
NeurCAM: Interpretable Neural Clustering via Additive
Models

Nakul Upadhya and Eldan Cohen

nakul.upadhya@mail.utoronto.ca, ecohen@mie.utoronto.ca
University of Toronto, Toronto, Canada

Abstract. Interpretable clustering algorithms aim to group similar
data points while explaining the obtained groups to support knowl-
edge discovery and pattern recognition tasks. While most approaches
to interpretable clustering construct clusters using decision trees,
the interpretability of trees often deteriorates on complex problems
where large trees are required. In this work, we introduce the Neural
Clustering Additive Model (NeurCAM), a novel approach to the in-
terpretable clustering problem that leverages neural generalized addi-
tive models to provide fuzzy cluster membership with additive expla-
nations of the obtained clusters. To promote sparsity in our model’s
explanations, we introduce selection gates that explicitly limit the
number of features and pairwise interactions leveraged. Additionally,
we demonstrate the capacity of our model to perform text clustering
that considers the contextual representation of the texts while provid-
ing explanations for the obtained clusters based on uni- or bi-word
terms. Extensive experiments show that NeurCAM achieves perfor-
mance comparable to black-box methods on tabular datasets while
remaining interpretable. Additionally, our approach significantly out-
performs other interpretable clustering approaches when clustering
on text data.

1 Introduction

As Machine Learning (ML) has become more prevalent in society in
recent years, the need for trustworthy models that stakeholders can
audit has increased dramatically. One desirable aspect of trustwor-
thiness in ML is that the approaches utilized are constrained so that
their predictive mechanisms are innately understandable to humans.
As a result, they are much easier to troubleshoot and more practical
for real-world usage [51].

One stream of interpretable machine learning is interpretable clus-
tering [69]. By using algorithms capable of providing innate explana-
tions of cluster compositions, interpretable clustering methods have
found great success in fields such as market segmentation [2], climate
science [61], and healthcare [41, 17]. Most approaches to this task in-
volve the use of decision trees to build clusters [5, 15, 16, 18, 56, 14].
However, the size of decision trees heavily influences their inter-
pretability [63, 40], and complex problems may necessitate larger,
less interpretable trees.

Another innately interpretable architecture, the Generalized Addi-
tive Model (GAM) [22], has found great success as an interpretable
approach in many high-stakes classification and regression tasks
[27, 53]. A recent line of work has focused on developing Neural
GAMs that enjoy better scalability and are able to learn more expres-

sive, yet interpretable, additive models [1, 48, 10, 25]. Despite these
benefits, GAMs have not been utilized for clustering.

In this work, we introduce the Neural Clustering Additive Model
(NeurCAM), an interpretable clustering approach that constructs
clusters via Neural Generalized Additive Models. Our approach ex-
plains how input features influence cluster assignment by modeling
the relationship between features and clustering assignments through
additive shape functions. Our contributions are as follows:

1. We present a novel approach for interpretable clustering that lever-
ages neural GAMs to provide fuzzy cluster membership. Our ap-
proach can leverage deep representations of the data for clustering
while still producing explanations in the original feature space. To
our knowledge this is the first work to utilize GAMs to provide
interpretable clustering.

2. We introduce a mechanism that allows users to explicitly constrain
the number of single-feature and pairwise interaction shape func-
tions our model utilizes therefore encouraging sparsity in the final
explanations, a key quality of interpretable models [52].

3. Through experimentation on a variety of datasets, we demonstrate
NeurCAM’s effectiveness at creating high-quality clusters when
using disentangled representations and also showcase the inter-
pretability provided by additive explanations.

4. We demonstrate the capabilities of NeurCAM to perform inter-
pretable text clustering by leveraging transformer-based embed-
dings in the objective. This allows us to provide uni-word and
bi-word explanations while still taking structural and contextual
information of the document into account.

The rest of our paper is organized as follows. In Section 2 we
outline our desiderata for the interpretable clustering task and dis-
cuss prior work that aligns with these objectives. In Section 3 we
define GAMs and what makes them interpretable. In Section 4, we
describe the components of our approach, NeurCAM, and in Section
5 demonstrate its performance and interpretability.

2 Interpretable Clustering

Our approach for interpretable clustering consists of developing an
intrinsically interpretable out-of-sample mapping from samples to
clusters. In this section we describe what encompasses this approach,
the benefits of achieving it, and discuss existing approaches for inter-
pretable clustering.

ECAI 2024
U. Endriss et al. (Eds.)
© 2024 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA240850

3079

2.1 Interpretable Out-of-Sample Mapping

Out-of-Sample Mapping (OSM) in clustering refers to the task of
assigning a given sample x ∈ R

D (potentially unseen during train-
ing) to a particular cluster using a mapping that is agnostic of the
clustering cost function used [18]. In particular, OSM allows us to
separate the representation of the data used to construct the map-
ping from samples to clusters from the representation used in the
clustering cost function. Previous work has shown that various trans-
formed representations of the original data, such as spectral embed-
dings, learned embeddings, or PCA, can lead to better clustering per-
formance [66, 60, 11, 14]. However, such representations are not
human-understandable, making it difficult for practitioners to gain
insights into the generated clusters. We therefore propose to construct
interpretable OSM where the mapping is based on interpretable fea-
ture representation, while the clustering cost is independently defined
over a transformed representation.

2.2 Model-Based Interpretability

We advocate the use of intrisically interpretable models to create the
mapping. Formally, our goal is to develop an approach that satisfies
the requirements for intrinsic model-based interpretability posed by
Murdoch et al. [43]: modularity, sparsity, and simulability:

• Modularity: A ML model can be considered modular if a user
can interpret a meaningful portion of its prediction making process
independently from other parts of the network [43].

• Sparsity: Sparsity is achieved by limiting the number of non-zero
parameters that limit the components a user must analyze to under-
stand model behavior. Understandably, sparse models are easier
for practitioners to understand, and hence easier to trust in high-
stakes applications [43, 52].

• Simulability: An approach is said to be simulable if a human is
able to reasonably internally simulate the entire decision-making
process [43]. This requirement synergizes with the prior two re-
quirements, as a model often needs to be sparse and modular for a
practitioner to be able to recreate its predictions.

