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Abstract. Federated learning algorithms, such as FedAvg, are neg-
atively affected by data heterogeneity and partial client participation.
To mitigate the latter problem, global variance reduction methods,
like FedVARP, leverage stale model updates for non-participating
clients. These methods are effective under homogeneous client par-
ticipation. Yet, this paper shows that, when some clients participate
much less than others, aggregating updates with different levels of
staleness can detrimentally affect the training process. Motivated by
this observation, we introduce FedStale, a novel algorithm that
updates the global model in each round through a convex combina-
tion of “fresh” updates from participating clients and “stale” updates
from non-participating ones. By adjusting the weight in the con-
vex combination, FedStale interpolates between FedAvg, which
only uses fresh updates, and FedVARP, which treats fresh and stale
updates equally. Our analysis of FedStale convergence yields
novel findings: i) it integrates and extends previous FedAvg and
FedVARP analyses to heterogeneous client participation; ii) it under-
scores how the least participating client influences convergence error;
iii) it provides practical guidelines to best exploit stale updates, show-
ing that their usefulness diminishes as data heterogeneity decreases
and participation heterogeneity increases. Extensive experiments fea-
turing diverse levels of client data and participation heterogeneity not
only confirm these findings but also show that FedStale outper-
forms both FedAvg and FedVARP in many settings.1

1 Introduction

Edge devices generate critical data for training machine learning
models. However, centralizing this data is often impractical due to
substantial communication overhead or simply impossible due to
privacy regulations. Federated Learning (FL) [22, 16] offers a so-
lution. In this paradigm, edge devices—also referred to as clients—
collaborate to train a shared machine learning model. This collabo-
ration, coordinated by a central server, maintains data decentralized,
effectively addressing privacy and communication challenges.

In Federated Averaging (FedAvg) [22] and similar FL algo-
rithms [19, 25, 1, 15], clients perform multiple stochastic gradient
descent (SGD) steps on their local datasets and then transmit their
updated models to the central server. The server aggregates these
client models to form a new global model, which is subsequently
disseminated to the clients for further iterations.

The multiple local updates performed by each client are crucial
for enhancing communication efficiency. However, these updates can
negatively impact the training process, as local client models pro-
gressively diverge towards client-specific local minimizers due to
data heterogeneity [20, 15].

Another significant source of heterogeneity stems from vary-
ing levels of client participation in the training process. This par-
1 The full paper, including supplementary material, is available [28].

ticipation heterogeneity is driven by factors beyond server con-
trol [2, 35, 40], such as diverse hardware specifications (CPU power,
memory), network connectivity (WiFi, 5G), and power availability
(e.g., clients may only participate when charging to prevent battery
drain) [33, 14, 21]. Despite this, much of the prior research assumes
partial yet homogeneous client participation [20, 15, 19, 39, 9, 4,
27, 5], overlooking the impact of such heterogeneity on the con-
vergence of FedAvg-like algorithms. We identify and illustrate two
main problems caused by the heterogeneous client participation.

First, heterogeneous participation risks biasing the global model
in favor of clients that participate more frequently. Intuitively, when
some clients participate more often than others, the global model may
disproportionately reflect the local objectives of these more partici-
pating clients, thereby disadvantaging those who participate less. To
counteract this bias, recent studies [36, 37] propose an unbiased ver-
sion of FedAvg, which scales clients’ model updates inversely with
their participation frequency. By assigning greater weight to less par-
ticipating clients, this approach ensures that the global model fairly
represents all clients.

Second, even if the potential bias is mitigated, partial and hetero-
geneous client participation still exacerbates the variability of the
learning process. The unbiased scaling amplifies variations in the
magnitude of client updates, leading to increased variance in the
learned model and slower convergence. Although a few recent works
focus on global variance reduction [11, 40, 12, 38], they are lim-
ited to scenarios involving homogeneous client participation. Specif-
ically, FedVARP (Federated VAriance Reduction for Partial client
participation) [12] leverages the most recent, albeit potentially stale,
model updates in place of unavailable updates from non-participating
clients. FedVARP has demonstrated, both theoretically and empir-
ically, its capability to effectively lower variance and consistently
outperform FedAvg in settings with partial yet homogeneous client
participation. It is anticipated to perform similarly well even in het-
erogeneous settings [12]. However, when client participation varies
widely, global variance reduction methods, including FedVARP,
must address the challenge of updates of varying staleness—a com-
plex issue that remains unexplored and is the focus of this paper.

This paper specifically addresses the following questions:
1) Is it really true that FedVARP outperforms the unbiased FedAvg
under heterogeneous client participation?
2) Assuming that each method may be preferable in different settings,
can we design an unbiased algorithm that combines fresh and stale
updates and adapts to specific levels of participation heterogeneity?

Addressing these questions is challenging and requires a deeper
understanding of how stale client updates influence convergence.

