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Abstract. Causal global optimization (CGO) aims to complete op-
timization tasks through causal inference. In the high-dimensional
CGO problems, traditional causal Bayesian optimization (CBO) meth-
ods struggle with the curse of dimensionality attributed to the number
of variables in the causal graph, and scale inconsistency among Gaus-
sian Process (GP) models. These issues limit the application of CBO
in domains requiring optimization over large causal graphs. To ad-
dress these limitations, this paper proposes a high-dimensional causal
Bayesian optimization (HCBO) algorithm. To address the curse of di-
mensionality, HCBO introduces a submodularity indicator for variable
subsets through the concept of causal intrinsic dimensionality (CID).
It then uses the submodular optimization algorithm to find approxi-
mations of CID within polynomial sample complexity. Theoretically,
we disclose a sufficient condition for CID’s existence. To address the
issue of scale inconsistency among GP models, HCBO introduces a
scale-normalized scoring function, ensuring stable identification of
the optimal GP model corresponding to CID for intervention. Exten-
sive experiments are conducted on high-dimensional synthetic and
real-world tasks, i.e., coral ecology and health. The existence of CID
is verified across the datasets of all tasks. HCBO achieves state-of-the-
art performance in CGO problems and can handle causal graphs at a
scale 10 times larger than that manageable by previous CBO methods.

1 Introduction

Black-box optimization [8, 24] has significant applications in statistics
and industry. It treats the objective function as a black-box entity, con-
ducting optimization without relying on gradients or problem-specific
information. This approach models the objective function in a unified
form f : X ⊂ R

D → R. Widely-adopted black-box optimization
techniques can be broadly categorized into three types [31], including
Lipschitzian-based partitioning methods, population-based methods,
and model-based methods. Bayesian optimization (BO), the represen-
tative model-based black-box optimization method, is successfully
applied in machine learning [34], reinforcement learning [29], and
scientific computing [33]. The classical BO methods employ Gaus-
sian Process (GP) as the surrogate model to approximate the objective
function f . The global optimization is achieved by maximizing an
acquisition function derived from GP, which determines the next solu-
tions for evaluation. However, existing work [1, 2, 7, 3, 37, 16] have
observed that BO does not achieve optimal performance in optimiza-
tion scenarios where the causal graph [26] of the problem is known.
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This observation has led to the proposal of causal global optimization
(CGO) problem and causal Bayesian optimization (CBO) method [1].

CGO offers two significant advantages: it reduces dimensions based
on the causal graph and discovers that optimizing some variables can
achieve global optimality, whereas optimizing the entire set cannot [1].
Here are two easily understandable real-world examples that illustrate
the practicality and importance of CGO. In agriculture [23], dozens of
heavy metals in the soil are statistically correlated with the optimiza-
tion target, e.g., plant growth. However, through causal inference, the
complex effects of heavy metals can be reduced into effects on a lim-
ited number of variables such as the pH value of the soil, significantly
simplifying the optimization problem. In biology [32], intermediate
products cannot be directly intervened to the optimal value due to
limited control domains and must rely on other key chemical raw
materials to react. Even, due to the order of reactions, controlling
all intermediate products (all variables) results in local optima while
controlling a subset of variables can yield better outcome. In summary,
the incorporation of causal priors aids in the resolution of the global
optimization problems.

The requirement for a known causal graph in CGO problems is not
an insurmountable barrier. In fact, in industrial, medical and biological
fields [9, 39, 14, 32], expert-annotated causal graphs, which qualita-
tively describe causation between optimization variables, are often
accessible. Additionally, CEO [7] provides an optimization approach
for CGO problems where the causal graph is unknown. The utilization
of these causal graphs enables CBO methods to significantly enhance
the optimization process. This includes benefits of lower optimization
cost and superior target value. Specifically, the causal graph enables
CBO methods to concentrate only on a subset of optimization vari-
ables, simplifying the problem while lowering the cost of intervention.
Furthermore, by clarifying the complex interrelations between vari-
ables, causal graphs facilitate a more direct approach to the global
optimum. While CBO has shown promising results, it is noted that no
work has yet solved high-dimensional CGO problems.