In contrast to model-based interpretability, one may opt to use an
unintepretable model (e.g. deep neural networks) to assign samples
to clusters and apply post hoc methods to explain clustering deci-
sions. Although useful in many cases, post hoc approaches face a key
problem in practice, where users often have to perform analysis on
multiple post hoc explanations to identify which method they should
trust [21]. Furthermore, arbitrary post hoc explanations can often be
constructed for a given model to obfuscate true biases in the model-
ing procedure, reducing the trustworthiness of the approach [57].

2.3 Existing Approaches

The most prevalent approach to model-based interpretable cluster-
ing involves using unsupervised decision trees to partition the space
[5, 15, 16, 56, 14, 18]. The most relevant approaches to our work are
the soft clustering tree (SCT) [14] and the tree-alternating optimiza-
tion (TAO) clustering [18]. Both approaches utilize a decision tree
to map points to clusters and support OSM with seperate represen-
tations. The SCT utilizes an axis-aligned soft-decision tree trained
through continuous optimization methods (including mini-batch gra-
dient descent) [14], while TAO iteratively refines a tree that approxi-
mates a K-means clustering via alternating optimization [18].

Despite their interpretable nature, tree-based approaches face a
substantial interpretability-performance trade-off as complex prob-
lems require large trees to represent cluster boundaries adequately,
reducing the sparsity of these approaches. Growing the number of
leaves in a tree has been shown to significantly increase the diffi-
culty users face when trying to understand the decision pathways of
the model [40]. Furthermore, increasing the number of features used
in the decision tree significantly increases the time it takes users to
analyze the tree and understand what features are essential for pre-
dictions [63].

Other interpretable clustering approaches include the construction
of clusters using polytope machines [34] and rectangular rules [13].

Some notable post-hoc approaches include Kauffmann et al. [28]
who explains a neural clustering via layerwise relevance propagation
[4], Lawless and Gunluk [33] who profiles assignments via Polyhe-
dral Descriptions, and Carrizosa et al. [8] who profiles assignments
via prototypical examples. Additionally, Guan et al. [19] proposed to
cluster text using deep embeddings and then performed a post hoc
approximation of the clustering via a logistic regression on a bag-
of-words representation. TELL [46] and IDC [62] both cluster via a
layer in a Neural Network. Similar to post hoc methods, these ap-
proaches do not satisfy our desiderata for model-based interpretabil-
ity (Section 2.2).

3 Generalized Additive Models

In this work, we propose to construct an interpretable cluster map
using a Generalized Additive Model. Given a D-dimensional input
x = {xi}Di=1,x ∈ R

D , univariate shape functions fi corresponding
to the input features xi, bivariate shape functions fij corresponding
to the features xi and xj , and link function g(·) : R

D → R, the
predictions of a GAM and GA2M are defined as follows:

GAM : g(x) = f0 +
D∑
i=1

fi(xi) (1)

GA
2
M : g(x) = f0 +

D∑
i=1

(
fi(xi) +

D∑
j>i

fij(xi, xj)

)
(2)

In recent years, many powerful GAM models have been proposed,
the primary difference between them being how shape functions are
constructed. Some notable examples include the Explainable Boost-
ing Machine [37], which uses tree ensembles trained using a cyclical
gradient boosting algorithm, and NODE-GAM [10], which leverages
layers of ensemble oblivious neural decision trees.

Additionally, many works have proposed representing the shape
function of the GAMs through MLPs such as Neural Additive Mod-
els (NAM) [1], which trains an MLP for each feature, and Neural
Basis Models [48] which extend NAM by constraining all features to
utilize a common MLP backbone except for the last layer, which is
unique to each feature.

Interpretability of GAMs GAM and GA2Ms satisfy the model-
based interpretability requirements previously posed. GAMs force
the relationship between the features in the model to be additive, re-
sulting in a modular model [43]. This modularity allows the con-
tribution of each feature or interaction to the prediction to be visu-
alized as a graph or heatmap, allowing humans to simulate how a
GAM works by querying the different graphs and adding the results
together [38, 9]. This enables decision makers in high-stakes fields
such as healthcare to easily understand the explanations provided

N. Upadhya and E. Cohen / NeurCAM: Interpretable Neural Clustering via Additive Models3080

by GAM and GA2M shape functions [23, 1]. Technical stakehold-
ers have also shown a preference for GAMs over post hoc explana-
tions such as SHAP values [39], as they reduce the cognitive load
needed to grasp a model’s decision mechanisms, enhancing stake-
holders’ confidence in the deployed ML system [29]. Furthermore,
stakeholders have shown a preference for additive explanations over
tree explanations when both utilize a similar number of features [63].
To further ensure that the explanations provided by NeurCAM are
sparse, we propose selection gates that allow users to enforce a car-
dinality constraint on the number of features and interactions used.

4 NeurCAM

In this work, we consider the following problem: Let X = {xn}Nn=1

be a set of N data points with xn being a D-dimensional feature
vector xn ∈ R

D . We aim to decide fuzzy cluster assignments
wn,k ∈ [0, 1],

∑
k wn,k = 1.0 for each point xn and cluster

k ∈ 1, 2, . . . ,K. Our approach to this problem involves utilizing
a Neural GAM to obtain the assignments (Section 4.1) and train
this GAM through a combination of a fuzzy clustering loss and self-
supervised regularization (Section 4.2).

4.1 Model Architecture

In the following section, we describe how we obtain the cluster as-
signments via an interpretable neural GAM. For succinctness, we
drop the sample index n in this section.

4.1.1 Neural Basis Model

For our additive model, we leverage a Neural Basis Model (NBM)
[48] which we describe here for thoroughness.

The NBM operates by projecting each feature xi, i = 1, 2, . . . , D
onto B basis functions that are shared between all features. The pro-
jection function b(·) : R → R

B is represented by an MLP backbone
with a single input and B outputs. The projection of each feature is
then reconstructed into the final shape function for each cluster via a
linear combination, with each feature having its own set of weights
for each cluster λi,k ∈ R

B . More concretely, the prediction from a
single feature xi is as follows:

b(xi) = MLP(xi) (3)

fi,k(x) = λi,k · b(xi) (4)

The resultant logits assigned to each cluster hk(x), k =
1, 2, . . . ,K is the sum of the contributions from each feature:

gk(x) =
D∑
i

fi,k(x) (5)

These logits are transformed via the softmax operation to obtain the
final fuzzy assignment weights:

wk(xn) =
exp (gk(x))∑K

k′=1 exp (gk′(x))
(6)

Pairwise interaction can be represented in a similar manner using an
MLP with two inputs instead of one.