Our contributions. We thoroughly analyze this problem and
make the following novel contributions:
1) We analytically and experimentally refute the belief that
FedVARP consistently outperforms FedAvg. Our convergence
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analysis reveals that leveraging stale updates can be either benefi-
cial or detrimental, depending on the specific level of client data and
participation heterogeneity.
2) We propose FedStale (Federated Averaging with Stale Up-
dates), a novel FL algorithm that updates the global model through a
convex, unbiased combination of fresh and stale updates, parameter-
ized by a weight β. FedStale spans the spectrum from FedAvg
(β = 0, exclusively fresh updates) to FedVARP (β = 1, equal
weighting of fresh and stale updates). Our analysis provides guide-
lines to tune the parameter β to match specific data and client partic-
ipation heterogeneity scenarios.
3) We evaluate FedAvg, FedVARP, and FedStale across multi-
ple levels of client data and participation heterogeneity. FedStale
outperforms both FedAvg and FedVARP across the vast majority
of heterogeneity levels examined.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the problem and related work. Section 3 introduces
FedStale, our staleness-aware algorithm, through a motivating ex-
ample. Section 4 provides a convergence analysis of FedStale
under heterogeneous client participation. FedStale is extensively
evaluated in Section 5, and Section 6 concludes the paper. Proof out-
lines are included in the Appendix, while detailed proofs are avail-
able in the supplementary material [28].

2 Problem Definition and Background

We consider a FL setting where N clients, each client i equipped
with a dataset Di consisting of ni samples, collaboratively learn the
parametersw ∈ R

d of a global MLmodel (e.g., the weights of a neu-
ral network). Orchestrated by a central server, these clients cooperate
to minimize the global objective:2

min
w∈Rd

F (w) � 1

N

N∑
i=1

⎡⎣Fi(w) � 1

ni

∑
ξi∈Di

f(w, ξi)

⎤⎦ , (1)

where client i has local objective Fi(w) and f(w, ξi) is the loss
function evaluating model performance on data sample ξi ∈ Di.

In this paper, we consider algorithms obeying the general opera-
tion in Algorithm 1, differing in the ComputeUpdate() procedure.
FedAvg iteratively solves Problem (1) while maintaining data de-

centralization. Model training involves T rounds of communication
between server and clients: at the beginning of each round t > 0,
the server sends the current global model, w(t), to a random subset
of participating clients S(t), usually |S(t)| � N . Each client in S(t)

runs multiple (K ≥ 1) iterations of local stochastic gradient descent
(SGD) on its local dataset:

w
(t,k+1)
i = w

(t,k)
i − ηc∇Fi(w

(t,k)
i , ξ

(t,k)
i ) for k = 0, . . . ,K − 1

producing the local model w(t,K)
i , and the sends the model update

Δ
(t)
i = (w(t) − w

(t,K)
i ) to the server. The server aggregates these

client updates into the global update:

Δ
(t)
FedAvg =

1

|S(t)|
∑

i∈S(t)

Δ
(t)
i , (2)

and then applies this update to the previous global model in a manner
similar to a gradient descent step to produce the new global model
w(t+1) = w(t) − ηsΔ

(t)
FedAvg.

2 Objective (1) corresponds to a “per-client fairness” criterion. Another com-
mon choice is to weight each local objective proportionally to the client’s
number of samples (per-sample fairness). We consider objective (1) for the
sake of concreteness, but the analysis in this paper can be immediately ex-
tended to any weighted sum of local objectives.

Algorithm 1: FL algorithm with pluggable global update

1 Input: w(1), K, ηs, ηc ; Output: {w(t) : ∀t}
2 for t = 1, . . . , T do

3 for i ∈ S(t), in parallel do

4 w
(t,0)
i ← w(t)

5 for k = 0, 1 . . . ,K − 1 do

6 w
(t,k+1)
i ← w

(t,k)
i − ηc∇Fi(w

(t,k)
i , ξ

(t,k)
i )

7 Δ
(t)
i ← (w(t) −w

(t,K)
i )

8 Δ(t) ← ComputeUpdate({Δ(t)
i }i∈S(t) , . . . )

9 w(t+1) = w(t) − ηsΔ
(t)

Following standard assumptions [36, 29, 37], we model client par-
ticipation heterogeneity through the participation probability pi:

pi � E
S(t)

[
P(i ∈ S(t))

]
. (3)

When client participation is homogeneous (pi = p, ∀i),
ES(t) [Δ

(t)
FedAvg] = 1

N

∑N
i=1 Δ

(t)
i . Under this condition, Eq. (2) is

then an unbiased estimator of the model update as if all clients were
to participate [20, 9]. This ensures that the final model fairly repre-
sents all clients.

Conversely, under heterogeneous participation, where probabili-
ties {pi} vary among clients, Eq. (2) becomes a biased estimator
of 1

N

∑N
i=1 Δ

(t)
i . This bias in the global update tends to overrep-

resent clients that participate more frequently, disadvantaging those
that participate less. Participation heterogeneity can then lead to ob-
jective inconsistency, causing FedAvg to effectively minimize the
biased objective:

F̃ (w) =
1

N

N∑
i=1

pi∑N
j=1 pj

Fi(w), (4)

which may arbitrarily deviate from the global objective (1).
To effectively minimize objective (1) when client participation is

heterogeneous, recent works [9, 36, 10, 29, 37] have discussed the
need to debias Δ(t)

FedAvg. Specifically, Eq. (2) has been modified into
Eq. (5), resulting in an unbiased version of FedAvg, denoted here as
U-FedAvg [36, 29, 37]:

Δ
(t)
U-FedAvg =

1

N

∑
i∈S(t)

Δ
(t)
i

pi
. (5)

Intuitively, reweighting each client update by p−1
i compensates for

less participating clients by amplifying their update when they do
participate. U-FedAvg naturally extends FedAvg to accommodate
heterogeneous client participation—reducing to FedAvg when par-
ticipation is uniform (pi = |S(t)|

N
, ∀i)—and effectively unbiases

the global update (ES(t) [Δ
(t)
U-FedAvg] =

1
N

∑N
i=1 Δ

(t)
i ). However, it

also introduces a drawback: the variance of each client updates is
now proportional to p−2

i . As participation probabilities decrease, this
variance rapidly increases, becoming the dominant factor that slows
down U-FedAvg’s convergence [29, 37].