The classical CBO method [1] can handle small-scale CGO
problems effectively, but its efficacy markedly declines in high-
dimensional CGO problems. This downturn in performance is primar-
ily attributed to the curse of dimensionality caused by the number of
variables in the causal graph and the scale inconsistency among multi-
ple GP models. Specifically, the traditional CBO method determines
an exploration set (ES) for intervention, comprising multiple variable
subsets, and constructs a corresponding number of GP models. After
balancing exploration and exploitation, CBO method selects a promis-
ing GP model by the acquisition function for intervention. The curse
of dimensionality refers to the exponential growth of the ES scale
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with the number of variables in the causal graph. Moreover, the sam-
ple complexity of the algorithm for searching ES is also exponential.
Scale inconsistency in GP models presents challenges in balancing
exploration and exploitation. The term “scale” refers to the domain of
target variable modeled by each GP model. To overcome these issues,
reducing the scale of ES and eliminating the scale inconsistency are
the primary research focus of this work.

To this end, this paper presents the first algorithm to address the
high-dimensional CGO problems, termed high-dimensional causal
Bayesian optimization (HCBO) algorithm. The contribution of this
work is three folds. (I) A state-of-the-art (SOTA) method for high-
dimensional CGO problem. Compared to CBO methods, HCBO
can handle causal graphs of sizes up to 200, a significant increase
from about 10. Compared to high-dimensional BO methods, HCBO
achieves SOTA results in terms of cost and target value indicators by
leveraging causal graph. (II) An ES efficient search strategy named
ES-ESS, based on a proposed submodular indicator, for HCBO to
effectively overcome the curse of dimensionality attributed to the size
of causal graph. When the causal intrinsic dimensionality (CID) exists,
compared to CBO methods, HCBO can identify a polynomial scale,
high-quality approximation for an exponential scale ES. Unlike high-
dimensional BO methods that sometimes rely on a random approach
to find intrinsic dimensions [41, 30], HCBO automatically determines
the CID based on the submodular indicator. Additionally, Theorem 2
provides a sufficient but not necessary condition for CID’s existence.
(III) A scale-normalized intervention set score function named ISSF
for HCBO to select optimal GP model, unaffected by scale incon-
sistency. As the problem scale increases, HCBO can stably find the
globally optimal GP model among the polynomial-scale models.

In the subsequent sections, we respectively review the related work,
present the preliminaries and problem statement, introduce the pro-
posed HCBO, show the experimental results and analysis, and fi-
nally conclude the paper. The code and Appendix are available at
https://github.com/ANormalMan12/HCBO.

2 Related Work

Causal Bayesian Optimization. Building upon the foundations of
BO, CBO methodologies [1, 2, 7, 3, 37, 16] leverage causal inference
to perform optimization tasks. They have demonstrated strong em-
pirical performance across various domains such as manufacturing,
ecology, communication, medicine and healthcare, system biology,
operational research, and social science. The seminal work [1] formal-
ized the modeling of CBO. Subsequent developments like DCBO [2],
CEO [7], and cCBO [3] made targeted progress in dynamical, DAG-
unknown, and constrained causal systems, respectively. MCBO [37]
introduced the first method with sublinear cumulative regret conver-
gence guarantees for CBO, enhancing CBO’s empirical performance.
Additionally, fCBO [16] and MCBO [37] explored the impact of con-
textual interventions on CGO problems, showcasing the significant
benefits of leveraging causal prior for optimization. However, these
efforts have primarily focused on low-dimensional CGO scenarios
with causal graphs of no more than 10 optimization variables. To
our knowledge, this paper is the first to systematically address high-
dimensional CGO problems, supporting the causal graphs of sizes up
to 200 and achieving SOTA performance.