4.1.2 Feature Selection Gates

A common problem across MLP-based GAMs and GA2Ms is the
variable explosion problem. As the dimensionality of the dataset in-
creases, the number of single-feature and pairwise shape functions
rapidly increases as well. This is especially true for GA2Ms as the
number of pairwise interactions grows quadratically with the dimen-
sionality of the dataset. Previous MLP-based approaches have no in-
herent mechanisms to limit pairwise interactions and instead utilize
heuristics based on residual analysis of a fitted GAM to select inter-
actions to use in the GA2M [1, 48]. However, this approach does not
translate to the unsupervised setting as there are no residuals due to
the absence of true labels.

Instead, we propose to learn what features and interactions are in
our model through feature selection gates. More concretely, Neur-
CAM learns C independent shape functions. The feature used by
shape function c ∈ 1, . . . , C is selected via a selection function
sc(x) : R

D → R. A common way to represent such a function is the
product of the feature vector and a one-hot selection vector Fc where
a variable is selected if its corresponding selection logit F̃c ∈ R

D is
the largest:

sc(x) = Fc · x (7)

Fc,i =

{
1 i = argmax(F̃c)

0 else
(8)

To train this selection as part of our network, we temporarily relax the
one-hot vector to be represented by entmaxα [47], a sparse version
of softmax that allows elements to become exactly zero if the logits
are sufficiently small:

sc(x) = entmaxα(F̃c/T) · x (9)

Here, T > 0 is a temperature annealing parameter that controls the
sparsity of the distributions obtained from the entmaxα operations,
with smaller values of T resulting in sparser distributions. As T → 0,
the resultant distribution will become one-hot.

At the start of training, we set T = 1.0, making the gate a
weighted mixture of features. After a number of warm-up training
epochs, we anneal T by a factor of ε ∈ (0, 1) until entmaxα(F̃c/T) ·
x = xargmax(F̃c)

, allowing sc(·) to serve as a proper feature selec-
tion gate and making NeurCAM a valid GAM once again. The factor
ε is a hyperparameter that controls how gradual the tempering is,
with higher epsilon values resulting in a slower annealing process
and lower values resulting in a faster annealing.

We modify the NBM to include these selection gates to obtain
the additive model architecture used by NeurCAM whos prediction
mechanisms are as follows:

b(x) = MLP(sc(x)) (10)

fc,k(x) = λc,k · b(x) (11)

gk(x) =
C∑

c=1

fc,k(x) (12)

A softmax is then applied to g1(x), g2(x) . . . , gk(x) to obtain the
soft cluster assignments w(x) like in Equation (6).

The number of shape functions serves as an upper bound for the
number of features utilized by the model, and the features used in the
model’s explanations can be limited by setting C < D. The choice
of C is problem and stakeholder specific.

While we apply this mechanism on an NBM, these selection gates
can be applied to other Neural GAM models such as the Neural Ad-
ditive Model [1].

N. Upadhya and E. Cohen / NeurCAM: Interpretable Neural Clustering via Additive Models 3081

Figure 1. Our proposed approach. We leverage multiple shape functions that each pick a feature via a selection gate. The final prediction is the sum of the
individual shape function contributions. The black shape functions represents NeurCAM and the additional blue pairwise shape functions represent

Neur2CAM.

Extending to Neur2CAM: To extend NeurCAM to allow pair-
wise interactions, we introduce P additional shape functions whose
selection gates allow for two features. More concretely, the pairwise
interaction used by shape function p ∈ C + 1, . . . , C + P is chosen
by selection function s2p(x) : R

D → R
2, defined as:

s2p(x) =

[
entmaxα(F̃p,0/T2)

entmaxα(F̃p,1/T2)

]
x (13)

Like the single-order case, the pairwise temperature annealing pa-
rameter T2 is set to 1.0 during the warmup phase and is annealed
to near zero afterwards. All pairwise shape function share a com-
mon two-input MLP backbone that projects a pair of features into B
outputs, with each shape function having its own set of reconstruc-
tion weights used to build the final shape functions. In theory, our
approach can extend NeurCAM to interactions of any order, but we
only explore up to pairwise to maintain a high degree of interpretabil-
ity.

4.2 Training NeurCAM

In this section we describe the loss function and procedure used to
train NeurCAM.

4.2.1 Fuzzy Clustering Loss

We employ a loss function inspired by Fuzzy C-Means [6]:

LClust =
N∑

n=1

K∑
k=1

wk(xn)
m||xn − zk||2 (14)

Here m ≥ 1.0 is a hyperparameter controlling the fuzziness of the
clustering. Our loss departs from Fuzzy C-Means in two main ways.
In constrast to Fuzzy C-Means where the cluster assignment weights
are free variables, our assignment weights are parameterized by an
interpretable GAM (Equation (6)).

Additionally, instead of the centroids of the clusters being calcu-
lated by the clustering assignments [6], we opt to make the centroids
zk ∈ R

D, k = 1, . . . ,K free variables to aid in the optimization of
our network.

4.2.2 Disentangling Representations

The mapping constructed by NeurCAM is agnostic to how the dis-
tance between samples and the cluster centroids are defined. As such,
we decouple the representations of the data in our loss function into
the interpretable representation x and the transformed representation
x̃ ∈ R

R.
NeurCAM maps a sample to a given cluster using the interpretable

feature set. However, the distance from each sample to the centroids
of the clusters will be calculated using the transformed representa-
tion:

LClust =
N∑

n=1

K∑
k=1

wk(xn)
m||x̃n − z̃k||2 (15)

It is important to note that the learned centroids z̃k ∈ R
R are in the

same space as the transformed representation x̃.

4.2.3 Self-Supervised Regularization

Empirically, we observe that while our model is able to achieve a
high-quality clustering at the end of the warm-up period, the selec-

N. Upadhya and E. Cohen / NeurCAM: Interpretable Neural Clustering via Additive Models3082

tion gate annealing process often significantly degrades the ability of
our network to directly optimize the clustering loss (Equation (15))
and can lead to poor local optima. To mitigate this degradation, we
propose to take advantage of the clustering discovered at the end of
the warm-up period, denoted by w∗(xn) ∈ R

K , to guide the opti-
mization process after the annealing process starts.