A few recent works have addressed the variance introduced by par-
tial client participation through global variance reduction, leveraging
stale updates to compensate for non-participating clients [11, 40, 12,
38]. These methods were originally proposed for homogeneous par-
ticipation and, if applied in their original form, would introduce a
bias when client participation becomes heterogeneous. Fortunately,
unbiasing them to work in heterogeneous participation scenarios is
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(a) Optimization objectives. (b) Trajectories: FedAvg, FedVARP. (c) Trajectories: FedVARP, FedStale. (d) Convergence curves.

Figure 1: Comparison of FedAvg, FedVARP, and FedStale in a two-clients, 2D quadratic setting with heterogeneous client participation. Fig. 1a: Contour
plots of client objectives, their local optima, and global optimum. Client participation ratio is p1/p2 = 100. Fig. 1b: Trajectories by FedAvg and FedVARP
over T=4000 rounds with K=5 local iterations. While both algorithms target the global optimum, FedAvg struggles with large variance and FedVARP follows
suboptimal paths due to stale updates. Fig. 1c: FedStale (β=0.8) follow a more stable trajectory under heterogeneous client participation. Fig. 1d: Learning
curves of FedAvg, FedVARP, and FedStale over 10 runs. With a lower weight on stale updates (β=0.8), FedStale converges faster to the global optimum.

straightforward, similar to what was done for FedAvg in Eq. (5).
We select FedVARP [12] as the representative algorithm and adapt
it into U-FedVARP (Unbiased FedVARP).

In U-FedVARP, the server retains the most recent, though poten-
tially stale, update for each client:

h
(t)
i =

{
Δ

(t−1)
i if i ∈ S(t−1)

h
(t−1)
i otherwise

, (6)

and then uses these stale updates as proxies for missing contributions
from non-participating clients in the current round:

Δ
(t)
U-FedVARP =

1

N

N∑
i=1

h
(t)
i +

1

N

∑
i∈S(t)

Δ
(t)
i − h

(t)
i

pi
. (7)

Unlike U-FedAvg, which essentially ignores non-participating
clients, U-FedVARP leverages their last updates, albeit stale, when
they do not participate in training. When they participate again,
U-FedVARP subtracts these stale updates to eliminate any incon-
sistency caused by leveraging stale information, and then applies the
fresh update. Both corrections are reweighed by p−1

i , similarly to

U-FedAvg, ensuring that E
[
Δ

(t)
U-FedVARP

]
= 1

N

∑N
i=1 Δ

(t)
i , mak-

ing U-FedVARP’s aggregation (7) unbiased. Moreover, by leverag-
ing stale updates for non-participating clients, U-FedVARP acts as a
SAGA-like [6] variance reduction method, aiming to reduce the vari-
ance caused by partial client participation. This strategy incurs an
additional memory cost of N × d, which the server must allocate.

Although variance reduction methods like FedVARP are often be-
lieved to outperform simpler algorithms like FedAvg under partial
and heterogeneous client participation, as suggested for example in
[12, 37], theoretical support for this belief has been provided only for
homogeneous participation scenarios [12, Theorem 2] and empirical
results do not lead to definitive conclusions [37, Table 5].

This paper challenges the presumed superiority of U-FedVARP
under client participation heterogeneity. Both theoretical and ex-
perimental contributions indicate that the relative effectiveness of
U-FedVARP and U-FedAvg varies depending on the specific levels
of data heterogeneity and client participation heterogeneity.

In the remainder of the paper, we focus on the unbiased versions
of the two algorithms. However, for brevity, we refer to them simply
as FedVARP and FedAvg.

3 The FedStale Algorithm

We challenge FedVARP’s expected superiority under client partici-
pation heterogeneity through the following illustrative example.

3.1 A motivating example

Figure 1a considers a two-clients scenario with quadratic bidimen-
sional objectives {Fi(w), i = 1, 2,w ∈ R

2}. The global opti-
mumw∗, minimizer of F (w) � 1

2
F1(w)+ 1

2
F2(w), does not align

with the average of the local optima {w∗
i , i = 1, 2}. Clients partic-

ipate according to Bernoulli distributions with parameters {pi, i =
1, 2} and a skewed participation ratio p1/p2 = 100.

