (xn, yn) =
1−pψ(yn|xn)τ

τ
[34]

where τ ∈ (0, 1] is a hyperparameter controlling the degree of ampli-
fication. Once pψ(y|x) has been trained, we can compute the weight
for sample n as follows:

wn = min

(
1

pψ(yn|xn)
, γ

)
(6)

where γ > 0 is a clamp hyperparameter that prevents wn from be-
coming infinite when pψ(yn|xn) is close to 0. Since pψ(yn|xn) ∈
[0, 1], wn ∈ [1, γ]. wn can be considered as an approximation of

1
p(un|bn)

. For the debiasing purpose, we can train pθ(y|x) via either

loss weighting (LW) or weighted sampling (WS) with the weight wn.
In the case of LW, the debiasing loss becomes:

LLW
θ = Ep(bn)p(un|bn)

[Lxent
θ (xn, yn)

p(un|bn)
]

(7)

≈ EpD(xn)

[
wn · Lxent

θ (xn, yn)
]

(8)

Although LW and WS are statistically equivalent, they perform
differently in practice. LW preserves the diversity of training data
but introduces different scales to the loss. To make training with LW
stable, we rescale wn so that its maximum value is not γ (which
could be thousands) but a small constant value, which is 10 in this
work. This means wn lies in the range

[
10
γ
, 10

]
. WS, by contrast,

maintains a constant scale of the loss but fails to ensure the diversity
of training data due to over/under-sampling. During our experiment,
we observed that LW often yields better performance than WS, which
highlights the importance of data diversity.

However, if we simply fix the sample weight to be wn throughout
training, a classifier trained via LW will take long time to achieve
good results, and the results will be not optimal in some cases. It
is because bias-aligned (BA) samples, which dominates the train-
ing data, have very small weights. The classifier will spend most of
the training time performing very small updates on these BA sam-
ples, and thus, struggles to capture useful information in the training
data. To deal with this problem, we propose a simple yet effective
annealing strategy for LW. We initially set the weights of all train-
ing samples to the same value β and linearly transform β to wn

for Tanneal steps. Mathematically, the weight for sample n at step t

is wn(t) =

{
β + t(wn−β)

Tanneal
if 0 < t < Tanneal

wn otherwise
and the loss for an-

nealed loss weighting (ALW) is given below:

LALW
θ (t) = EpD(xn)

[
wn(t) · Lxent

θ (xn, yn)
]

(9)

4.2 Interpretation of LLW
θ from a causal perspective

Figure 1. A causal graphical model representing the feature-correlation
bias problem. X , Y are the input image and class label, respectively. Both
are observed (marked with shaded background) during training. U , B are

the hidden class and non-class attributes of X , respectively.

Interestingly, we can interpret the debiasing loss LLW
θ in the lan-

guage of causal reasoning by utilizing the Potential Outcomes frame-
work [28] illustrated in Fig. 1, where the class label Y , class attribute
U , and non-class attribute B play the roles of the outcome, treatment,
and confounder, respectively. In our setting, both U and B are hidden
but can be accessed through the observed input X . When the uncon-
foundedness and positivity assumptions (i.e. the backdoor assump-
tions) [33] are met, we can estimate the causal quantity p(y|do(u))
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Dataset BC (%) Vanilla LNL BiasBal WS LW

Colored
MNIST

0.5 80.18±1.38 80.05±1.02 97.44±0.12 96.15±0.33 96.16±0.35
1.0 87.48±1.75 87.52±1.53 97.89±0.20 97.58±0.09 97.11±0.12
5.0 97.04±0.21 98.77±0.18 98.92±0.13 98.92±0.07 98.55±0.07

Corrupted
CIFAR10

0.5 28.00±1.15 28.13±0.98 45.52±1.37 31.02±0.72 36.50±0.51
1.0 34.56±0.87 34.43±1.03 53.18±1.87 40.06±1.24 46.41±1.46
5.0 59.33±1.26 59.52±0.85 72.60±0.69 69.91±0.54 70.29±0.75

Biased
CelebA

0.5 77.43±0.42 76.64±0.73 87.74±0.19 78.48±0.62 86.49±0.33
1.0 80.58±0.41 79.72±0.54 87.82±0.36 82.41±0.33 85.32±0.40
5.0 86.35±0.33 86.41±0.35 88.78±0.22 86.90±0.23 87.83±0.21