When we start annealing the selection gates’ temperatures T and
T2 toward zero, we add a regularization term that penalizes the KL-
divergence between the current mapping w(xn) and the mapping
w∗(xn) discovered at the end of the warm-up phase.

LKL =
N∑

n=1

K∑
k=1

w∗
k(xn) log

w∗
k(xn)

wk(xn)
(16)

The final objective utilized after the warmup phase is as follows:

minimize LClust + γLKL (17)

Where γ is a parameter that controls the weight of the KL term.
The complete pseudocode of NeurCAM’s training procedure can be
found in Algorithm (1).

Algorithm 1: NeurCAM Training Pseudocode

Input: X, X̃,K, γ, α, ε, Ewarmup, Etotal

z̃ ← InitializeCentroids(X̃)
θGAM ← RandomInitModelParams()
θ ← z̃ ∪ θGAM

T ← 1.0
for E = 1, 2, . . . , Etotal do

if E = Ewarmup then
θ∗ ← θ

end

for (Xbatch, X̃batch) ∈ (X, X̃) do
wbatch ← ForwardPass(Xbatch, θ, T)
if E > Ewarmup then

w∗
batch ← ForwardPass(Xbatch, θ

∗, 1.0)
LKL ← KL(w∗

batch||wbatch)
else

LKL ← 0
end

LClust ← CalculateClustLoss(X̃batch,wbatch, z̃)
L ← Lclust + γLKL

θ ← θ − α∇L
end

if ∃c sc(x) 	= xargmax(F̃c)
then

T ← εT
end

end

5 Experiments and Evaluation

In this section, we highlight the benefits of our approach in various
real-world datasets. We first demonstrate our ability to generate high-
quality clusters using disentangled representations on tabular data
sets. We later extend our approach to text clustering. In addition, we
validate our training scheme via an ablation study and provide an
analysis of the interpretability of NeurCAM.

5.1 Experimental Details

We run experiments with two variants of our approach. Neur-
CAM (NCAM) includes only single-feature shape functions, and
Neur2CAM (N2CAM), which extends NeurCAM to include pair-
wise interaction.

For our interpretable benchmarks, we consider approaches that
provide model-based interpretability and are capable of disentan-
gling representations, namely the recently proposed Soft Clustering
Trees (SCT) [14] and the axis-aligned TAO Clustering Tree (TAO)
[18]. For both of these tree-based approaches, we consider two dif-
ferent depths. We first consider a highly interpretable shallow tree
with a depth of five (SCT/TAO-5). This choice also guarantees that
the number of leaves is greater than the number of clusters across
all datasets. For a more expressive, but less sparse, baseline, we also
consider trees with a depth of seven (SCT/TAO-7). As a representa-
tive of black-box clustering methods, we compare with Mini-Batch
K -Means (mKMC) [54], a scalable variant of K-Means.

Evaluation Metrics As all of our utilized datasets come with
known labels, we assess the clustering results using three exter-
nal evaluation measures: Adjusted Rand Index (ARI), Normalized
Mutual Information (NMI), and Unsupervised Clustering Accuracy
(ACC). We also report the Inertia (Iner.) normalized by the number
of datapoints in the dataset. For our fuzzy models (NeurCAM and
SCT), we calculate all metrics using the hard clustering decision ob-
tained by selecting the cluster with the highest fuzzy weight for each
data point at inference time.

Rand index (RI) [49] measures agreements between two partitions
of the same dataset P1 and P2 with each partition representing

(
n
2

)
decisions over all pairs, assigning them to the same or different clus-
ters and is defined as follows:

RI(P1, P2) =
a+ b(

n
2

) (18)

Where a is the number of pairs assigned to the same cluster, and b
is the number of pairs assigned to different clusters. ARI [24] is a
correction for RI based on its expected value:

ARI =
RI − E(RI)

max(RI)− E(RI)
(19)

An ARI score of zero indicates that the cluster assignment is no bet-
ter than a random assignment, while a score of 1 indicates a perfect
match between the two partitions.

Normalized Mutual Information measures the statistical informa-
tion shared between distributions [59], normalized by the average
entropy of the two distributions. This metric is defined as follows:

NMI(P1, P2) =
MI(P1, P2)

mean(H(P1), H(P2))
(20)

Where H(·) is the entropy of a given distribution and MI(P1, P2) is
the mutual information between P1 and P2.

Unsupervised clustering accuracy [68] measures the best agree-
ment between the cluster label cn and the ground-truth ln.

ACC = max
map∈M

1

N

N∑
n=1

�{ln = map(cn)} (21)

M is the set of all possible one-to-one mappings from clusters to
ground-truth labels.

N. Upadhya and E. Cohen / NeurCAM: Interpretable Neural Clustering via Additive Models 3083

Inertia is defined as the sum of the squared distances from the
representation of the datapoints and the centroids of the cluster they
are assigned to:

Inertia =
N∑

n=1

K∑
k=1

wn,k||x̃n − zk|| (22)

wn,k ∈ {0, 1},
K∑

k=1

wn,k = 1 ∀n = 1, 2, . . . , N (23)

Training and Implementation Details All models and bench-
marks are implemented in Python. The SCT and NeurCAM are im-
plemented in PyTorch [44] and we utilize the Mini-Batch K-Means
implementation found in the Scikit-Learn package [45]. For TAO,
the implementation from the original paper is not publicly available
and we implemented the approach following the details outlined by
Gabidolla and Carreira-Perpiñán [18].

NeurCAM is trained using the Adam [31] optimizer with plateau
learning rate decay. For Neur2CAM, the pairwise gate temperature
parameter T2 is fully annealed before T starts its annealing proce-
dure. To initialize the centroids z̃, we utilize centroids obtained from
Mini-Batch K-Means clustering. Training details and hyperparam-
eters for NeurCAM and the other approaches can be found in the
supplementary materials [64].

As our model and all benchmarks may converge to a locally opti-
mum solution, we perform five runs with different random seeds and
select the run with the lowest Inertia value for the hard clustering.