High-Dimensional Bayesian Optimization. High-dimensional
Bayesian optimization (HBO) methods, which do not utilize causal
priors, are ill-suited for solving high-dimensional CGO problems.
HBO methods often highlight the concept of intrinsic dimensions as a
method for managing the curse of dimensionality. This segment covers

linear embedding methods, non-linear embedding methods, and vari-
able selection methods. REMBO [41] introduces a technique wherein
a randomly generated embedding matrix connects a low-dimensional
subspace with the original optimization space, thereby sidestepping
the curse of dimensionality through optimization within this sub-
space. Subsequent efforts in random embedding [5, 30, 6, 25, 21]
focus on enhancing the embedding quality to ensure that the low-
dimensional subspace encompasses the global optima. Meanwhile,
other approaches, such as [4] and [44], endeavor to learn this embed-
ding matrix. Unlike linear embedding methods, non-linear embedding
methods leverage machine learning to autonomously devise a map
that supplants the embedding matrix, with variational autoencoders
emerging as the most frequently employed technology [15, 40]. In the
realm of variable selection methods [22, 35], it is posited that only a
subset of the input dimensions impact the objective function value,
with the rest having no effect, a notion akin to the CGO problem
setting. Dropout BO [22] randomly selects d dimensions to construct
the effective dimension sets, thereby obtaining a cumulative regret
convergence rate that is dependent on d. Conversely, MCTS-VS [35]
utilizes the Monte-Carlo tree search method to identify the optimal
effective dimension set, albeit requiring significant effort to assess dif-
ferent dimension sets. In the CGO problem, the known causal graph is
underutilized by traditional HBO methods, making the identification
of intrinsic dimensions inefficient and challenging.

3 Preliminaries and Problem Statement

3.1 Structural Causal Models

A structural causal model M [27, 28] is a type of causal modeling
framework which can be described by a known directed acyclic graph
G and a four-tuple 〈U ,V ,F , P (U)〉, where U denotes a collection
of exogenous variables, the values of which are determined by factors
external to M. V comprises a set of endogenous observable vari-
ables whose values are influenced by the variables in M. Variables in
V can be classified into three categories: C, I and Y . Background
variables C are immutable and cannot be manipulated. Treatment
variables I are manipulative and can be assigned specific values. The
output variable Y denotes the agent’s outcome of interest, whose
variations are related to changes in C and I . F is a collection of struc-
tural equations (f1, . . . , fV ), delineating the functional relationships
among variables. Each fi maps from the corresponding domains of
U ∪ Pa(V ) to V , where U ⊆ U and Pa(V ) is the set of parent
variables of the single variable V in G. P (U) =

∏
U∈U p(U) is the

probability distribution of the set of exogenous variables U .

3.2 Interventions & Do-Calculus

Intervention and do-calculus [27] are both important concepts in the
theory of the structural causal model. Intervention is one of the most
important operations which can change the probability distribution
of the variables in causal graph G, while do-calculus allows us to
calculate the distribution after intervention from the observational
data. The intervention and do-calculus are detailed below.

An intervention that assigns specific values x to the treatment
variables X ⊆ I is represented as do(X = x), corresponding to
modifying M by substituting the functional relations f(Pa(X), UX)
with x. X is referred to the intervention set. The interventional distri-
bution for two disjoint sets X and Y is denoted as P (Y |do(X = x)),
which signifies the distribution of Y resulting from intervening on X
while fixing its values to x. P (Y |do(X = x)) can be approximated
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by getting a Monte Carlo estimate. The interventional expectation of
do-calculus is denoted as E [Y |do(X = x)].

3.3 Causal Intrinsic Dimensionality (CID)

In the context of HBO problems, standard BO methods quickly de-
grade due to the curse of dimensionality [10, 11]. The assumption of
intrinsic dimensionality is a way for HBO methods to mitigate this
curse, suggesting that high-dimensional optimization problems have
a low-dimensional subspace where optimizing within this subspace
can lead to the optimal solution [41]. Similarly, the assumption of
CID holds potential for solving high-dimensional CGO problems.
Def. 1 provides a formal definition of causal intrinsic dimensions X∗

e ,
requiring the CID de = |Xe| strictly less than the full dimensions |I|.
Fig.1 (a) demonstrates an example of CID de = 1 in G with I = 100.