Table 1. Test accuracies of debiasing methods when the bias label is available. The best and second best results are highlighted in bold and gray, respectively.

from observational data via backdoor adjustment [26] as follows:

p(y|do(u)) =
∑
b

p(y, u, b)

p(u|b) (10)

= Ep(u,b)

[
p(y|u, b)
p(u|b)

]
(11)

= Ep(b) [p(y|u, b)] (12)

Eq. 11 is typically known as Inverse Probability Weighting (IPW),
where p(u|b) is called the propensity score [11, 10]. In Eq. 11, the
class prediction p(y|u, b) is weighted by the inverse propensity score

1
p(u|b) , exhibiting a degree of resemblance to our loss LLW

θ in Eq. 7. It
suggests that we can interpret LLW

θ from a causal standpoint. In fact,
LLW

θ acts as an upper bound of the expected negative interventional
log-likelihood (NILL) LNILL

θ = En [− log pθ(yn|do(un))] [24]. The
relationship between these two losses is provided below:

LNILL
θ = En [− log pθ(yn|do(un))] (13)

≤ Ep(un,bn,yn)

[− log pθ(yn|un, bn)

p(un|bn)
]

(14)

= Ep(un,bn)

[Lxent
θ (xn, yn)

p(un|bn)
]
= LLW

θ (15)

where the inequality in Eq. 14 is derived from:

− log pθ(y|do(u)) = − logEp(b) [pθ(y|u, b)] (16)

≤ −Ep(b) [log pθ(y|u, b)] (17)

= Ep(u,b)

[− log pθ(y|u, b)
p(u|b)

]
(18)

Eq. 17 is the Jensen inequality with equality attained when
pθ(y|u, b) = pθ(y|u, b′) ∀ b, b′, i.e. y is independent of b given
u. This condition matches our target of learning an unbiased clas-
sifier pθ(y|u, b). In Eq. 18, p(u|b) is introduced to allow (u, b) to be
sampled jointly from observational data. Eq. 14 can be viewed as a
Monte Carlo estimation of Eq. 18 (or Eq. 17) using a single sample
of b, i.e. bn. From Eqs. 13 - 18, we see that minimizing LLW

θ also
minimizes LNILL

θ and encourages pθ(y|u, b) to be close to pθ(y|u).
Minimizing LNILL

θ causes the model to focus more (less) on uncom-
mon (common) samples n which has small (big) p(un|bn).

4.3 Bias mitigation based on p(b|u)
Eq. 4 suggests an alternative approach to mitigating the feature-
correlation bias, which involves weighting each individual sample
n by 1

p(bn|un)
rather than 1

p(un|bn)
. However, accurately estimating

p(b|u) poses challenges in practical implementations. In Appdx. 4.1,
we present an idea about using conditional generative models to ap-
proximate p(b|u) and discuss its limitations.

5 Experiments

5.1 Experimental Setup

5.1.1 Datasets

We evaluate our proposed methods on 4 popular datasets for bias cor-
rection, namely Colored MNIST [4, 23], Corrupted CIFAR10 [23],
Biased CelebA [23, 29], and BAR [23]. Details about these datasets
are provided below and in Appdx. B.1.

In Colored MNIST, the target attribute is the digit, while the bias
attribute is the background color. In Corrupted CIFAR10, the target
attribute is the object, and the bias attribute is the corruption noise.
We created Colored MNIST and Corrupted CIFAR10 from the stan-
dard MNIST [19] and CIFAR10 [17] datasets respectively using the
official code provided by the authors of [23] with some slight modifi-
cations. Specifically, we used distinctive background colors for Col-
ored MNIST, and set the severity of the corruption noise to 2 for
Corrupted CIFAR10 to retain enough semantic information for the
main task. Following [23], we created 3 versions of Colored MNIST
and Corrupted CIFAR10 with 3 different bias-conflicting ratios (BC
ratios) which are 0.5%, 1%, and 5%.

In Biased CelebA, the hair color (blond(e) or not blond(e)) serves
as the target attribute, while the gender (male or female) is consid-
ered the bias attribute. Individuals with blond(e) hair exhibit a bias
toward being female, whereas those without blond(e) hair are biased
toward being male. We created Biased CelebA ourselves by select-
ing a random subset of the original training samples from the CelebA
dataset [22] to ensure a certain BC ratio is achieved. We consider 3
BC ratios of 0.5%, 1%, and 5%. Each BC ratio is associated with a
specific number of BC samples per target class, which is 100, 200,
and 500, respectively. As a result, the training set for Biased CelebA
comprises a total of 39998, 39998, and 19998 samples for the BC
ratios of 0.5%, 1%, and 5%, respectively.