Extracting Shape Graphs: To extract the final shape graphs for
each feature and interaction in NeurCAM, we query the predictions
from each inidividual shape function and then combine the shape
functions that have selected the same feature (or interaction) to obtain
the final shape graphs:

fi,k(x) =
C∑

c=1

�i(Fc)fc,k(x) (24)

fi,j,k(x) =

C+P∑
p=C+1

�i,j(Fp,0,Fp,1)fp,k(x) (25)

Here �i(·) is an indicator function on whether feature i is selected
and �i,j(·, ·) is an indicator function on whether both features i and
j were selected in the selection vectors (regardless of the order). Fol-
lowing Agarwal et al. [1] and Radenovic et al. [48], we set the aver-
age cluster activation (logits) of each feature’s shape function to zero
by subtracting the mean activation. For the pairwise shape graphs of
Neur2CAM, we adopt GA2M purification to push interaction effects
into main effects if possible [35]. To derive feature-importance from
our model, we follow Lou et al. [37] and take the average absolute
area under the shape graph.

5.2 Clustering Tabular Data

We demonstrate the ability of our model to create high-quality clus-
ter assignments on tabular tasks by testing it on six datasets from
the UCI repository [30]: Adult, Avila, Gas Drift, Letters, Pendigits,
and Shuttle. All datasets were standardized by removing the mean
and scaling to unit variance. Information about these datasets can be
found in our supplementary materials [64].

In this set of experiments we set the number of single-feature
shape functionss equal to the number of features. For Neur2CAM,
we set the number of pairwise shape functions equal to the number

of single-feature shape functions to maintain a high degree of inter-
pretability. We set m = 1.05 for our loss function (Equation (15)).

Representations Utilized: For our interpretable representation x,
we utilize the original feature space provided by the datasets. For the
representation in our loss function x̃, we consider two different deep
transformations:

• Denoising AutoEncoder (DAE): We cluster on the embeddings
from a pre-trained DAE [65] with dropout corruption and a bottle-
neck of size 8.

• SpectralNet (Spectral): We cluster on embeddings from a Spec-
tralNet [55], a deep-learning based approximation of Spectral
Clustering [66]. The embedding dimension is equal to the num-
ber of clusters in the dataset.

NeurCAM, the SCT, and TAO make clustering decisions using the
original, interpretable feature space, while Mini-Batch K-Means di-
rectly clusters in the transformed space.

5.2.1 Results

Table 1 provides a summary of the comparison between our approach
and our baselines on the tabular data sets. A detailed breakdown of
the results by dataset can be found in the supplementary materials
[64].

We observe that our approaches on SpectralNet embeddings con-
sistently outperforms baselines in average rank on external metrics
across all datasets. This trend remains consistent when looking at the
average value across data sets, as well.

When considering Inertia for SpectralNet embeddings, we achieve
the best average value and average rank across the interpretable
methods. Although TAO-7 is able to obtain a slightly lower Inertia
value on DAE embeddings, we still achieve a lower average rank,
indicating that our approaches result in lower Inertia more often.

5.3 Clustering Text Data

Our approach can be utilized for any task where a human-
understandable tabular representation can be extracted. We demon-
strate this ability by extending our approach to perform text cluster-
ing on 4 text datasets: AG News[70], DBPedia [3], 20 Newsgroups
[32], and Yahoo Answers [70]. For AG News, DBPedia, and Yahoo,
we follow the approach taken in the previous literature [60, 67] and
sample 1,000 points from each class.

To create our interpretable representation, we remove the punc-
tuation, lowercase, and tokenize all datapoints. We then lemmatize
all tokens using the WordNet [42] lemmatizer available in the Nat-
ural Language Toolkit (NLTK) [7] and remove English stopwords,
corpus-specific stopwords that appear in more than 99% of the data-
points, and rare words that appear in less than 1% of the documents.
Finally, we then calculate term-frequency in each datapoint and nor-
malize the representation so that the L2 norm of the resultant vector
is equal to 1.0.

For the representation in our loss function (Equation (15)), we
leverage embeddings from the MPNet pretrained transformer [58]
available in the Sentence Transformers package [50]. This model has
a representation size of 768, a maximum sequence length of 384, and
uses mean pooling to construct its embedding.

To retain model sparsity, we opt to only use 128 single feature
shape functions and 128 pairwise shape functions (when applicable).
We set m = 1.025 for our loss function (Equation (15)).1

1 On the text datasets, we empirically observed that m = 1.05 resulted in

N. Upadhya and E. Cohen / NeurCAM: Interpretable Neural Clustering via Additive Models3084

Table 1. Summarized results from our tabular clustering experiments. The best overall results are highlighted in bold, while the best interpretable results are
underlined. The dashed line separates interpretable and non-interpretable approaches.

ARI ↑ NMI ↑ ACC ↑ Iner. ↓
AE Spectral AE Spectral AE Spectral AE Spectral

Average Scores

NCAM 0.192 0.261 0.303 0.385 0.524 0.561 2.509 1.995
N2CAM 0.190 0.272 0.295 0.394 0.517 0.568 2.399 1.994
TAO-5 0.185 0.240 0.287 0.347 0.521 0.515 2.960 4.181
TAO-7 0.189 0.257 0.291 0.371 0.526 0.518 2.315 2.517
SCT-5 0.159 0.190 0.276 0.314 0.452 0.479 3.552 5.460
SCT-7 0.157 0.198 0.267 0.315 0.469 0.476 3.416 4.443
mKMC 0.211 0.250 0.301 0.380 0.512 0.520 2.682 1.579

Average Rank

NCAM 9.50 4.17 8.17 3.33 7.00 4.67 2.83 3.17
N2CAM 8.83 3.00 7.83 3.00 7.67 3.50 2.67 3.50
TAO-5 9.67 6.50 9.50 5.83 6.83 7.83 4.67 4.50
TAO-7 9.50 5.67 9.50 4.33 7.00 7.00 3.00 3.17
SCT-5 9.83 6.00 10.83 6.33 9.83 9.50 6.50 6.50
SCT-7 11.33 8.50 12.00 7.33 10.17 9.67 5.83 5.33
mKMC 7.00 4.00 8.17 3.33 7.33 6.00 2.33 1.67

Table 2. Summarized results from our text clustering experiments. The
best overall results are highlighted in bold, while the best interpretable

results are underlined. The dashed line separates interpretable and
non-interpretable approaches.