Figure 1b compares the model trajectories of FedAvg and
FedVARP over T = 4000 rounds, starting from w(1)=(-10,-10) and
running the experiments with same clients participation processes
for comparability. Both algorithms initially share the same trajec-
tory, driven solely by the participation of client 1, who targets w∗

1 .
When client 2 first participates, the global update dramatically shifts
towards w∗

2 due to the reweighting factor 1/p2. As client 2 stops
participating, the two trajectories diverge: FedAvg reverts to ap-
proaching w∗

1 , influenced only by the participating client 1, while
FedVARP continues to factor in stale updates from client 2. Both
algorithms eventually converge to the global optimum w∗, consis-
tently with the fact that both Eqs. (5) and (7) are unbiased. How-
ever, FedAvg suffers large variance and slow convergence due to
significant shifts whenever client 2 participates, whereas FedVARP
is affected by progressively more outdated updates from the less par-
ticipating client, also resulting in suboptimal trajectories with abrupt
corrections. Figure 1d compares the losses over these trajectories and
confirms that both FedAvg and FedVARP exhibit high variability
for distinct reasons. A hybrid approach that combines these two dy-
namics can potentially improve overall performance.

3.2 A convex combination of fresh and stale updates

In Figs. 1c and 1d, a convex combination of FedAvg and FedVARP
updates with a weighting parameter β = 0.8 results in a more sta-
ble trajectory and achieves faster convergence than either algorithm
alone. This suggests that, in environments with heterogeneous client
participation, parameterizing the weight to stale updates allows us
to interpolate the two negative extremes of large variance (FedAvg)
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Algorithm 2: Global update computation in FedStale

1 Input: {h(1)
i = 0, pi : ∀i}, β; Output: {Δ(t)

FedStale : ∀t}
2 for t = 1, . . . , T do

3 Procedure ComputeUpdate({Δ(t)
i }

i∈S(t) , β):
4 Δ

(t)
FedStale ← β

N

∑N

i=1
h

(t)
i + 1

N

∑
i∈S(t)(Δ

(t)
i −βh

(t)
i )/pi

5 for i ∈ S(t) do

6 h
(t+1)
i ← Δ

(t)
i // Update memory

and outdated trajectories (FedVARP). Motivated by these observa-
tions, we propose FedStale (Federated Averaging with Stale Up-
dates), outlined in Algorithm 2. In each round, FedStale updates
the global model through a convex combination of fresh and stale
updates, with parameter β in the range [0, 1]:

Δ
(t)
FedStale = (1− β)Δ

(t)
FedAvg + βΔ

(t)
FedVARP (8)

=
1

N

N∑
i=1

βh
(t)
i +

1

N

∑
i∈S(t)

Δ
(t)
i − βh

(t)
i

pi
. (9)

FedStale interpolates between the behaviors of FedAvg when
β = 0 and FedVARP when β = 1, merging the two algorithms into
a single, versatile framework. Moreover, by adjusting β, FedStale
can control the influence of stale updates, allowing for a continuum
of behaviors that adapts with the specific level of client data and par-
ticipation heterogeneity.

Requirements. In its operation, FedStale maintains the same
computational and communication complexity as FedVARP, with
tuning β as the only additional requirement. Section 5 shows that
a coarse adjustment of β (e.g., β ∈ {0, 0.2, 0.5, 0.8, 1}) provides
reasonably good performance across varied settings, thus eliminating
the need for fine-tuning.

As for storage requirements, FedStale mirrors FedVARP and
other global variance reduction methods by storing stale updates
from all clients at the server. Typically, servers possess more re-
sources than clients, mitigating potential storage issues. Methods that
avoid additional storage would otherwise escalate computational and
communication demands on clients or necessitate full client partici-
pation in certain rounds—a requirement that may be overly demand-
ing or even impractical, as will be discussed in the following section.

3.3 Comparison to related work

We discuss variance reduction methods emerged for centralized and
distributed optimization. Some have already been adapted to feder-
ated learning, while others are discusses for potential applicability.
FedLaAvg [38], MIFA [11], AFA-CD and AFA-CS [40], simi-

larly to FedVARP, address partial yet homogeneous client participa-
tion by storing the stale model updates for each client. However, their
approach of uniformly weighting fresh and stale updates, through
a SAG-based [32] global variance reduction step, biases the global
model leading to objective inconsistency.
SVRG-based Variance Reduction Methods [13, 18, 24, 8] trade

storage demands with computation needs by periodically calculating,
in centralized settings, full or large-batch gradients. Although offer-
ing superior theoretical performance over SAGA-based [6] variance
reduction methods like FedVARP, their extension to FL settings is
constrained by the impractical requirement for all clients to partici-
pate simultaneously during certain training rounds.
SCAFFOLD [15] uses control variates to correct for data hetero-

geneity errors. Adapting this method to handle participation hetero-

geneity would require clients to perform local SAGA-like [6] correc-
tions, thereby doubling the communication overhead as clients must
transmit both the model updates and correction vectors to the server.
While this extension remains a topic for future research, we under-
score the additional communication complexity involved.

In contrast to previous work, FedStale, much like FedVARP,
performs corrections at the server level without involving clients in
variance reduction, thus maintaining the same communication over-
head as FedAvg and still matching SCAFFOLD’s convergence rates.