BAR is a dataset for action recognition which consists of 6 ac-
tion classes, namely climbing, diving, fishing, racing, throwing, and
vaulting. The bias in this dataset is the place where the action is per-
formed. For example, climbing is usually performed on rocky moun-
tains, or diving is typically practiced under water. This dataset does
not have bias labels. We use the default train/valid/test splits provided
by the authors [23].

5.1.2 Baselines

We conduct a comprehensive comparison of our method with popular
and up-to-date baselines for bias correction [3, 4, 12, 13, 20, 23]. The
selected baselines encompass a diverse range of approaches includ-
ing information-theoretic-based methods [4], loss weighting tech-
niques [23], weighted sampling strategies [3], mix-up approaches
[13], and BC samples synthesis methods [20]. Some of them [23, 3]
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Colored MNIST Corrupted CIFAR10 Biased CelebA

Figure 2. Test accuracy curves of the vanilla classifier, BiasBal, and our proposed WS and LW on Colored MNIST, Corrupted CIFAR10, and Biased CelebA
with the BC ratio of 0.5%. The bias label is assumed to be given, and p(y|b) used in BiasBal, WS, and LW is estimated directly from training data.

Dataset BC (%) Vanilla ReBias LfF DFA SelecMix PGD LW (Ours)

Colored
MNIST

0.5 80.18±1.38 74.85±1.97 93.38±0.52 91.85±0.92 83.41±1.26 96.15±0.28 95.57±0.41
1.0 87.48±1.75 84.23±1.56 94.09±0.78 94.32±0.89 91.59±0.99 97.93±0.19 97.18±0.34
5.0 97.04±0.21 95.76±0.50 97.40±0.25 96.74±0.43 97.37±0.15 98.74±0.12 98.61±0.09

Corrupted
CIFAR10

0.5 28.00±1.15 - 41.95±1.56 40.54±1.98 31.67±0.90 44.89±1.36 45.76±1.49

1.0 34.56±0.87 - 53.36±1.87 50.27±0.94 36.28±1.22 47.38±1.01 51.64±1.12
5.0 59.33±1.26 - 70.04±1.05 67.05±1.82 63.15±1.17 63.60±0.58 70.45±1.24

Table 2. Test accuracies of different debiasing methods on Colored MNIST and Corrupted CIFAR10 when the bias label is unavailable. The best and second
best results are highlighted in bold and gray, respectively.

Dataset BC (%) Vanilla LfF PGD LW (Ours)

Biased
CelebA

0.5 77.43±0.42 77.81±1.01 78.07±2.18 87.54±0.32

1.0 80.58±0.41 85.54±1.27 79.26±0.88 86.38±0.37

5.0 86.35±0.33 80.22±1.58 83.47±0.95 87.43±0.34

BAR - 68.45±0.32 62.09±0.21 70.49±0.65 71.24±0.53

Table 3. Test accuracies of different debiasing methods on Biased CelebA
and BAR when the bias label is unavailable. The best and second best results

are highlighted in bold and gray, respectively.

are closely related to our methods, and will receive in-depth analysis.
To establish a fair playing ground, we employ identical classifier ar-
chitectures, data augmentations, optimizers, and learning rate sched-
ules for both our methods and the baselines. We also search for the
learning rates that lead to the best performances of the baselines. For
other hyperparameters of the baselines, we primarily adhere to the
default settings outlined in the original papers. Details about these
settings are provided below and in Appdx. B.

5.1.3 Implementation details

We implement the classifier using a simple convolutional neural net-
work (CNN) for Colored MNIST, a small ResNet18 for Corrupted
CIFAR10, and the standard ResNet18 [9] for Biased CelebA and
BAR. The CNN used for Colored MNIST is adapted from the code
provided in [3]. The standard ResNet18 architecture is sourced from
the torchvision library. Given that the input size for Biased CelebA is
128×128, we simply replace the first convolution layer of the stan-
dard ResNet18, which originally has a stride of 2, with another con-
volution layer having a stride of 1.