ARI ↑ NMI ↑ ACC ↑ Iner. ↓

Average Values

NCAM 0.359 0.463 0.584 696.717
N2CAM 0.455 0.546 0.625 686.311
TAO-5 0.052 0.236 0.286 737.509
TAO-7 0.081 0.272 0.346 730.358
SCT-5 0.127 0.233 0.333 738.614
SCT-7 0.134 0.224 0.320 737.754
mKMC 0.491 0.570 0.659 674.071

Average Rank

NCAM 3.00 3.00 2.75 3.0
N2CAM 1.75 1.50 2.00 2.0
TAO-5 6.25 6.00 6.00 6.0
TAO-7 5.25 4.75 4.75 4.5
SCT-5 5.50 5.00 5.50 6.0
SCT-7 5.00 6.25 5.75 5.5
mKMC 1.25 1.50 1.25 1.0

5.3.1 Results

Table 2 provides a summary of the comparison between our ap-
proaches and our baselines on the text datasets. A detailed breakdown
of the results by dataset can be found in the supplementary materials
[64].

We observe that our approaches significantly outperform the in-
terpretable baselines. Neur2CAM and NeurCAM obtain the first and
second place, respectively, when considering the interpretable mod-
els across both external and internal metrics in both average value
and average rank. More concretely, NeurCAM has a 167.9% higher
ARI than the SCT of depth seven and a 4.6% lower Inertia than TAO
with depth seven. The introduction of pairwise interactions makes
this gap even more drastic, with Neur2CAM having both a higher av-
erage ARI (26. 6% higher) and a lower average Inertia (1.5% lower)
than NeurCAM.

As expected, given the restrictions we imposed on our feature
space, our interpretable approaches do not outperform the black-
box model. However, despite significantly limiting the number of
terms and interactions used,2 we were able to obtain more than 92%

degenerate solutions, therefore a smaller m value was used.
2 We use a maximum of 128 interactions out more than 50,000 possible.

of the performance of the black-box model (Mini-Batch K-Means)
across all external evaluation metrics. More specifically, Neur2CAM
achieves an ARI equal to 92.7% of the ARI, 95. 9% of the NMI and
94. 8% of the ACC achieved by Mini-Batch K-Means. Furthermore,
Neur2CAM achieves an average Inertia value within 1.8% of Mini-
Batch K-Means.

5.4 Ablation Analysis

Table 3. Results of our ablation analysis. Full is our approach with both
terms in the loss function. No CL denotes ablating the clustering loss term

and No KL denotes ablating the KL-Divergence term.

NeurCAM Neur2CAM
Loss Iner. Loss Iner.

Average
Full 83.454 696.717 82.646 686.311

No CL 84.254 698.432 83.012 686.824
No KL 83.568 702.358 83.031 691.754

To demonstrate the benefit of the loss terms used in the second
phase of our training, we introduce two ablations of NeurCAM. The
first ablation removes the clustering loss (Equation (15)) in the sec-
ond phase of training, making NeurCAM to optimize only the KL di-
vergence between NeurCAM and its relaxation. The second ablation
keeps the clustering loss term, but instead ablates the KL-Divergence
loss (Equation (16)) so that NeurCAM only optimizes the cluster-
ing loss throughout its training. We perform this analysis on our text
datasets and report both the loss (Equation (15)) and the Inertia of the
run that achieves the minimum Inertia across five seeds. We observe
that including both terms in our loss function consistently results in
lower values across both metrics.

5.5 Interpretability of NeurCAM

In this section, we highlight the interpretability of NeurCAM and
connect it back to the model-based interpretability desiderata pre-
sented in Section 2.2.

5.5.1 Controllable Sparsity

NeurCAM allows users to explicitly control the number of features
and interactions used to construct the clusters through our selection

N. Upadhya and E. Cohen / NeurCAM: Interpretable Neural Clustering via Additive Models 3085

Figure 2. Cost Ratio of Neur2CAM compared to MKMC as more pairwise
shape functions are added.

gate mechanism (Equations (9) and (13)). In many cases, users can
significantly limit the number of shape functions used, improving
the model sparsity while still generating high-quality clusters. To
demonstrate this capability, we ablate the number of selection gates
utilized. We report the ratio between the Inertia of Neur2CAM (min-
imum across five random seeds) and the Inertia of Mini-Batch K-
Means (also across five random seeds) and plot the cost ratio as we
vary the number of pairwise shape functions. To isolate the impact
of using interactions, we set the number of single feature shape func-
tions to zero for this experiment. In Figure 2, we observe that we
are able to achieve a loss value comparable to Mini-Batch K-Means
with only 4 shape functions, or at most 4 pairwise interactions, when
clustering on both the Pendigits and Letters dataset.

5.5.2 Modularity and Simulability

Figure 3. Shape Graphs for "Microsoft" learned when clustering the AG
News Dataset

The learned shape functions for each feature and interaction in
NeurCAM are modular and can be independently analyzed, allowing
stakeholders to understand the impact individual features have on the
end prediction as well as simulate predictions by querying the differ-
ent shape functions. As an example, Figure 3 we displays the shape
function learned by NeurCAM when clustering the AG News Text

Dataset for the term “Microsoft”. When examining this shape graph,
we can see that when Microsoft is present in a sample, the network al-
locates more weight to Cluster 4 and reduces the weight to the other
clusters. When examining the alignment between the clusters and
the ground-truth labels, we observed that cluster 4 consists primar-
ily of news titles related to technology, indicating that the presence
of Microsoft in a sample results in NeurCAM mapping the sample to
the “technology” cluster. A full example of NeurCAM’s explanations
can be found in our supplementary material [64].

6 Conclusion

In this work, we present NeurCAM, the first approach to interpretable
clustering that uses neural GAMs. Our experiments showcase our
ability to produce high-quality clusters on tabular data that are com-
parable to black-box approaches while using a limited number of fea-
tures and interactions chosen by our proposed selection gate mecha-
nism. We also demonstrate NeurCAM’s ability to utilize deep repre-
sentations of the data while still providing explanations in a human
interpretable feature space on both tabular and text datasets.

NeurCAM is a powerful tool for large-scale clustering tasks for
knowledge discovery and can be used as a foundation for further re-
search on interpretable clustering via Generalized Additive Models.
Potential extensions of our work involve the joint performance of
clustering and representation learning by integrating approaches such
as DEC / IEC [68, 20] or VADE [26]. Furthermore, other possible
directions include designing specialized GAMs to focus on learned
interpretable features from images, such as prototypes [12], or time
series, such as shapelets [36].