4 Convergence Analysis

Assumption 1 (L-smoothness). The local objective functions are L-
smooth, i.e., ‖∇Fi(u)−∇Fi(v)‖ ≤ L ‖u− v‖, ∀u,v, i.
Assumption 2 (Bounded variance at client level). The stochastic
gradient at each client is an unbiased estimator of the local gra-
dient: Eξi∼Di [∇Fi(w, ξi)] = ∇Fi(w), with bounded variance:
Eξi∼Di ‖∇Fi(w, ξi)−∇Fi(w)‖2 ≤ σ2, ∀w, i. The stochastic
gradient noise is independent across clients, rounds, and local steps.

Assumption 3 (Bounded variance across clients). There exists a
constant σ2

g > 0 such that the difference between the local gra-
dient at the i-th client and the global gradient is bounded, that is
‖∇Fi(w)−∇F (w)‖2 ≤ σ2

g , ∀w, i.

Assumption 4 (Partial and heterogeneous client participation). In
each round t, client i participates with a probability pi, indepen-
dently of previous rounds and other clients.

Assumptions 1–3 are standard in federated learning convergence
analysis [39, 36, 5]. The terms σ2 and σ2

g denote the variances from
stochastic gradients and data heterogeneity, respectively. Assump-
tion 4, which models client participation heterogeneity, also appears
in some prior works [36, 37]. Exploring more complex participation
dynamics, following the methodologies in [36, 29], remains a task
for future research.

We first provide an upper bound for FedStale’s convergence. To
focus the discussion on our main results, we defer proof outlines to
the appendix and detailed proofs to the supplementary material [28].

Theorem 1 (Convergence of FedStale, upper bound). Under As-
sumptions 1–4, if the client and server learning rates, ηc and ηs, are
chosen such that ηc ≤ 1

8LK
and ηs ≤ min

{
Npvar

12(1−β)2
, pvarpmin
3β2pavg

}
, the

sequence of FedStale iterates satisfies

min
t∈{1,T}

E

∥∥∥∇F (w
(t)
FedStale)

∥∥∥2

≤ O
(
F (w(1))− F ∗

ηsηcKT

)
︸ ︷︷ ︸

iterate initialization error

(10)

+O
(
β2ηsηcLKH(1)

pvarpminT

)
︸ ︷︷ ︸

memory initialization error

+O
([

1

N
+ β2 pavg

pmin

]
ηsηcLσ

2

pvar

)
︸ ︷︷ ︸

stochastic gradient error

+O
([

(1− β)2

N
+ β2η2

cL
2K(K − 1)

pavg

pmin

]
ηsηcLKσ2

g

pvar

)
︸ ︷︷ ︸

error from data heterogeneity

,

where F ∗ � minw F (w), H(1) � 1
N

∑N
i=1 ||∇Fi(w

(1))−h
(1)
i ||2,

pvar � ( 1
N

∑N
i=1

1−pi
pi

)−1, pavg � 1
N

∑N
i=1 pi, and pmin � mini pi.

Theorem 1 relates FedStale’s convergence to the iterate and
memory initial errors, and variances from stochastic gradients (σ2)
and data heterogeneity (σ2

g). It also quantifies the impact of client
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participation heterogeneity through the terms pvar, pavg, and pmin.
By scaling the client learning rate as O( 1√

T
), all error components

asymptotically vanish, proving the unbiasedness of update (9).
Theorem 1 integrates FedAvg and FedVARP convergence anal-

yses in a single framework, providing new insights on their different
behaviors. First, for β = 0, the bound provides a convergence result
for FedAvg.

Corollary 2 (Convergence of FedAvg, upper bound). Under same
assumptions as Theorem 1, the sequence of FedAvg iterates satisfies

min
t∈{1,T}

E

∥∥∥∇F (w
(t)
FedAvg)

∥∥∥2

≤ (11)

O
(
F (w(1))− F ∗

ηsηcKT

)
︸ ︷︷ ︸

iterate initialization error

+ O
(
ηsηcLσ

2

Npvar

)
︸ ︷︷ ︸
stochastic gradient error

+ O
(
ηsηcLKσ2

g

Npvar

)
︸ ︷︷ ︸

error from data heterogeneity

.

Corollary 2 shows that client participation heterogeneity only af-
fects FedAvg convergence through the variance factor 1/pvar. This
term captures the variability of participation probabilities pi and is
minimized—and equal to (1− pavg)/pavg—when client participation
is homogeneous. Conversely, this variance term increases with larger
participation heterogeneity, and may become the dominant factor in
Eq. (11) that slows down FedAvg convergence. This justifies our
observations for FedAvg in Figure 1b.

Second, for β = 1, Theorem 1 extends FedVARP known conver-
gence results [12, Theorem 2] to heterogeneous client participation.

Corollary 3 (Convergence of FedVARP, upper bound). Under the
same assumptions as in Theorem 1, FedVARP’s iterates satisfy

min
t∈{1,T}

E

∥∥∥∇F (w
(t)
FedVARP)

∥∥∥2

≤ O
(
F (w(1))− F ∗

ηsηcT
+

ηsηcH
(1)

pvarpminT

)
︸ ︷︷ ︸

iterate and memory initialization errors

+O
(
ηsηcLpavgσ

2

pvarpmin

)
︸ ︷︷ ︸

stochastic gradient error

+O
(
ηsη

3
cL

3K2(K − 1)pavgσ
2
g

pvarpmin

)
︸ ︷︷ ︸

error from data heterogeneity

. (12)

We highlight two differences with respect to FedAvg. First,
FedVARP mitigates data heterogeneity error: by scaling the learn-
ing rate ηc as O(T−1/2), the term in σ2

g decreases as O(T−3/2)

versus O(T−1/2) for FedAvg in (11). However, FedVARP ampli-
fies the stochastic gradient error through the ratio pavg/pmin, and this
terms may become dominant as client participation becomes more
heterogeneous. This drawback, caused from stale updates, was not
highlighted by earlier analyses, which considered only homogeneous
client participation.