Definition 1 (Causal Intrinsic Dimensionality, CID). For CGO prob-
lem, it is said to have an effective intervention set Xe ⊂ I . Xe

is the subset of I but can achieve the global optima. Let Xe denote
the collection of all effective intervention sets, and Co(X) denote
the intervention cost of the intervention set X . We define the causal
intrinsic intervention set X∗

e as the effective intervention set with the
lowest intervention cost, and the causal intrinsic dimensionality de
as the dimension of X∗

e , where X∗
e = argminXe∈Xe Co(Xe).

3.4 High-Dimensional Causal Bayesian Optimization

Addressing high-dimensional optimization problems within a causal
framework presents a novel and effective approach, leveraging the
causal relationships between variables. In high-dimensional CGO
problems, given G and 〈U ,V ,F , P (U)〉, if the CID de < |I| exists,
the goal is to find the causal intrinsic intervention set X�

e and the
optimal intervention values x� to optimize the target outcome Y .
Formally, it can be written as follows:

X�
e ,x

� = argmax
X∈P(I),x∈D(X)

E [Y |do(X = x)] , (1)

where P(·) is the power set and D(X) =×I∈X
D(I) with D(I)

denoting the intervention domain of a single treatment variable I .
Note that in practical applications, there are cases where the optimal
variable values lie outside the intervention domain, necessitating inter-
vention on the ancestor variables to locate the global optima [1]. This
is why CBO methods can identify superior optimal values, compared
to general optimization methods.

To overcome the curse of dimensionality, CBO methods compress
the search space of X∗

e from P(I), into a smaller exploration set (ES).
Minimal intervention set MIS(M) is a common technique to search
ES [20]. MIS(M) is a precise method that ensures ES encompasses
X∗

e . Standard CBO method [1] can solve Eq. (1) with MIS(M) under
small scale G, but it still suffers performance degradation in high-
dimensional CGO problems. As G scaling up, the scale of ES obtained
from MIS(M) grows exponentially. Concurrently, an exponential
scale ES exacerbates the issue of scale inconsistency mentioned before.
This paper presents a polynomial-scale approximation of ES and an
intervention set score function to eliminate scale inconsistency.

4 Methodology

This section introduces the high-dimensional causal Bayesian op-
timization (HCBO) algorithm capable of solving Eq. (1) in high-
dimensional scenarios. HCBO follows the CBO framework [1], with

Algorithm 1 Calculation of Causal Coverage of X
Input: Causal graph G, Endogenous observable variables V and

corresponding weights w, Target variable Y , Intervention set X
Output: X’s causal coverage cX

1: cV |X ← 0, ∀V ∈ V % cV |X is the conditional causal coverage
2: for V ∈ V ∪ {Y } in a topological order of G do
3: if V ∈ X then
4: cV |X ← wV

5: else
6: cV |X ← ∑

P∈Pa(V ) cP |X/|Pa(V )|
7: end if
8: end for
9: return cX ← cY |X

significant contributions made in two parts: Part (i) is an ES effective
search strategy named ES-ESS with polynomial sample complexity
for overcoming the curse of dimensionality attributed to the size of G.
ES-ESS can limit the scale of ES and the number of corresponding
GP models, accelerating the convergence of HCBO. Part (ii) is a scale-
normalized intervention set score function (ISSF) for overcoming the
issue of scale inconsistency. ISSF can identify the causal intrinsic
dimensionality set X∗

e , speeding up the convergence of HCBO. Fig.1
shows the HCBO framework.

4.1 ES Efficient Search Strategy (ES-ESS)

ES-ESS aims to identify a smaller ES from P(I). CBO methods use
the precise MIS(M) to obtain ES. MIS(M) guarantees the X∗

e , but
MIS(M) scales exponentially with the size of G. ES-ESS can ob-
tain a polynomial approximation of MIS(M), termed as the efficient
causal coverage intervention set ECCIS(M). Specifically, ES-ESS
employs a causal coverage indicator with submodularity, to score
intervention sets within P(I). ES-ESS then utilizes a submodular
optimization algorithm to search for high-scoring intervention sets to
form ECCIS(M). ECCIS(M) represents a high-quality approxima-
tion of MIS(M), better suited for high-dimensional CGO problems.