References

[1] R. Agarwal, L. Melnick, N. Frosst, X. Zhang, B. Lengerich, R. Caru-
ana, and G. E. Hinton. Neural additive models: Interpretable machine
learning with neural nets. NeurIPS, pages 4699–4711, 2021.

[2] A. Aouad, A. N. Elmachtoub, K. J. Ferreira, and R. McNellis. Market
segmentation trees. M&SOM, 25(2):648–667, 2023.

[3] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives.
Dbpedia: A nucleus for a web of open data. In ISWC, pages 722–735,
2007.

[4] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and
W. Samek. On pixel-wise explanations for non-linear classifier deci-
sions by layer-wise relevance propagation. PloS one, 10(7), 2015.

[5] D. Bertsimas, A. Orfanoudaki, and H. Wiberg. Interpretable clustering:
an optimization approach. Machine Learning, 110:89–138, 2021.

[6] J. C. Bezdek, R. Ehrlich, and W. Full. Fcm: The fuzzy c-means cluster-
ing algorithm. Computers & geosciences, 10(2-3):191–203, 1984.

[7] S. Bird, E. Klein, and E. Loper. Natural language processing with
Python: analyzing text with the natural language toolkit. " O’Reilly
Media, Inc.", 2009.

[8] E. Carrizosa, K. Kurishchenko, A. Marín, and D. R. Morales. Interpret-
ing clusters via prototype optimization. Omega, 107:102543, 2022.

[9] C.-H. Chang, S. Tan, B. Lengerich, A. Goldenberg, and R. Caruana.
How interpretable and trustworthy are gams? In KDD, pages 95–105,
2021.

[10] C.-H. Chang, R. Caruana, and A. Goldenberg. Node-gam: Neural gen-
eralized additive model for interpretable deep learning. In ICLR, 2022.

[11] M.-C. Chang, P. Bus, and G. Schmitt. Feature extraction and k-means
clustering approach to explore important features of urban identity. In
ICMLA, pages 1139–1144. IEEE, 2017.

[12] C. Chen, O. Li, D. Tao, A. Barnett, C. Rudin, and J. K. Su. This looks
like that: deep learning for interpretable image recognition. In NeurIPS,
2019.

[13] J. Chen, Y. Chang, B. Hobbs, P. Castaldi, M. Cho, E. Silverman, and
J. Dy. Interpretable clustering via discriminative rectangle mixture
model. In IEEE ICDM, pages 823–828, 2016.

[14] E. Cohen. Interpretable clustering via soft clustering trees. In CPAIOR,
pages 281–298, 2023.

N. Upadhya and E. Cohen / NeurCAM: Interpretable Neural Clustering via Additive Models3086

[15] R. Fraiman, B. Ghattas, and M. Svarc. Interpretable clustering using
unsupervised binary trees. ADAC, 7:125–145, 2013.

[16] N. Frost, M. Moshkovitz, and C. Rashtchian. Exkmc: Expanding ex-
plainable k-means clustering. arXiv preprint arXiv:2006.02399, 2020.

[17] R. Fu, W. Li, J. Chen, and M. Han. Recognizing single-trial motor im-
agery eeg based on interpretable clustering method. Biomedical Signal
Processing and Control, 63:102171, 2021.

[18] M. Gabidolla and M. Á. Carreira-Perpiñán. Optimal interpretable clus-
tering using oblique decision trees. In KDD, pages 400–410, 2022.

[19] R. Guan, H. Zhang, Y. Liang, F. Giunchiglia, L. Huang, and X. Feng.
Deep feature-based text clustering and its explanation. IEEE TKDE, 34
(8):3669–3680, 2020.

[20] X. Guo, L. Gao, X. Liu, and J. Yin. Improved deep embedded clustering
with local structure preservation. In IJCAI, pages 1753–1759, 2017.

[21] T. Han, S. Srinivas, and H. Lakkaraju. Which explanation should i
choose? a function approximation perspective to characterizing post hoc
explanations. In NeurIPS, pages 5256–5268, 2022.

[22] T. J. Hastie. Generalized additive models. In Statistical models in S,
pages 249–307. Routledge, 2017.

[23] S. Hegselmann, T. Volkert, H. Ohlenburg, A. Gottschalk, M. Dugas, and
C. Ertmer. An evaluation of the doctor-interpretability of generalized
additive models with interactions. In MLHC, pages 46–79, 2020.

[24] L. Hubert and P. Arabie. Comparing partitions. Journal of classification,
2:193–218, 1985.

[25] S. Ibrahim, G. Afriat, K. Behdin, and R. Mazumder. Grand-
slamin’interpretable additive modeling with structural constraints. Ad-
vances in Neural Information Processing Systems, 36, 2024.

[26] Z. Jiang, Y. Zheng, H. Tan, B. Tang, and H. Zhou. Variational deep
embedding: an unsupervised and generative approach to clustering. In
IJCAI, pages 1965–1972, 2017.

[27] T. Karatekin, S. Sancak, G. Celik, S. Topcuoglu, G. Karatekin, P. Kirci,
and A. Okatan. Interpretable machine learning in healthcare through
generalized additive model with pairwise interactions (ga2m): Predict-
ing severe retinopathy of prematurity. In Deep Learning and Machine
Learning in Emerging Applications, pages 61–66, 2019.

[28] J. Kauffmann, M. Esders, L. Ruff, G. Montavon, W. Samek, and K.-R.
Müller. From clustering to cluster explanations via neural networks.
IEEE TNNLS, 2022.

[29] H. Kaur, H. Nori, S. Jenkins, R. Caruana, H. Wallach, and J. Wort-
man Vaughan. Interpreting interpretability: understanding data scien-
tists’ use of interpretability tools for machine learning. In CHI, pages
1–14, 2020.

[30] M. Kelly, R. Longjohn, and K. Nottingham. The uci machine learning
repository. https://archive.ics.uci.edu, 2017.

[31] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[32] K. Lang. Newsweeder: Learning to filter netnews. In ICML, pages
331–339, 1995.

[33] C. Lawless and O. Gunluk. Cluster explanation via polyhedral descrip-
tions. In ICML, pages 18652–18666, 2023.