One may wonder whether the appearance of the factor 1/pmin in
FedVARP bound may not be just an artifact of our proof technique.
The following lower bound for FedVARP and FedStale conver-
gence suggests that this is not the case.

Theorem 4 (Convergence of FedStale, lower bound). Under As-
sumption 1, for any time horizon T ≤ d−1

2
, there exist N local

objectives {Fi(w) : Rd → R} for which the iterates of any first-
order black-box optimization procedure which leverages both fresh
and stale updates satisfy

min
t∈{1,T}

E

∥∥∥∇F (w
(t)
FedStale)

∥∥∥2

≥ Ω

(
F (w(1))− F ∗

p3minT
3 + 1

)
. (13)

Theorem 4 proves that FedStale, for any β > 0, and FedVARP
require at least T ≥ Ω(1/pmin) rounds to minimize objective (1).

4.1 Finding the optimal weight β∗

FedStale leverages the parameter β to balance the multiple
sources of variance in Theorem 1: stochastic gradients (σ2), data
heterogeneity (σ2

g), and client participation heterogeneity (through
the ratio pavg/pmin).

The quadratic dependency on β of the bound in Theorem 1,
Eq. (10), guarantees a unique minimizer β∗ ∈ [0, 1], generally dif-
ferent from the boundaries values of 0 and 1. The optimal β∗ is:

β∗ =
σ2
g/N

a1
pavg
pmin

σ2

K
+

[
1
N

+ a2
pavg
pmin

η2
cL2K(K − 1)

]
σ2
g

, (14)

where a1 and a2 are positive constants.
In practice, computing β∗ is challenging due to the unknowns L,

σ2, and σ2
g in Eqs. (10) and (14), which are difficult to estimate since

they depend on the client objectives and on the specific heterogeneity
setting. Moreover, Eq. (10) provides a worst-case upper bound for
the gradient norm, but convergence may be significantly faster. For
instance, the bound becomes vacuous as pmin approaches zero, yet, if
all clients share the same local objective, convergence is unaffected
by non-participating clients. Therefore, we primarily use Eq. (14) to
derive qualitative, yet important guidelines.

The monotonically increasing behavior of β∗ with σ2
g in Eq. (14)

suggests Guideline A: Increase the weight to stale updates, β, when
data heterogeneity, σ2

g , increases.
Guideline A is in line with our previous comparison of Corollary 2

and Corollary 3. As we observed, stale updates become more bene-
ficial when data heterogeneity (σ2

g) is dominant. Conversely, as data
heterogeneity decreases, the benefit from stale updates diminishes.
This outcome is intuitive: in the extreme case where all clients share
same datasets, each local objective aligns with the global objective.
Relying solely on updates from participating clients is then optimal,
as stale updates may only introduce unnecessary noise.

The monotonically decreasing behavior of β∗ with pavg/pmin in
Eq. (14) leads to Guideline B: Decrease the weight to stale up-
dates, β, as client participation heterogeneity, pavg/pmin, increases.

Also Guideline B is grounded in intuition: as client participation
is more heterogeneous (pmin � pavg), the least participating clients
refresh their stale update less frequently, leading to more outdated
global updates: leveraging them may yield poor results. Conversely,
when client participation is homogeneous (pmin ≈ pavg), all clients
uniformly refresh their update, and global variance reduction meth-
ods perform best.

5 Experimental Results

We evaluate the performance of FedStale through experiments.
The source code for our experimental framework is publicly accessi-
ble at https://github.com/arodio/FedStale.

5.1 Experimental setup

System, Datasets, and Models. We simulate a FL system with
N = 24 clients. We consider two image classification tasks: hand-
written digits recognition on MNIST [7] and natural image classifi-
cation on CIFAR-10 [17]. Each dataset has 10 classes, or labels. We
train two convolutional neural network (CNN) models with slightly
different architectures. These models, with cross-entropy loss, define
non-convex objectives (1).

Participation heterogeneity. Client participation follows a
Bernoulli distribution, in line with Assumption 4. To simulate
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Figure 2: βopt values for FedAvg (β=0), FedVARP (β=1), and FedStale
(β∈{0.2, 0.5, 0.8}) across 48 heterogeneity settings on the MNIST dataset.
Color gradients range from lighter shades (βopt=0) to darker shades (βopt=1).

heterogeneity in client participation, we randomly divide clients
into two groups based on their participation dynamics: one group
of clients always participate, while the other, less participating
group, have participation probabilities pmin varying in the range
{50, 20, 10, 5, 2, 1, 0.5, 0.2}%. The ratio pavg/pmin specifies the de-
gree of client participation heterogeneity.