Following [12, 13, 20, 23], we augment the input image with ran-
dom horizontal flip, random crop, and random resized crop, depend-
ing on the dataset (details in Appdx. B.3). Unlike [3], we choose not
to employ color jitter as a data augmentation technique. This delib-
erate decision is based on the understanding that such augmentation
has the potential to eliminate specific types of bias present in the in-
put image, thereby bolstering the classifier’s robustness without ne-

cessitating any additional bias mitigation techniques. Consequently,
it is challenging to ascertain whether the observed performance im-
provements of a bias mitigation method genuinely stem from its in-
herent capabilities or simply result from the applied augmentation,
especially on datasets having color bias like Colored MNIST.

We provide details for the optimizer, training epochs, learning rate,
etc. corresponding to each dataset in Appdx. B.2.

5.2 Results when the bias label is available

In this section, we aim to empirically validate our theoretical anal-
ysis on feature-correlation bias in Sections 3 and 4 by examining
the effectiveness of our proposed weighted sampling (WS) and loss
weighting (LW) techniques in mitigating bias in datasets with known
discrete bias labels. We consider Learning Not to Learn (LNL)
[14] and Bias Balancing (BiasBal) [12] as baselines since these ap-
proaches explicitly utilize the bias label. From Table 1, it is evident
that classifiers trained with either WS or LW achieve significantly
higher test accuracies than the vanilla classifier. This observation
suggests that WS and LW effectively reduce bias in training data,
validating our theoretical analysis. However, WS and LW exhibit dis-
tinct training dynamics, resulting in varying levels of effectiveness in
bias mitigation. As depicted in Fig. 2, on Corrupted CIFAR10, WS
quickly achieves good performance in the early stages of training
but gradually degrades over time. We hypothesize that this behavior
is attributed to the lack of data diversity resulting from over/under-
sampling of BC/BA samples in WS. On the other hand, LW takes
more time than WS to achieve similar performance due to its small
updates on most training samples (i.e., BA samples). Nonetheless,
LW demonstrates a steady improvement in performance.

Besides, WS and LW outperform LNL, a method that aims to learn
features independent of bias information. Interestingly, during our
experiments, we observed minimal performance difference between
LNL and the vanilla classifier, as shown in Table 1. This suggests
that the features learned by LNL still contain bias information. We
hypothesize that when class and bias labels are highly correlated, it
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(a) Test accuracy (BA) (b) Test accuracy (BC) (c) Debiasing BC ratio

Figure 3. Learning curves of LW w.r.t. different training epochs of the biased classifier (Tbias), ranging from 2 to 80. The biased dataset is Colored MNIST
with the BC ratio of 1%. The maximum sample weight is set to 100. Since BC samples account for 90% of the total test samples, the test accuracies for all

samples are very similar to those for BC sample in (b).

is challenging from a statistical perspective to learn features that are
truly independent of bias while accurately predicting the class.

However, our methods perform worse and are less robust than Bi-
asBal, especially on Corrupted CIFAR10. Fig. 2 illustrates that Bias-
Bal converges more rapidly than our methods with higher test accu-
racies and smaller test crossentropy losses in most settings. The ex-
ceptional performance of BiasBal motivates us to delve deeper into
the theoretical mechanisms and design differences between BiasBal
and our methods that account for BiasBal’s superior performance.

We discovered that like LW, BiasBal mitigates bias via reweight-
ing the model trained on biased data. It also arrives at the same
reweighting term of 1

p(y|b) as in LW despite employing a different
reasoning technique that leverages Bayes’ rule and two assumptions:
i) p(y|x) = p(y|x, b) and ii) p(x|y, b) are the same across different
joint distributions p(y, b). The bias correction formula of BiasBal
(Eq. A.8 in the supplementary material of [12]) is given as follows:

ptrain(y|x) = pu(y|x)ptrain(y|b)K
C

(19)

where ptrain and pu denotes the distribution over the biased training
data and the ideal unbiased distribution, respectively; C is the num-
ber of classes, and K = pu(x|b)

ptrain(x|b) is a constant w.r.t. y. Eq. 19 im-
plies that pu(y|x)∝ ptrain(y|x) 1

ptrain(y|b) , allowing us to reweight
the biased distribution ptrain(y|x) by 1

ptrain(y|b) to achieve a theo-
retically unbiased distribution.

