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Abstract. Modern neural network architectures still struggle to
learn algorithmic procedures that require to systematically apply
compositional rules to solve out-of-distribution problem instances.
In this work, we focus on formula simplification problems, a class of
synthetic benchmarks used to study the systematic generalization ca-
pabilities of neural architectures. We propose a modular architecture
designed to learn a general procedure for solving nested mathemati-
cal formulas by only relying on a minimal set of training examples.
Inspired by rewriting systems, a classic framework in symbolic arti-
ficial intelligence, we include in the architecture three specialized
and interacting modules: the Selector, trained to identify solvable
sub-expressions; the Solver, mapping sub-expressions to their values;
and the Combiner, replacing sub-expressions in the original formula
with the solution provided by the Solver. We benchmark our system
against the Neural Data Router, a recent model specialized for sys-
tematic generalization, and a state-of-the-art large language model
(GPT-4) probed with advanced prompting strategies. We demonstrate
that our approach achieves a higher degree of out-of-distribution gen-
eralization compared to these alternative approaches on three differ-
ent types of formula simplification problems, and we discuss its lim-
itations by analyzing its failures.

1 Introduction

Whether neural networks can learn to perform systematic reason-
ing is a long-standing question in artificial intelligence and cogni-
tive science [10], and the recent success of deep learning on chal-
lenging reasoning tasks has reinvigorated this debate [11]. However,
despite some promising achievements [15], there is general consen-
sus that even state-of-the-art transformer architectures and large lan-
guage models still lack systematic and compositional generalization
skills [6, 9, 28].

In this work, we investigate this issue by considering a type of sys-
tematic generalization benchmark that requires simplifying symbolic
formulas to a minimal form. Specifically, we consider the problem of
simplifying nested formulas of operations on lists of integers [22], as
well as arithmetic and algebraic expressions. In principle these prob-
lems could be tackled by automatic symbolic solvers, but here we
consider them as benchmarks to assess the reasoning capabilities of
trained neural networks under controlled settings [7, 14].

We formalize formula simplification problems and propose a sim-
ple solution method inspired by rewriting systems rooted in the tra-
dition of symbolic artificial intelligence [8]. We implement this so-

∗ Corresponding Author. Email: flavio.petruzzellis@phd.unipd.it

lution method as a modular neural architecture called the Neural
Rewriting System, which represents a case study of a neural archi-
tecture in which the roles and interaction mechanisms between neu-
ral modules are clearly defined, allowing greater interpretability of
the resulting system. We exploit our framework to further evalu-
ate two neural architectures that have been recently shown able to
tackle reasoning tasks: the Neural Data Router [7], a transformer en-
coder trainable end-to-end to solve algorithmic problems, and GPT-4
[24] probed using self-consistency zero-shot Chain-of-Thought [32],
which is an advanced prompting method that improves the perfor-
mance of large language models on reasoning tasks.

Through extensive experiments and analyses, we show that the
proposed modular architecture achieves greater accuracy compared
to advanced alternative approaches, especially when solving deeply
nested formulas. Furthermore, we show that our approach allows us
to understand in detail what parts of a systematic generalization prob-
lem could represent the greatest obstacles for neural architectures.
Indeed, when analyzing the causes of failure of the Neural Rewriting
System, we find that accurately selecting the portion to be simplified
in very long formulas is the most challenging task for the architec-
ture, shedding light on the limitations of current approaches to deal
with length generalization in algorithmic tasks with transformers.

2 Related works

Systematic Generalization A consistent stream of research inves-
tigates the extent to which neural networks can learn to reason in
a systematic and compositional way [11, 30]. Several benchmarks
have been proposed to measure this capacity: among the most popu-
lar, ListOps [22] and CTL [18] can be seen as instances of formula
simplification problems, in which the learning system is tasked to
produce the evaluation of a formula which typically requires to com-
pute intermediate results, either implicitly or explicitly. Other for-
mula simplification benchmarks include derivation and integration
problems [16] or polynomial simplification [1]. Modern neural archi-
tectures achieve different degrees of systematic compositional gener-
alization [7, 15, 23]. Interestingly, recent work has shown the emer-
gence of specialized modules in Mixture of Experts architectures
[21], suggesting that modular architectures can outperform mono-
lithic ones in both in- and out-of-distribution testing conditions.