Data heterogeneity. Following existing work [30], we simulate
data heterogeneity across clients’ local datasets by: 1) randomly par-
titioning the dataset among clients; 2) swapping a fraction σ̂2

g of two
labels in the second group, with σ̂2

g ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}.
The empirical parameter σ̂2

g mirrors the theoretical variance σ2
g in

Assumption 3, measuring the degree of data heterogeneity: σ̂2
g = 0

represents homogeneous (IID) data distributions and σ̂2
g = 1 indi-

cates maximum heterogeneity among client datasets.
Baselines. We compare FedAvg (β = 0), FedVARP (β = 1),

and FedStale (for β ∈ {0.2, 0.5, 0.8}) across diverse hetero-
geneity settings. Previous work [12] showed that, under partial client
participation, FedVARP consistently outperformed both MIFA [11],
due to its biased variance correction, and SCAFFOLD [15], that
also incurs higher communication costs. We benchmark all algo-
rithms over a consistent time horizon, corresponding, on average, to
the first ten participation instances by the least participating client.
Clients perform K = 5 local iterations. We use a batch size of
128 in all experiments. For all algorithms, we fix the server learn-
ing rate ηs to 1 and tune the client learning rate ηc over the grid
{10−2, 10−2.5, 10−3, 10−3.5, 10−4}. While we initially assume all
algorithms have exact knowledge of client participation probabili-
ties, we relax this assumption in Section 5.3. We average results over
three random seeds.

5.2 Existence of different regimes

In Figure 2, we show the empirical values of β that yield the high-
est test accuracies among FedAvg (β = 0), FedVARP (β = 1),
and FedStale (β ∈ {0.2, 0.5, 0.8}) across diverse heterogeneity
settings on the MNIST dataset. We denote these values as βopt.

The heatmap shows how βopt varies with client participation het-
erogeneity (pavg/pmin, in the x-axis) and data heterogeneity (σ̂2

g , in
the y-axis). Moreover, each cell reports the performance gains of the
best setting for FedStale. Δ0 and Δ1 denote, respectively, the ac-

curacy improvements of FedStale(βopt) over FedAvg (β = 0)
and FedVARP (β = 1). This visualization aggregates results from
720 training runs, across 8 participation heterogeneity setups and 6
data heterogeneity setups, each comparing 5 algorithms for 3 inde-
pendent seeds.

Multiple regimes in heterogeneity settings. No single algorithm
consistently outperforms others across all settings. Instead, Figure 2
shows different zones where the best-performing algorithm depends
on the interplay between data heterogeneity (σ̂2

g) and client participa-
tion heterogeneity (pavg/pmin). The observed trends reflect our quali-
tative guidelines.

Specifically, Figure 2 identifies three distinct zones where spe-
cific patterns in performance emerge: i) FedVARP yields the best
results for large data heterogeneity (σ̂2

g ≥ 0.2) and homogeneous
client participation (pmin ≈ pavg), favoring larger weights to stale
updates (βopt = 1); ii) conversely, FedAvg best fits settings with
low data heterogeneity (σ̂2

g ≤ 0.2) and large participation hetero-
geneity (pavg ≥ 25pmin), where using stale updates overall reduces
performance; iii) finally, a significant transitional zone exists where
moderate heterogeneity levels (3pmin ≤ pavg ≤ 25pmin) favor in-
termediate βopt values (βopt ∈ {0.2, 0.5, 0.8}), which yield the best
performance.

Overall, FedStale prevails in 72% of scenarios within our
6 × 8 grid, against FedVARP, 18%, and FedAvg, 10%. There-
fore, FedStale plays a key role—we believe—in bridging the gaps
posed by FedAvg and FedVARP in real-world federated settings,
which often exhibit intermediate levels of client data and participa-
tion heterogeneity.

Effect of data heterogeneity. Figure 2 shows that βopt increases
with data heterogeneity, in line with Guideline A. Figure 3 explores
this trend in more detail, by holding participation heterogeneity con-
stant at pavg/pmin = 10 and varying data heterogeneity (σ̂2

g). For all
algorithms, increased data heterogeneity corresponds to lower test
accuracies. In Figures 3a and 3b, FedStale (β = 0.5), without par-
ticular fine-tuning, consistently outperforms FedVARP in settings of
moderate participation heterogeneity and improves over FedAvg as
client data become heterogeneous (already at σ̂2

g ≥ 0.2). Moreover,
Figure 3b shows that FedVARP, despite its overall lower accuracy,
proves to perform better in extremely heterogeneous data scenarios
(when σ̂2

g ≥ 0.8).
Effect of participation heterogeneity. Figure 2 shows that βopt

decreases as the participation heterogeneity (pavg/pmin) increases,
in line with Guideline B. Figure 4 details this dynamic by fix-
ing data heterogeneity at σ̂2

g = 0.6 and only varying participa-
tion heterogeneity. In both Figures 4a and 4b, it is evident how
FedVARP performs well when client participation is homogeneous
(pmin ≈ pavg), yet struggles with increasing participation heterogene-
ity. FedAvg exhibits dual behavior, which confirms that the useful-
ness of stale updates progressively diminishes as participation het-
erogeneity increases (already at pavg ≥ 3pmin). Figure 4b also shows
that FedStale (β = 0.5), without specific tuning, maintains ro-
bust performance across a wide range of participation levels (until
pavg ≈ 25pmin), and only drops accuracy at pavg ≈ 50pmin.