4.1.1 Causal Coverage Indicator

The intervention set X ⊆ I is the subset of the ancestor variables of
Y . Different X lead to different optimal interventions on Y , denoted
as E[Y |do(X = x∗)] [1], where x∗ refers to the optimal interven-
tion values within the domain D(X). In causal theory, unlike causal
effects [23] that describe the average magnitude of changes in X , the
optimal intervention characterizes optimal Y when intervening X .
This paper introduces the causal coverage indicator cX with submod-
ularity to approximately estimate E[Y |do(X = x∗)]. Leveraging its
submodular properties, it efficiently identifies a high-quality ES, cf.
Sec. 4.1.2.

The causal coverage cX can be calculated based on the topological
structure of G, with a minimal intervention cost, involving two parts.
In part (i), E[Y |do(I = i∗)] of each single treatment variable I ∈ I is
statistically estimated by BO under small intervention cost. And then,
the intervention weight 0 ≤ wV ≤ 1 is normalized from E[Y |do(I =
i∗)]/Co(I), where Co(·) means the cost function. The pseudocode of
part (i) is displayed in Appendix. In part (ii), cf. Fig.1 (b), the causal
coverage cX of the intervention set X is calculated from wV where
V is the variable on the paths between X and Y . Alg. 1 displays the
process of cX calculation according to the topological order of G,
cf. Lines 2∼8. The topological order ensures that Alg. 1 calculates
cX completely and non-repetitively in the directed acyclic graph G.
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Figure 1. HCBO framework. (a) An example of CID de = 1 � 100. (b) A calculation example of the proposed submodular indicator c{B,E,G}. (c) The
proposed ES-ESS searches a polynomial approximation of MIS(M). (d) The proposed ISSF is capable of causal intrinsic dimensionality set X∗

e identification.

When intervening X , the causal coverage of a single variable V is
called conditional causal coverage, denoted as cV |X . In Line 1, cV |X
is initialized as 0, ∀V ∈ V . Then, following the topological order,
if V ∈ X , then cV |X = wV . Otherwise, cV |X is the average of the
conditional causal coverage of all of V ’s parent variables, denoted
as

∑
P∈Pa(V ) cP |X/|Pa(V )|. Here, the structural equation fV is

assumed to be additive and can be easily modified based on real-
world priors. Finally, the causal coverage of X equals the conditional
causal coverage of Y , i.e., cX = cY |X .

4.1.2 Efficient Causal Coverage Intervention Set (ECCIS)

This section first analyzes and proves the submodularity of the pro-
posed causal coverage indicator, cf. Thm. 1. Subsequently, leveraging
the submodularity, ES-ESS determines the exploration set ECCIS(M)
with polynomial sample complexity, cf. Alg. 2. If CID exists, the opti-
mal intervention set satisfies de = |X∗

e | < |I|. ES-ESS is capable of
finding a (1− 1/e)-approximation of cX∗

e
of X∗

e within polynomial
sample complexity. Moreover, Thm. 2 presents the existence theorem
of CID, clearly defining the applicability scope of ES-ESS.

Theorem 1 (Submodularity of Causal Coverage Indicator). For all
intervention set XA ⊆ XB ⊆ I and single treatment variable
I ∈ I \XB , is hold that cXA∪{I} − cXA ≥ cXB∪{I} − cXB .

Theorem 2 (Causal Intrinsic Dimensionality Existence Theorem). If
Pa(Y ) ⊂ V and I = V , then the CID de exist, i.e., de < |V |.
Remark 1. Thm. 1 and Thm. 2 are proved in Appendix. Thm. 1 demon-
strates that the causal coverage cX is a set indicator with submod-
ularity, which manifests as diminishing marginal returns. Therefore,
ES-ESS can identify ECCIS(M) with polynomial sample complexity
via a (1− 1/e)-competitive submodular optimization algorithm. The
submodularity of causal coverage ensures the quality of intervention
sets within ECCIS(M). Thm. 2 provides a sufficient but not neces-
sary condition. Thm. 2 elucidates that a general CGO problem with
I = V generally has the CID, as G usually contains variables not
connected to the target variable.