Rewriting systems and neural networks The idea of implement-
ing neural architectures inspired by symbolic rewriting systems was
initially explored in unsupervised learning settings, where individual
network weights represented tokens to be rewritten [13]. Others im-
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plemented a rewriting system for algebraic problems using custom
feature engineering methods and a feed-forward network [3], while
in [4] the authors propose a reinforcement learning-based system that
can learn a general rewriting mechanism by first choosing a region to
simplify and then an appropriate rewriting rule.

LLMs Research on prompt engineering techniques has shown that
appropriate prompting methods can boost the reasoning capabilities
of LLMs [32, 33]. In particular, Chain-of-Though prompting im-
proves LLMs’ accuracy on reasoning tasks by leveraging their auto-
regressive nature: the models are elicited to give the final result us-
ing multi-step reasoning chains, which enable to process contextual
information more effectively. Among the reasoning tasks on which
Large Language Models often exhibit impressive problem-solving
capabilities we find ‘symbolic reasoning tasks’. Some examples are
coin flip, last letter concatenation [33] and boolean variable assign-
ment [2]. These tasks are remarkably similar in spirit to those we
consider in this work, since problem instances are synthetically gen-
erated and can be solved by applying simple algorithms.

3 Formula simplification problems

Many systematic generalization benchmarks require to evaluate a
possibly very complex formula by replacing expressions with ele-
mentary operands that have an equivalent value. We call such prob-
lems ‘formula simplification problems’. For example, in ListOps an
operation on a list of integers can be replaced with a single integer
that is the result of the operation. In order to use formula simplifica-
tion problems as a benchmark to assess the systematic generalization
abilities of neural architectures, we outline a formal framework that
includes the class of problems we consider in this work.

In formula simplification problems, we can see formulas f ∈
F as entities that are composed of two semantically distinct el-
ements: operators o ∈ O and arguments a ∈ A. 1 Arguments
can be either atomic elements e ∈ E, such as integers, which
are also the final values of any formula, or other formulas: there-
fore, in general, formulas have a recursive structure (see Figure
1). Furthermore, since in these problems each formula has al-
ways one and only one final value, any formula has the generic
compact form f = o(a1, ..., an) = e, where o ∈ O, e ∈ E
and aj ∈ F ∪ E, ∀j ∈ [1, n]. Finally, we can define leaf formulas
FL ⊂ F as the subset of formulas whose arguments are all atomic
elements: fL = o(a1, ..., an) s.t. ak ∈ E, ∀k ∈ [1, n].

The simplest algorithm that can be applied to solve formula sim-
plification problems is to solve leaf formulas one by one until the
formula is completely reduced to an atomic element e. Therefore,
for any problem, we can define a set of rewriting rules r ∈ R which
map leaf formulas to their values: r : FL → E, ∀r ∈ R. Taking into
account the problems we consider in this work, we can further char-
acterize the rewriting rules in R. First, the rules apply to contiguous
sub-sequences of symbols. Second, each rewriting rule is contrac-
tive; that is, it maps sub-sequences to shorter ones. Third, the rewrit-
ing rules have mutually exclusive applicability scope, i.e. given a leaf
formula, one and only one rule can be applied to reduce it. Fourth,
several leaf formulas could be present in a formula at once, but the
order in which rewriting rules are applied on them is irrelevant.

The notation introduced above allows us to outline a simple algo-
rithm to solve nested formulas, consisting of the iterative application
of the composition of three functions: sel : F → FL, that maps a
formula to a leaf formula appearing in it; sol : FL → E that solves

1 We also sometimes refer to arguments as operands. We prefer to use the
term arguments here to avoid confusion with operators O.

Figure 1: Examples of solution of ListOps, arithmetic and algebraic
formulas. Formulas f are reduced to atomic values e by iteratively
solving leaf formulas fL, highlighted in yellow.

the leaf formula, i.e. applies an appropriate rewriting rule to map it
to an equivalent atomic element; com : F × FL × E → F , that
combines the initial formula f and the solution of the leaf formula
fL by replacing fL with sol(fL) in the initial formula. Notice that
the function sel can be applied again on the output of the function
com which is a valid formula, thus enabling the implementation of
an iterative solution procedure.

Throughout this work, we will use this simple algorithm as a ref-
erence to compare the way different models solve formula simplifi-
cation problems and to critically evaluate their results. Furthermore,
we propose a neural implementation of this algorithm in the form of
a modular neural architecture called the Neural Rewriting System.