5.3 Online estimation of participation probabilities

We evaluate FedStale with online estimation of client participa-
tion probabilities, to simulate scenarios where these probabilities are
unknown before training [26, 29, 37]. To this purpose, we integrate
FedStale with FedAU [37], a state-of-the-art algorithm for track-
ing client participation dynamics, that balances bias and variance in
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(a) MNIST dataset (b) CIFAR-10 dataset

Figure 3: Test accuracy of FedAvg (β=0), FedVARP (β=1), and FedStale
(β=0.5) varying data heterogeneity at fixed participation ratio pavg/pmin = 10.

(a) MNIST dataset (b) CIFAR-10 dataset

Figure 4: Test accuracy of FedAvg (β=0), FedVARP (β=1), and FedStale
(β=0.5) varying client participation ratio at fixed data heterogeneity σ̂2

g = 0.6.

the estimation through a cutoff mechanism.
Figure 5 shows that the integration of FedStale with FedAU’s

estimation technique still aligns with our guidelines. Moreover,
FedVARP performs significantly worse than FedStale(βopt) when
client participation probabilities are estimated (Δ1 values in Fig. 5).
Also, we observe overall lower βopt values in this scenario. These
trends suggest that methods leveraging stale updates, like FedVARP,
might be particularly sensitive to inaccurate pi estimations.

Figure 5: “Exact” vs. “Estimated” participation probabilities, σ̂2
g = 0.6.

6 Conclusion

This paper addresses global variance reduction in federated learn-
ing beyond the common assumption of homogeneous client partic-
ipation. Unlike prior work, our research explores not only the ad-
vantages but also the challenges of leveraging stale client updates
across varying heterogeneity scenarios. Our algorithm, FedStale,
is equipped with guidelines: practitioners can decide whether storing
stale updates is worthwhile or if solely relying on participating client
updates is more efficient. Exploring this tradeoff paves the way—we
believe—for developing federated learning algorithms more attuned
to the varied dynamics of client data and participation heterogeneity.

A Appendix

A.1 Proof sketch, Theorem 1

Previous work analyzed convergence of FL algorithms in various set-
tings. Closest to our setting are Wang et al. [34] and Jhunjhunwala
et al. [12], that analyzed FedAvg and FedVARP, respectively, under
non-iid data and partial yet homogeneous client participation.

Our analysis in Theorem 1 builds on [12] and relies on a similar
Lyapunov optimization function as in [12, Appendix C.2, Eq. (20)]:

ψ(t) � F (w(t)) + δ
∥∥∥Δ(t)

FedStale

∥∥∥2

+ γH(t), δ, γ > 0, (15)

where H(t) � 1
N

∑N
i=1

∥∥∥∇Fi(w
(t))− h

(t)
i

∥∥∥2

quantifies the devia-
tion of stale client updates from the “true” local gradients.

This section provides the proof outline for Theorem 1, focusing
mostly on the novel contributions of our analysis:

• We apply the standard descent lemma [34], for smooth and non-
convex objectives, to Eq. (15) [Supplementary [28], Lemma 1];

• Under Assumptions 1–4, the variance of the global update
Δ

(t)
FedStale is bounded by variances from stochastic gradients (σ2)

and data heterogeneity (σ2
g), by the square norm of the previ-

ous global update Δ(t−1)
FedStale, and by the memory error H(t). The

last two terms, emerging from stale updates for non-participating
clients, are multiplied by β2 and contribute to both optimization
and error. Additionally, the client participation variance 1/pvar,
consequence of the Bernoulli assumption on the client participa-
tion (Assumption 4), equally impacts all these terms. More details
are provided in the Supplementary [28], Lemmas 6 and 8;

• Under Assumptions 1–4, the error from stale updates (H(t)) is
also bounded by the variances σ2 and σ2

g , the square norm of the
previous global update Δ(t−1)

FedStale, and the previous memory error
H(t−1). This error, under Assumption 4, depends on the partici-
pation probability of the least participating client (pmin), is consis-
tently weighted by β2, and does not affect FedAvg. More details
in the Supplementary [28], Lemmas 7 and 9;

• Through the Lyapunov recursion, the dependency on pmin remains
consistent across all β2-weighted terms. This suggests that the in-
fluence of pmin stems from stale updates and can be balanced by
controlling β. More details in Supplementary [28], Theorem 1.

A.2 Proof sketch, Theorem 4

Our proof builds upon Nesterov [23] and Bubeck [3], who estab-
lished lower bounds in centralized settings, and Scaman et al. [31],
for general decentralized setting. We adapt the analysis to non-
convex federated settings with heterogeneous client participation:
• We split Nesterov’s function for centralized optimization [23, 3]

between the most and least participating clients (pmax and pmin);
• Most dimensions of the parameters w(t)

FedStale remains zero, and
(fresh or stale) client updates only increase non-zero dimensions
once every 1/pmin steps on average;

• We standardize the lower bound measure to squared gradient
norms for direct comparison with non-convex counterparts (Theo-
rem 1), in expectation over the randomness in client participation.
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