ES-ESS outlines the process of calculating ECCIS(M) based on
the submodular indicator cX , cf. Alg. 2. ES-ESS is inspired by a
submodular optimization algorithm called Guess-K [19, 38, 13]. From
the theorem of Guess-K, it is a (1−1/e)-competitive algorithm when
the constant K = 3 [19]. Specifically, Guess-K first enumerates the
intervention sets for |X| ≤ K, cf. Line 1. Then, initialized with
the intervention set of |X| = K, Guess-K uses greedy search for
|X| > K, cf. Line 2∼9. ES-ESS diverges from classical submodular
optimization algorithms by retaining intervention sets X with high

Algorithm 2 ES Effective Search Strategy (ES-ESS)
Input: Structural causal model M, Cost function Co(·), Weights w
Output: Exploration set ECCIS(M)

1: Initialize redundant ECCIS-R(M) ← {X|X ⊆ I, |X| ≤ K}
2: for all X ⊆ I with |X| = K do

3: W ← I \X
4: repeat

5: X ← X ∪ {W ∗}, W ∗ = argmax
W∈W

c{X∪{W}}, cf. Alg. 1

6: ECCIS-R(M) ← ECCIS-R(M) ∪X
7: W ← W \W ∗

8: until W = ∅
9: end for

10: ECCIS(M) ← ECCIS-R(M) after removing X that is subopti-
mal for causal coverage cX at the same cost Co(X)

11: return ECCIS(M)

causal coverage at different costs, cf. Line 10. ES-ESS preserves only
the optimal intervention sets under the same cost to form ECCIS(M).

4.2 Intervention Set Score Function (ISSF)

The standard CBO framework constructs the GP models on the in-
tervention dataset, denoted as GPDI

X
, ∀X ∈ ES. The acquisition

function is utilized to identify the causal intrinsic intervention set X∗
e .

Since the actual X∗
e cannot be determined in the algorithm process,

this paper denotes the perceived one during algorithm process as X̂∗
e .

Then, the same acquisition function is used to determine the best in-
tervention x∗ within D(X̂∗

e ). However, general acquisition functions
are not suitable for the comparison of sampling points between multi-
ple GP models, because of the scale inconsistency of target variable Y
among them. This inconsistency manifests as significant differences
in D(Y ) across GP models. In the high-dimensional CGO problem,
increasing the size of ES aggravates the negative impact of scale
inconsistency.

The scale inconsistency can bias the GP model selection process,
potentially overlooking X∗

e due to bad initialization, leading to local
optima. Common GP acquisition functions like expected improve-
ment [18] (EI) and upper confidence bound [36] (UCB) are designed
to evaluate sampling points within the same GP and are not suited for
selecting the optimal GP model. To overcome this issue, this paper
employs an intervention set score function ISSF (X), cf. Eq. (2).
This scoring function is essentially a class of normalized UCB, which
uses the normalized intervention dataset D̃I

X . The target variable of
D̃I

X follows zero mean and unit variance. ISSF (X) effectively mit-
igates the scale inconsistency between GP models, thus optimizing
the overall model selection process and preventing local optima.
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ISSF (X) = ȲDI
X

+ β1UCB(x∗
X |GPD̃I

X
) . (2)

ȲDI
X

means the mean of target variable in the intervention dataset.
UCB(x∗

X |GPD̃I
X
) means the optimal UCB of GPD̃I

X
in the nor-

malized intervention dataset, where UCB(x∗|GPD̃I
X
) = μ(x∗) +

β2σ(x
∗). μ(x∗) and σ(x∗) are the mean and variance predictions of

Y at sampling point x∗. x∗ means the optimal sampling point found
by GPD̃I

X
with UCB acquisition function. Meanwhile, β1, β2 are

appropriate constants and specified according to the context. Specifi-
cally, β1 aligns the scale of ȲDI

X
with UCB(x∗

X |GPD̃I
X
), while β2

is derived from the theorem of UCB [36]. Constants β1, β2 are set to
balance exploration and exploitation [42].

4.3 The HCBO Algorithm

This paper introduces the HCBO algorithm, capable of solving high-
dimensional CGO problems, cf. Alg. 3. The proposed ES-ESS finds
ECCIS(M), which is a polynomial-scale approximation of the precise
MIS(M), cf. Line 2. Moreover, the proposed ISSF overcomes the
scale inconsistency issue between GP model comparison, ensuring
the identification of X∗

e within ECCIS(M), cf. Line 5.