4 Neural Rewriting System

In this section, we describe the proposed Neural Rewriting System, a
neural architecture composed of three integrated modules, called Se-
lector, Solver, and Combiner, each being the neural implementation
of one of the functions that can be used to solve formula simplifi-
cation problems according to the algorithm described in Section 3.
The modules are trained independently of each other and interact at
test time to solve nested formulas iteratively. The model is designed
to achieve strong out-of-distribution generalization, i.e. to solve very
deep formulas while being trained on a set of much shallower formu-
las. We describe the composition of the datasets used in the devel-
opment of the model in Section 5.2.1. A schematic representation of
the system is shown in Figure 2.

4.1 Selector Module

The Selector module implements the function sel : F → FL, i.e.
it is trained to map a formula to a leaf formula appearing therein. In
analogy to what happens in humans when they deploy object-based
attention to locate algebraic sub-expressions that can be simplified
[19], the Selector is trained to identify the last leaf formula2 occur-
ring in the input formula on which a rewriting rule can be applied.
When training the Selector, we assume that it will always receive
syntactically correct formulas, i.e. we use teacher forcing.

We frame the problem as a sequence-to-sequence task and use a
variant of the transformer encoder-decoder [31] to implement the Se-
lector. We modify the vanilla transformer in two ways. First, given

2 To enable generalization on formulas with more arguments than seen dur-
ing training, if the identified leaf formula has more than two arguments, we
train the Selector to output the smallest fraction of the leaf formula which
can be simplified. This corresponds to the operator and the two first argu-
ments appearing in the leaf formula.
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Figure 2: Schematic representation of the Neural Rewriting System.

the class of problems we consider in this work, we can assume that
the problem the Selector needs to solve has a local nature: the leaf
formula to be simplified is always located in a limited region of the
input sequence. We therefore mask all entries in the self-attention
matrix of the encoder but the ones around the main diagonal (i.e., we
make them −inf). The diagonal window is 2k+1 tokens wide, where
k is a hyperparameter (preliminary experiments showed that models
with a vanilla self-attention achieved worse out-of-distribution gen-
eralization). Second, to enable generalization to out-of-distribution
problem instances, we require the Selector to identify a leaf for-
mula independently of the length of the input sequence, provided
that it is syntactically correct. Recent research on length generaliza-
tion in transformers provided evidence that their ability to general-
ize on longer samples can be influenced by the choice of positional
encodings, especially when, at test time, these fall out of the range
observed during training [5, 29]. We thus use Label-based Positional
Encodings [17] to enable the Selector to identify leaf formulas in
very long sequences. The positional information of an input sequence
of L tokens is thus encoded in the following way: given a sequence
of N sinusoidal positional encodings, where N is a large number that
represents the maximum expected length of an input, L integers are
sampled in the interval [0, N − 1] and then sorted. The encodings
found in the positions corresponding to the sampled integers are then
summed to the embeddings of the tokens in the input sequence.

Multi-output generation Label positional encodings introduce
randomness in the representation of input sequences. We have ob-
served experimentally that to mitigate the effect of randomness it can
be useful to repeat the auto-regressive generation of transformer out-
puts. After sampling several output sequences from the probability
distribution derived from the decoder’s outputs, we choose the best
one considering both a measure of confidence of the Selector and a
measure of input-output agreement computed by the Combiner.

Given the specialized purpose of the Selector, we can see each
output of the module as a candidate leaf formula f̂L. We generate

any token f̂L
i in an output sequence f̂L by sampling from the prob-

ability distribution obtained applying the softmax function to the
logits produced by the final fully-connected layer of the decoder. We
do not use any temperature parameter when sampling the output to-
kens. For any input formula f , we repeat the stochastic generation
process M times, thus generating a sequence of candidate leaf for-
mulas F̂L = 〈f̂L,1, ..., f̂L,M 〉. We define the confidence of the Se-
lector on any f̂L,j , 1 ≤ j ≤ M as the joint probability of sampling
its tokens: c(f̂L,j) =

∏N
i=1 p

j
i , where N is the number of tokens

in f̂L,j , and pji is the probability to sample token f̂L
i in f̂L,j . We

also define an agreement score a(f̂L,j , f) ∈ [0, 1] which gives in-
formation about the fraction of f̂L,j which is exactly present in the
input formula f . This measure is computed by the Combiner and
thus it is formally defined in Section 4.2. We then select the final
output fL of the Selector as the one with the highest Selector confi-
dence which has an agreement score equal to 1 — that is, it matches
the input sequence exactly. More formally, fL = f̂L,j ∈ F̂L s.t.
c(f̂L,j) ≥ c(f̂L,k) ∀j, k ∈ [1,M ] ∧ a(f̂L,j , f) = 1.