The key distinction between BiasBal and WS/LW lies in their re-
spective debiasing mechanisms. While WS/LW corrects the learning
process of pθ(y|x) (via resampling/reweighting the training data dis-
tribution) to achieve an unbiased target pθ(y|x) indirectly, BiasBal
directly corrects the target pθ(y|x) and learns with the (unnormal-
ized) bias-adjusted target p̂θ(y|x) = pθ(y|x)ptrain(y|b). This de-
biasing mechanism of BiasBal is generally more robust than that of
WS/LW, as it neither compromises the diversity of training data nor
introduces training instability. Moreover, while WS and LW focus on
correcting bias in p(yn|xn) for the class yn associated with a partic-
ular input xn, BiasBal considers bias correction of p(y|xn) for every
class y. These advancements in the debiasing mechanism of BiasBal
likely contribute to its superior performance.

It is worth noting that the original paper [12] on BiasBal exclu-
sively applies the method when the bias label is discrete and known,
as ptrain(y|b) can be estimated nonparametrically from the train-
ing data. However, with our proposed method for approximating
ptrain(y|b) using the biased classifier, as discussed in Section 4.1,
we can readily extend BiasBal to scenarios where the bias label is

either unavailable or continuous. In Appdx. D.4, we provide a de-
tailed analysis of this extended version of BiasBal, which we refer to
as “Target Bias Adjustment” (TBA) to better describe its character-
istic of adjusting the target distribution.

5.3 Results when the bias label is unavailable

5.3.1 Results on Colored MNIST and Corrupted CIFAR10

As shown in Table 2, our proposed method LW significantly outper-
forms the vanilla classifier trained with the standard cross-entropy
loss, as well as several other debiasing baselines such as ReBias [4],
DFA [20], and SelecMix [13]. Furthermore, LW achieves higher test
accuracies than LfF in most settings of Colored MNIST and Cor-
rupted CIFAR10. Compared to the current state-of-the-art debiasing
method PGD, LW performs slightly worse on Colored MNIST but
demonstrates superior performance on Corrupted CIFAR10. Specifi-
cally, LW achieves about 1%, 4%, and 7% higher accuracy than PGD
on Corrupted CIFAR10 with BC ratios of 0.5%, 1%, and 5%, respec-
tively. Detailed comparisons between our method and LfF and PGD
are provided in Appds. D.2 and D.1, respectively. These outcomes
substantiate the efficacy of using the GCE loss to train a model of
p(y|x) that approximates p(y|b), and endorse the practice of weight-
ing each sample with 1

p(y|b) in our method.

5.3.2 Results on Biased CelebA and BAR

In this experiment, we only choose LfF and PGD as our baselines
since the two methods have demonstrated superior performances
compared to other approaches in our previous experiment and also
in [3]. From Table 3, it is clear that LW outperforms LfF and PGD
significantly on both Biased CelebA and BAR. Surprisingly, our ex-
periments have revealed that in certain settings, LfF and PGD may
perform even worse than the vanilla classifier, particularly on Biased
CelebA with BC ratios of 1% and 5%. Additionally, LfF and PGD ex-
hibit sensitivity to hyperparameters on Biased CelebA, as evidenced
by the large standard deviations in their results. These findings raise
concerns about the effectiveness of the debiasing formulas employed
by LfF and PGD, which rely heavily on heuristics.

It is worth noting that on BAR, our implementation of the vanilla
classifier achieves a higher test accuracy than what has been reported
in [23] and [3]. This implies that the improvement of LW over the
vanilla classifier on BAR can be attributed to its debiasing capability
rather than the under-performance of the vanilla classifier. As far as
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(a) Test accuracy (BA) (b) Test accuracy (BC) (c) Debiasing BC ratio

Figure 4. Learning curves of LW w.r.t. different values of the maximum sample weight (γ), ranging from 50 to 106. The biased dataset is Colored MNIST
with the BC ratio of 0.5%. The biased classifier is trained for 10 epochs. Since BC samples account for 90% of the total test samples, the test accuracies for all

samples are very similar to those for BC sample in (b).

we know, the result of LW on BAR presented in Table 3 currently
represents the state-of-the-art performance in this domain.

5.4 Ablation Study

In this section, we closely examine two key hyperparameters that
mainly influence the performance of our proposed LW. They are the
number of training epochs for the biased classifier (Tbias), and the
maximum sample weight (γ).