Algorithm 3 HCBO

Input: Structural causal model M, Intervention dataset DI

Output: Causal intrinsic intervention set X∗
e , Optimal target y∗

1: D̃I ← normalizing (x, y) ∈ DI to (x, y−μ(DI )

σ(DI )
)

2: Calculate the exploration set ECCIS(M) with Alg. 2
3: Initialize GP model GPD̃I

X
, ∀X ∈ ECCIS(M)% [T ] means a

monotonically increasing ordered set consisting of 1, . . . , T .
4: for t ∈ [T ] do

5: Select X̂∗
e,t ∈ ECCIS(M) via ISSF (X)

6: Select x∗
t ∈ D(X̂∗

e,t) via UCB acquisition function
7: Intervene M to get yt = E[Y |do(X̂∗

e,t = x∗
t )]

8: Update datasets DI
Xt

and D̃I
Xt

via (x∗
t , yt)

9: Update the surrogate model GPD̃I
X∗

t

10: end for
11: return X̂∗

e,T , y∗ = E[Y |do(X̂∗
e,T = x∗

T )]

5 Experiments

Experiments are conducted to answer the following research questions.
Q1: Is causal intrinsic dimensionality (CID) widely present in CGO
problems? Q2: How do HCBO’s scalability, convergence speed, and
final optimum compare to existing methods across various CGO
problems? Q3: How much better can the exploration set (ES) found
by ES-ESS component be than the usual strategy? Q4: Why is ISSF
component better at selecting X̂e than others? Q5: How to automate
the selection of optimal hyperparameter β1?

5.1 Experiment Setup

Concept Definition. The structural equations fv ∈ F of M here
are categorized into three types. (a) Linear: fV (Pa(V ), UV ) =∑

P∈Pa(V ) wVPxP + bV +UV , where wVP and bV are coefficients;
(b) Additive: fV (Pa(V ), UV ) =

∑
P∈Pa(V ) wVPhVP (xP ) + bV +

UV , where hVP is identity transformation or non-linear transforma-
tion like log; (c) Non-Additive: fV (Pa(V ), UV ) = hV (Pa(V )) +
UV , where hV can be complex functions.

Datasets. Experiments are conducted on varieties of synthetic and
real-world settings. High-dimensional CGO problems are generated
by a random generator, inspired by the gCastle toolkit [43]. They
include linear-100-33, linear-200-66, additive-50-16, additive-100-
33, non-additive-50-16, non-additive-100-33. Consider the example
“linear-100-33”. The name indicates that this problem follows lin-
ear structural equations and includes 100 endogenous observable
variables, 33 of which are treatment variables. All of them aim to
maximize the variable positioned at the end of its topological order,
denoted as Y . Meantime, real-world CGO tasks include Coral Ecol-
ogy [9] and Health [14]. Dataset Coral Ecology considers various
factors of a coral ecosystem with 11 endogenous observable variables,
5 of which are treatment variables. The SCM follows linear structural
equation, and aims to maximize net coral ecosystem calcification [1].
Dataset Health is based on the SCM built by [14]. It models the causal
effect of statin drugs on the levels of prostate specific antigen (PSA). It
includes 9 endogenous observable variables, 3 of which are treatment
variables. Health follows non-additive structural equations and aims
to minimize PSA. Details are explained in Appendix.

Compared Methods. To the best of our knowledge, current
research lacks methods that effectively use causation for high-
dimensional CGO problems like HCBO. For a comprehensive anal-
ysis of HCBO’s superiority, we compare it with various methods,
including engineering optimization methods, standard CBO method,
and HBO methods. Especially, Random Search: A method that ran-
domly selects a subset X ⊆ I , and randomly selects intervention
values x ∈ D(X); BO: A standard Bayesian optimization method;
CMA-ES [17]: A widely used evolutionary method for black-box
optimization; CBO [1]: A classical method utilizes causation by con-
structing multiple GPs for optimization; REMBO [41]: A pioneering
study that utilizes random linear embedding for projecting high di-
mensions to lower dimensions; ALEBO [21]: An embedding BO
method enhanced by Mahalanobis kernel and hypersphere sampling;
Dropout-BO [22]: A variable selection BO method that chooses d
dimensions out of D dimensions randomly and optimizes variables
from the chosen dimensions via BO; MCTS-VS [35]: A variable se-
lection BO method that uses Monte-Carlo tree to search d dimensions
out of D dimensions to optimize; TuRBO [12]: A BO method that
fits a collection of local models to optimize in the trust region. Please
refer to the Appendix for detailed settings of these methods.