Dynamic windowing We implement a dynamic windowing mech-
anism on longer input sequences that allows us to increase the
model’s generalization capacity on complex problem instances. The
core idea behind this mechanism is to repeat the process of select-
ing a leaf formula several times, changing each time the window of
the input formula that the Selector observes, and then relying on the
confidence c(f̂L) to pick the best output. We apply this mechanism
on top of multi-output generation by modifying its behavior for se-
quences longer than a given threshold T . Given an input formula f ,
if |f | < T the computation is executed as described before. Oth-
erwise, we generate M copies of the input 〈f (1), ..., f (M)〉, whose
lengths will be reduced by applying a window function w. Consider-
ing any input f as a sequence f1, ..., fN of N tokens, we define the
window function w(f, k) = fk+1, ..., fN which reduces the length
of the input by giving as output its last k tokens. Since the Selector is
trained to output the last leaf formula appearing in the input, the win-
dow function reduces the input length starting from the first tokens.
We divide the sequence of copies of the input 〈f (1), ..., f (M)〉 into
20 groups F (1), ..., F (20) of equal size. Intuitively, in each group
the length of the input is reduced by a different percentage of to-
kens. More formally, the window function will be parameterized by
k = floor(|f (i)| · j

20
) ∀f (i) ∈ F (j), ∀j ∈ [1, 20]. We then pick the

final leaf formula using the confidence and agreement scores, as de-
scribed in the previous paragraph. This ensures that the model can
observe the whole input sequence and select a leaf expression in the
part of the input where it can identify one with more confidence.

4.2 Solver Module

Unlike classical rewriting systems that use symbolic rule dictionar-
ies, we learn rewriting rules directly from data by implementing the
function sol : FL → E with a trainable neural network. Given
a leaf formula fL by the Selector, the Solver is trained to produce
the equivalent reduction e according to a valid rewriting rule. When
training the Solver, we assume that the Selector always generates per-
fect outputs (i.e., we use teacher forcing). The Solver also learns to
recognize the computation’s termination state, signaling when such
a state is reached. It maps atomic elements, representing a formula’s
final value, to the special symbol ω, indicating the end of compu-
tation. Similar to the Selector, we frame the task as a sequence-to-
sequence problem. We use a vanilla transformer encoder-decoder for
the Solver since it learns simple input-output mappings.
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4.3 Combiner Module

The last module in the architecture is the Combiner, a neural imple-
mentation of the function com : F × FL × E → F . Its purpose
is thus to produce a simplified version of the original formula, given
the formula itself f , the leaf formula fL identified by the Selector,
and its reduction e computed by the Solver.

In order to carry out its task, the first operation that the Combiner
must perform is finding the position in f where the leaf formula fL

appears. We notice that the convolution is a suitable operation to de-
tect which portion of an input sequence has the highest match with
another sequence used as a filter, so we implement this operation us-
ing a 2D Convolutional Neural Network (CNN) whose filters are set
dynamically at execution time using the output of the Selector, rather
than being learned with backpropagation.

More precisely, we represent both the input sequence f and the
leaf formula fL as sequences of 1-hot vectors over the same vocabu-
lary. Since the leaf formulas found for different sequences in a batch
can have different lengths, we pad each one with zeros to prevent the
padding to match in the input. Then, we set the filter of the 2D CNN
to the 1-hot representation of fL. We refer to the CNN parameter-
ized in this way as CNNfL . Doing so allows us to obtain from the
output of the convolution both information on the location of the best
match of fL in f and on the number of tokens in fL that match f
exactly in some point. Indeed, we can compute the location of the
best match as pos(fL, f) = argmax CNNfL(f). Furthermore, we

can compute the agreement score a(fL, f) =
max CNN

fL (f)

|fL| , where

|fL| is the number of tokens in fL. Dividing by |fL| makes the score
normalized, which allows us to compare the agreement scores of leaf
formulas with different lengths. Indeed, as described in Section 4,
the Selector uses this score for multi-output generation to discard the
outputs that do not have an exact match in the input formula. Notice
that in this case the CNN is parameterized using candidate leaf for-
mulas f̂L

j whose accuracy scores with f are compared. If there is no
Selector output such that a(f̂L

j , f) = 1, the computation on the input
sequence f is stopped, and this is considered a failure of the model.