5.4.1 Effect of the number of training epochs for the biased
classifier

Since the primary role of the biased classifier in LW is to capture
solely the bias attribute b in the input x, it is critical that the biased
classifier should not be trained for too long. Otherwise, this classifier
may capture the class attribute u, leading to an inaccurate approxi-
mation of p(y|b) by pψ(y|x). To validate this intuition, we compare
the performances of various versions of LW in Fig. 3, each utilizing a
biased classifier trained for different numbers of epochs Tbias. Appar-
ently, as Tbias decreases, LW achieves higher test accuracies on BC
samples (Fig. 3b), indicating that pψ(y|x) becomes a more reliable
approximation of p(y|b). However, if Tbias is too small (e.g., Tbias

< 10), the biased classifier may not have undergone sufficient train-
ing to produce accurate class predictions, potentially hurting LW’s
performance. In fact, the choice of Tbias hinges on the learning ca-
pability of the biased classifier, which is examined in Appdx. D.3.
Further empirical results of Tbias can be found in Appdx. C.

It is worth noting that there is a strong correlation between the
high test accuracy of LW and the proximity of its “debiasing BC
ratio” β to the ground-truth BA ratio (Fig. 3c). The debiasing BC
ratio is computed by dividing the average loss weight over BC sam-
ples by the sum of the average loss weight over BC samples and
the average loss weight over BA samples. Mathematically, β =

En∈BC[wn]

En∈BC[wn]+En∈BA[wn]
. Interestingly, in this particular setting, LW at-

tains the highest test accuracy when its debiasing BC ratio coincides
with the ground-truth BA ratio, which is 0.99. This remarkable align-
ment further corroborates our theoretical analysis, and demonstrates
that the hidden true bias term p(y|b) can be effectively approximated
via a biased classifier trained with a limited number of epochs.

5.4.2 Effect of the maximum sample weight

The optimal value of the maximum sample weight γ plays a cru-
cial role in ensuring the proper normalization of sample weights wn

and achieving a closer match with the true debiasing terms 1
p(yn|bn)

.
Generally, the choice of γ depends primarily on the bias ratio present
in the training data. To illustrate this, let’s consider the Colored
MNIST dataset with a BA ratio of 0.995 and a BC ratio of 0.005.
In this scenario, we would expect that BC samples are weighted ap-
proximately 200 times more than BA samples to achieve full debi-
asing (since 0.995

0.005
≈ 200). This implies that if BA samples have a

weight of 1, BC samples should have a weight of 200. Assuming
we have a perfect biased classifier which assigns a class confidence
of 1 to BA samples and very low class confidences to BC samples
(i.e., pψ(y|x) ≈ 1 for BA samples and small for BC samples), we
can compute the weights for BA samples as 1 and for BC samples as
very large weights, which are then clamped at γ. By setting γ to 200,
we obtain the appropriate weights for BC samples, allowing for full
debiasing as discussed earlier. Empirical validation of this reasoning
is presented in Fig. 4b, where LW achieves the highest test accuracy
on BC samples when γ is equal to 200. Moreover, at this specific
value of γ, the debiasing BC ratio of LW aligns with the ground-
truth BA ratio of 0.995 (Fig. 4c), indicating that LW likely achieves
full debiasing. However, it should be noted that when the bias classi-
fier is not perfect, the optimal value of γ would be different from the
ground-truth BA ratio

BC ratio . Typically, a larger value of γ would be used to
assign more weight to BC samples predicted with high class confi-
dences by the imperfect biased classifier. Regarding the test accuracy
on BA samples, it monotonically decreases as γ increases due to the
widening gap between the weights of BC and BA samples (Fig. 4a).
More results of γ on other datasets can be found in Appdx. C.

6 Conclusion

We have proposed a novel method for mitigating dataset bias and
analyzed our method from statistical and causal perspectives. While
our approach yields promising results, certain limitations persist: i)
our method depends on the training epochs of the biased classifier
(Tbias) and the clamp threshold (γ) to produce good approximations
of p(y|b), which are hard to control in practice due to the variability
introduced by the unknown bias rate; and ii) our method mitigates
bias via balancing the sampling distribution during learning rather
than directly adjusting the target. Nevertheless, these limitations are
not unique to our method and are shared by other debiasing tech-
niques. For instance, PGD’s dependence on Tbias is also evident (in
the appendix). Additionally, both PGD and LfF employ indirect bias
mitigation like ours. In forthcoming work, we aim to develop a novel
method to address the aforementioned limitations.
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