[34] C. Lawless, J. Kalagnanam, L. M. Nguyen, D. Phan, and C. Reddy.
Interpretable clustering via multi-polytope machines. In AAAI, pages
7309–7316, 2022.

[35] B. Lengerich, S. Tan, C.-H. Chang, G. Hooker, and R. Caruana. Purify-
ing interaction effects with the functional anova: An efficient algorithm
for recovering identifiable additive models. In AISTATS, pages 2402–
2412, 2020.

[36] J. Lines, L. M. Davis, J. Hills, and A. Bagnall. A shapelet transform for
time series classification. In KDD, pages 289–297, 2012.

[37] Y. Lou, R. Caruana, J. Gehrke, and G. Hooker. Accurate intelligible
models with pairwise interactions. In KDD, pages 623–631, 2013.

[38] Y. Lou, R. Caruana, J. Gehrke, and G. Hooker. Accurate intelligible
models with pairwise interactions. In KDD, pages 623–631, 2013.

[39] S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model
predictions. NeurIPS, 2017.

[40] M. Luštrek, M. Gams, S. Martinčić-Ipšić, et al. What makes classi-
fication trees comprehensible? Expert Systems with Applications, 62:
333–346, 2016.

[41] L. Manduchi, M. Hüser, M. Faltys, J. Vogt, G. Rätsch, and V. Fortuin.
T-dpsom: An interpretable clustering method for unsupervised learning
of patient health states. In CHIL, page 236–245, 2021.

[42] G. A. Miller. Wordnet: a lexical database for english. Communications
of the ACM, 38(11):39–41, 1995.

[43] W. J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, and B. Yu. Def-
initions, methods, and applications in interpretable machine learning.
National Academy of Sciences, 116(44):22071–22080, 2019.

[44] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,

E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In NeurIPS, pages 8024–8035,
2019.

[45] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay. Scikit-learn: Machine learning in Python. JMLR, 12:2825–2830,
2011.

[46] X. Peng, Y. Li, I. W. Tsang, H. Zhu, J. Lv, and J. T. Zhou. Xai beyond
classification: Interpretable neural clustering. JMLR, 23(1):227–254,
2022.

[47] B. Peters, V. Niculae, and A. F. Martins. Sparse sequence-to-sequence
models. In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 1504–1519, 2019.

[48] F. Radenovic, A. Dubey, and D. Mahajan. Neural basis models for in-
terpretability. In NeurIPS, pages 8414–8426, 2022.

[49] W. M. Rand. Objective criteria for the evaluation of clustering meth-
ods. Journal of the American Statistical association, 66(336):846–850,
1971.

[50] N. Reimers and I. Gurevych. Sentence-bert: Sentence embeddings using
siamese bert-networks. In EMNLP, 11 2019.

[51] C. Rudin. Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead. Nature machine
intelligence, 1(5):206–215, 2019.

[52] C. Rudin, C. Chen, Z. Chen, H. Huang, L. Semenova, and C. Zhong.
Interpretable machine learning: Fundamental principles and 10 grand
challenges. Statistics Surveys, 16, 2022.

[53] A. Sarica, A. Quattrone, and A. Quattrone. Explainable boosting ma-
chine for predicting alzheimer’s disease from mri hippocampal sub-
fields. In BI, pages 341–350, 2021.

[54] D. Sculley. Web-scale k-means clustering. In WWW, pages 1177–1178,
2010.

[55] U. Shaham, K. Stanton, H. Li, B. Nadler, R. Basri, and Y. Kluger. Spec-
tralnet: Spectral clustering using deep neural networks. In ICLR, 2018.

[56] P. Shati, E. Cohen, and S. McIlraith. Optimal decision trees for inter-
pretable clustering with constraints. In IJCAI, pages 2022–2030, 2023.

[57] D. Slack, S. Hilgard, E. Jia, S. Singh, and H. Lakkaraju. Fooling lime
and shap: Adversarial attacks on post hoc explanation methods. In
AIES, pages 180–186, 2020.

[58] K. Song, X. Tan, T. Qin, J. Lu, and T.-Y. Liu. Mpnet: Masked and per-
muted pre-training for language understanding. NeurIPS, pages 16857–
16867, 2020.

[59] A. Strehl and J. Ghosh. Cluster ensembles—a knowledge reuse frame-
work for combining multiple partitions. JMLR, 3(Dec):583–617, 2002.

[60] A. Subakti, H. Murfi, and N. Hariadi. The performance of bert as data
representation of text clustering. Journal of big Data, 9(1):1–21, 2022.

[61] K. Sun, T. Lan, Y. M. Goh, S. Safiena, Y.-H. Huang, B. Lytle, and Y. He.
An interpretable clustering approach to safety climate analysis: Exam-
ining driver group distinctions. Accident Analysis & Prevention, 196:
107420, 2024.

[62] J. Svirsky and O. Lindenbaum. Interpretable deep clustering for tabular
data. In Forty-first ICML, 2024.

[63] S. Tan, G. Hooker, P. Koch, A. Gordo, and R. Caruana. Considerations
when learning additive explanations for black-box models. Machine
Learning, pages 1–27, 2023.

[64] N. Upadhya and E. Cohen. NeurCAM: Interpretable Neural Clustering
via Additive Models. arXiv preprint arXiv:2408.13361, 2024.

[65] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting
and composing robust features with denoising autoencoders. In ICML,
pages 1096–1103, 2008.

[66] U. Von Luxburg. A tutorial on spectral clustering. Statistics and com-
puting, 17:395–416, 2007.

[67] Z. Wang, H. Mi, and A. Ittycheriah. Semi-supervised clustering for
short text via deep representation learning. In CoNLL, 2016.

[68] J. Xie, R. Girshick, and A. Farhadi. Unsupervised deep embedding for
clustering analysis. In ICML, pages 478–487, 2016.

[69] H. Yang, L. Jiao, and Q. Pan. A survey on interpretable clustering.
In 2021 40th Chinese Control Conference (CCC), pages 7384–7388.
IEEE, 2021.

[70] X. Zhang, J. Zhao, and Y. LeCun. Character-level convolutional net-
works for text classification. NeurIPS, 2015.

N. Upadhya and E. Cohen / NeurCAM: Interpretable Neural Clustering via Additive Models 3087