After finding the position of the leaf expression in f , the Combiner
replaces fL with e in f , to compute the simplified version of the
formula f ′. We implement this operation as a deterministic operator
with input f , fL, e, and pos(fL, f).

5 Experiments and results

We evaluated the capacity of our model to solve formula simplifi-
cation problems on ListOps, arithmetic, and algebraic formulas. We
compare the performance of the Neural Rewriting System to the Neu-
ral Data Router and GPT-4, one of the most advanced LLMs cur-
rently available. We make available the code and data used in our
experiments [25] and a Technical Appendix containing methodolog-
ical details and additional results [27].

5.1 Datasets

For all three tasks, the automatic generation of formulas is parame-
terized by specifying the nesting level of a formula. Any formula is
nested at each level in two points: exactly two arguments in the for-
mulas on that level will be other formulas. Formulas are tokenized at
the character level for all tasks and trained models.

ListOps The ListOps dataset [22] was introduced to evaluate the
capacity of neural networks to build parse trees of nested formulas.
The original dataset consists of formulas composed of operations on

lists of integers, including minimum, maximum, median and sum
modulo 10 of a list of integers. We modified the ListOps dataset so
that formulas had exactly 2 nesting points at each nesting level, and
we made it possible to specify the number of arguments that appear
in formulas at any level. Since we are interested in the system’s ca-
pacity to generalize on highly nested formulas rather than learning
specific operations, we reduced the set of operations to minimum,
maximum and sum modulo 10.

Arithmetic We generated formulas composed by sum, subtrac-
tion and multiplication operations between two integers sampled in
the interval [−99, 99]. Since in this work we do not investigate the
capacity to generalize to numbers with more digits than those seen
during training, we used the modulo 100 of the intermediate results
in the solution process.

Algebra We considered a subset of algebraic formulas that can al-
ways be reduced up to a minimal form in a deterministic way. Such
formulas involve sum and subtractions between two monomials and
their final value is always a monomial. The numerical coefficients of
monomials were sampled in the interval [−99, 99], and each mono-
mial can contain up to four literal variables sampled from the set
{a, b, x, y}. All monomials appearing in a given formula have the
same literal variables. As in the case of Arithmetic, all intermediate
numerical values were taken modulo 100 when computing the final
value of the formula.

5.2 Experiments

5.2.1 Neural Rewriting System

We describe here how we built the training and validation sets for the
Selector and Solver modules. Further methodological details can be
found in the Technical Appendix.
Selector In Arithmetic and Algebra problems we included in the
training set formulas with nesting levels 1, 2 and 3. In the ListOps
problem, in which we could specify the number of arguments that
appear in the formulas, we included in the training set formulas with
nesting levels 1 and 2 that have 2 or 3 arguments for each operator.
In all three problems, the training set also contains atomic elements
corresponding to the initial formula’s final value. Solving formula
simplification problems by iteratively simplifying leaf formulas pro-
duces several simplifications of the initial formula. To show to the
Selector the complete solution process of formulas in the training
set, we have also included in it formulas that appear as intermediate
solution steps of the formulas described above.

We constructed a separate in-distribution validation set with sam-
ples with the same structural characteristics as those in the training
set. Unlike common machine learning tasks where models are tested
on the same data distribution they are trained on, we want the Se-
lector to possess out-of-distribution (OOD) generalization capabil-
ities to identify the leaf formulas even in longer inputs than those
seen during training. For this reason, we also built a separate out-of-
distribution validation set containing formulas with greater structural
complexity, and use this set for model selection. For Arithmetic and
Algebra, we included samples with nesting levels 4, 5 and 6. For
ListOps, we included formulas with nesting levels 3 and 4 with 2, 3
or 4 arguments for each operator. To select the most capable model
across the iterative resolution process, we also included formulas rep-
resenting examples of intermediate resolution steps. To control the
structural complexity of the formulas, the OOD validation sets are
balanced across the nesting level of the leaf expressions.3

3 In the case of ListOps, we also balance across the number of arguments in
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Figure 3: Performance of the Neural Data Router, GPT-4 and Neural Rewriting System on ListOps, arithmetic and algebraic formulas.

Solver The training and validation set of the Solver included
two kinds of samples: leaf formulas, mapped to equivalent atomic
elements, and atomic elements themselves, mapped to the end-
of-computation special symbol ω. During training, we generated
batches that included both kinds of samples with equal probability
to avoid biasing the model toward solving leaf formulas.

5.2.2 Neural Data Router

The Neural Data Router (NDR) is a variant of a transformer encoder
designed to learn to solve algorithmic problems with strong out-of-
distribution generalization capacity. In terms of the formalization of
formula simplification problems we have defined in Section 3, the
model takes as input a formula f and gives as output the equiva-
lent atomic element e. The NDR thus implements the composition
of the sel, sol, and com functions in one or more transformer lay-
ers, assuming that the effective integration between the three happens
sub-symbolically in the embedding space during training.

This model has been previously evaluated on relatively simple al-
gorithmic benchmarks that are nevertheless significantly similar to
the problems we consider, including the solution of formulas in the
original ListOps dataset and simple arithmetic formulas on single-
digit integers. The main difference with the problems we consider
here is that the operands in our Arithmetic and Algebra problems
are of greater complexity. Moreover, in the ListOps problems, we
aim to generalize both on the number of operands and on the nest-
ing depth of the formulas, whereas, in the original work, the number
of operands observed at training time was the same as that observed
at test time. Furthermore, we use significantly fewer samples during
training and of lower complexity, as the NDR was originally trained
on arithmetic and ListOps formulas with up to 5 nested operations.

We applied a minor modification to the architecture to adapt the
model to the problems we have considered. Indeed, the problems
considered in the original work always had a single-digit integer as
a result, which the model was trained to output as the first token in
the sequence given as output by the encoder. Since, in general, this

the leaf expression.

no longer applies to our problems, we read the final answer from the
first k positions of the sequence produced by the encoder, where k is
the maximum length of a problem’s targets.

We build all development sets for the NDR using the same top-
level formulas we included in the analogous sets for the Selector.
Since the NDR was designed to compute intermediate results sub-
symbolically, we use as training target the final simplified form of
the input formula and we do not include intermediate formulas as we
do with the Neural Rewriting System. 4 Following the original exper-
imental protocol, we made the training set balanced across nesting
levels and number of operands. As done when training the Selec-
tor module, we create in- and out-of-distribution validation sets and
use the latter to optimize hyperparameters, using the Weights and
Biases Bayesian search on the same hyperparameters and intervals
described in the original work. We report the final hyperparameter
values for each task in the Technical Appendix.

5.2.3 GPT-4

Chain-of-Though (CoT) prompting improves the performance of
LLMs on reasoning tasks by enabling step-by-step solution proce-
dures. In terms of the formalization outlined in Section 3, we may
observe how such reasoning chains resemble the iterative solution
method of nested formulas based on rewriting. Therefore, we can
say that LLMs prompted using CoT-like methods loosely implement
the composition of sel, sol, and com functions in the whole model,
where the iterative application of the function is implemented via the
auto-regressive generation of outputs.5

We choose to prompt GPT-4 using self-consistency prompting [32]
combined with zero-shot Chain-of-Thought (CoT) [12]. Zero-shot
CoT has been introduced as a simpler alternative to CoT prompt-
ing, which allows users to achieve similar performance on reason-
ing benchmarks without the need to engineer exemplars for few-shot

4 For comparison, in the Technical Appendix we show results for models
trained on larger datasets that also include intermediate formulas.

5 Notice that in general, at any given point of the solution process, the context
given as input of the model will contain several different simplifications of
the input function f rather than just one as it happens with the other models
we consider.
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reasoning. This is achieved by simply making the model’s answer
start with the sentence: “Let’s think step-by-step”. After the model
has generated a response, it is prompted again to retrieve a well-
formatted output. Self-consistency prompting operates on the con-
cept that reasoning problems can have multiple valid paths leading to
the same conclusion. To harness this, we generate 10 outputs for each
input, allowing us to select the most consistently produced one. This
method boosts confidence in the model’s output and significantly en-
hances accuracy, resulting in a notable improvement in performance.

The actual prompt used for zero-shot CoT was built giving the
model a minimal description of the problem at hand and then ask-
ing to solve it. For example, the zero-shot CoT prompt correspond-
ing to the ListOps input sample [MIN[SM54][MIN39]] is: “MIN,
MAX and SM are operators on lists of single-digit integers which
have the semantics of minimum, maximum and sum modulo 10, re-
spectively. Solve the following expression involving these operators:
[MIN [SM 5 4] [MIN 3 9]].”. Following the zero-shot CoT
prompting technique, the model was then prompted a second time to
extract the well-formatted final answer.

5.3 Results

We report in Figure 3 the performances of all considered models.
All models are tested on 100 samples for each level of complexity.
We measure the sequence accuracy of the models, that is the exact
match between the model’s output and the target sequence. When we
evaluate GPT-4 on the Algebra task, we take into account equivalent
forms of the symbolic outputs using the SymPy library [20].

We first observe that all the models perform better on simple data
splits and tend to worsen on more complex ones. This indicates that
increasing the number of arguments and the nesting of formulas
makes the problems more difficult for all models, as expected.

Analyzing the performance of the Neural Data Router, we find
that the models with the best hyperparameters configurations have
lower accuracy than other models on the simple splits and are not
able to generalize the learned solution process to complex problem
instances. Learning to solve simple formulas with a single nesting
level – i.e., learning the sol function – appears to be the easiest task
for the model, although it is learned with almost perfect accuracy
only on arithmetic formulas. The lack of generalization capacity on
complex formulas may, therefore, be determined by two different sit-
uations: making one or more errors while solving many leaf formu-
las, or learning a composition of the sel, sol, and com functions that
cannot generalize effectively on nested formulas. Since the model
is unable to generalize both on arithmetic and algebraic formulas,
whose leaf formulas can be solved with substantially different levels
of accuracy, we argue that both factors could play a role in causing
the limited generalization capacity of the model.

We observe that GPT-4 can achieve perfect or almost perfect re-
sults on leaf formulas and simpler problem instances, surpassing the
performance of the Neural Data Router and, in some cases, our ar-
chitecture. However, the performance of GPT-4 is significantly lower
on deeply nested formulas. Indeed, while self-consistency prompt-
ing improved the model’s performance compared to vanilla zero-shot
CoT prompting6, it has a limited impact on the capacity of the LLM
to solve complex formulas, consistently with previous research [26].

Considering the model as an approximation of the composition of
the sel, sol, and com functions, its limited generalization capability

6 We report the performance of GPT-4 with vanilla zero-shot CoT prompting
in the Technical Appendix for comparison.

Figure 4: Input length against the average confidence score of 1,000
outputs of the Selector. The vertical lines represent the maximum
input length in the training set.

seems to be determined by the poor quality of this approximation ob-
tained with the prompting method we used. However, by comparing
the performance of the model on ListOps formulas with the other two
tasks, we observe that the complexity of the individual leaf formulas
(much simpler in the case of ListOps) seems to influence the capa-
bility of the model to apply a solution method that can generalize
systematically on complex formulas.

Coherently with the model selection process, in Figure 3, we re-
port the performance of our Neural Rewriting System with 1,000-
way multi-output generation, and value of the Dynamic Windowing
threshold T of 60, 150 and 200 for the ListOps, Arithmetic and Al-
gebra problems, respectively. The Neural Rewriting System consis-
tently outperforms the baselines on the three formula simplification
tasks we consider. Importantly, the system shows a significantly high
degree of generalization on formulas that are much more complex
than those observed during training. Given the modular nature of our
architecture, in the following paragraphs, we will analyze the role of
each architecture component in achieving this result.

We first analyze the variation of the confidence score correspond-
ing to variations in the length of the input sequences in the test set.
We do so because the confidence score plays an important role in se-
lecting the best Selector output in multi-output generation. Figure 4
represents input lengths versus the average confidence score of 1,000
Selector outputs. The vertical lines in the plot represent the maxi-
mum input length seen during training. While the average confidence
score remains close to the training range for outputs that are moder-
ately longer than the longest training samples, it drops significantly
for sequences much longer than that. This can directly determine a
decrease in model performance on very long formulas since Selector
outputs with a low confidence score are more likely to be incorrect.
Indeed, we set the value of the Dynamic Windowing threshold T ,
which determines the sequences on which the mechanism will be ap-
plied, by looking at the points where Selector confidence drops in
each task. We also notice that confidence scores are lower for very
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Figure 5: Errors committed by the Neural Rewriting System classi-
fied by cause of error. Error bars corresponding to a complexity split
refer to models where the Selector generates 10, 100 or 1,000 outputs
per input and (optionally) employs the Dynamic Windowing mecha-
nism. Data splits are defined by their nesting level N and number of
arguments A.

short arithmetic and algebraic formulas. We suppose this is due to
the fact that the number of formulas of a given nesting level grows
exponentially with the value of the nesting level. Therefore, the Se-
lector observed fewer examples of formulas with nesting level 1 dur-
ing training. However, this does not hinder performance when the
Selector generates many outputs per input.

We finally assessed the impact of the multi-output generation strat-
egy on the model’s performance by comparing the errors committed
by the model when the Selector generated 10, 100 and 1,000 out-
puts per input. We measure the errors separately on subsets of for-
mulas with different nesting levels and number of operands, to un-
derstand the impact of increasing the number of outputs generated
by the model on the solution of both simple and complex formu-
las. Furthermore, for each model configuration and each subset of
samples, we analyzed the root cause of the errors committed by the
NRS. We classify the cause of the errors into three categories: er-
rors caused by the Selector when it outputs a leaf formula that is
not present in the input formula (missing-leaf); errors caused
by the Selector when it outputs a leaf formula that is present in the
input formula but does not correspond to a well-formed expression
and whose substitution thus causes the corruption of the input for-
mula (corrupted-leaf); and errors caused by the Solver when
it outputs a wrong solution for the leaf formula identified by the Se-
lector (wrong-solution). Figure 5 represents this multi-faceted
measurement of the errors committed by the models.

Looking at the frequency of each of these classes of errors, we
clearly see that generating only 10 outputs per input with the Selec-
tor is particularly ineffective on algebraic formulas, and on deeply
nested arithmetic and ListOps formulas. Increasing the number of
generated outputs to 100 or 1,000 considerably improves the Sys-
tem’s performance on most formulas of all three tasks, apart from
the most deeply nested arithmetic and algebraic formulas. On such
samples, applying Dynamic Windowing drastically reduces the num-
ber of errors the model commits while also bringing further minor

improvements on simpler formulas.
As we described in Section 4, the modules in the Neural Rewriting

System have been designed as neural implementations of the sel,
sol and com functions that appear in the simple solution algorithm
for formula simplification problems described in Section 3. For this
reason, we can analyze in a greater level of detail to which modules
are most error due, and thus which of the functions listed above have
been more difficult to reproduce in a neural network.

Given our design choice to implement the com function using a
CNN dynamically parameterized by the Selector, the errors due to
this module can be directly traced back to errors made by the Selec-
tor. Looking at the classification of errors represented in Figure 5, we
can see how the errors due to a wrong-solution of a leaf formula
by the Solver are the minority. Therefore, the sol function appears to
be relatively easy to implement in a transformer, consistent with our
prior observations on NDR and GPT-4 models. Errors due to the Se-
lector are instead the vast majority and are only partially mitigated
by the generation of multiple outputs and the Dynamic Windowing,
especially on algebraic formulas. The sel function, which formalizes
the ability to identify leaf expressions, appears to be the hardest one
to model with a transformer-based architecture, particularly due to
the necessity to generalize on very long formulas.

6 Discussion

In this work, we have considered formula simplification problems, a
kind of benchmark used to study the systematic generalization capa-
bilities of neural networks. We proposed a formal description of this
class of problems and used it to define a simple general solution al-
gorithm involving three elementary functions. We then implemented
a general neural architecture called the Neural Rewriting System,
which models such algorithm by adopting a modular design.

We have compared the performance of the Neural Rewriting Sys-
tem to that of a highly specialized neural architecture, the Neural
Data Router, and of GPT-4, a powerful general-purpose large lan-
guage model. We have tested the models on nested arithmetic and al-
gebraic formulas, and formulas from the ListOps dataset. We showed
that while both the Neural Data Router and GPT-4 are, to different
extents, able to solve simple formulas, both models struggle or fail
when dealing with deeply nested formulas. The Neural Rewriting
System achieves a considerably greater degree of generalization on
much more complex formulas than those it was trained on. We ana-
lyzed models’ failures in light of our formalization of formula sim-
plification problems, highlighting the features of these problems that
could represent the main obstacles to systematic generalization.

Limitations While we consider formula simplification problems
with different number and kinds of operands, we also pose several
constraints on these formulas. For instance, we limit our study to
formulas with only one final form which can always be reached in-
dependently of the substitution applied. Both of these conditions are
not satisfied, in general, by algebraic expressions, whose form could
be made arbitrarily complex and not further reducible. Future work
should thus study the systematic generalization capabilities of neural
models in the more general case of formulas with several possible
final forms, reachable from different solution paths.
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