Standard optimization methods are not designed to solve CGO prob-
lems. In the compared methods above, standard optimization methods
are BO, CMA-ES, REMBO, ALEBO, Dropout-BO, MCTS-VS and
TuRBO. We reformulate CGO problem to standard optimization prob-
lem as Eq. (3). This reformulation makes these standard optimization
methods intervene on all treatment variables to optimize.

x� = argmax
x∈D(I)

E [Y |do(I = x)] . (3)

Experimental Settings. Baseline experiments are repeated inde-
pendently for 20 times. Intervention cost of all treatment variables is
set as 1. All baselines share the same cost budget. For a fair compari-
son, in all experiments except for ablation studies, HCBO’s interven-
tion cost spent in calculating the intervention weight is considered. For
clearer presentation, all outcomes Y of synthetic problems are normal-
ized to the range [0, 1] before display, cf. Fig.2. The full experimental
details can be found in Appendix.

5.2 CID Validation Experiment (To Q1)

The validation experiments are conducted to show that CID is widely
seen in CGO problems. Specifically, we sample intervention sets and
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Figure 2. Optimization performance comparison on 8 representative CGO problems. HCBO demonstrates SOTA convergence speed, target values Y ∗.

Figure 3. CID validation in real-world tasks. The green bar means the
causal intrinsic intervention set X∗

e .

obtain the corresponding optimal interventions by TuRBO to approxi-
mately determine X∗

e . To sample intervention sets, we enumerate all
subsets in real-world tasks, while using Monte-Carlo method like [45]
do in high-dimensional settings, due to the curse of dimensionality.
The existence of CID is validated across all problems involved in this
paper. Fig.3 displays the CID of the real-world tasks, i.e., Coral Ecol-
ogy and Health. Other results and details are displayed in Appendix.
Fig.3 reveals that intervening all variables I in CGO problems may
result in local optima, restrengthening importance to utilize causation
for reaching the global optimum.

5.3 Performance Experiment (To Q2)

The performance experiment is conducted for comparing HCBO
against all compared methods across synthetic problems and real-
world tasks. We also perform t-test to compare final optimums
achieved by HCBO and other methods, which indicates that HCBO
outperforms all compared methods in all datasets except Coral Ecol-
ogy. Due to page limitation, the statistical results and more details can
be found from Appendix.

5.3.1 Optimization of Synthetic Benchmark

In terms of the number of treatment variables, our synthetic high–
dimensional CGO problems extend previous explorations within this
field. The synthetic problems vary in the numbers of variables and
structural equations. We show the results in Fig.2, illustrating the

following observations: (a). HCBO achieves SOTA performance in
all high-dimensional problems. It outperforms random search, a ro-
bust baseline in high-dimensional CGO scenarios, demonstrating the
superiority of HCBO in searching for optimal intervention sets from
an exponential search space. It defeats standard high dimensional
methods because it can utilize causation, while others can’t. In addi-
tion, HCBO demonstrates effective initialization and converge quickly.
The former is attributed to the proposed intervention weight estima-
tion, and the latter is attributed to the ability for identifying CID.
(b). HCBO demonstrates significant advantages in high-dimensional
complex problems involving the non-additive structural equations.
Specifically, many standard methods can optimize low-dimensional
non-additive problem Health, but they fail in the high-dimensional
complex problems non-additive-100-124. The reason are twofold:
HBO methods fail to detect the effective dimensionality since it may
not exist in CGO problems, and HCBO can locate CID and the corre-
spond optimal intervention set.

5.3.2 Optimization of Real-World Tasks

On Coral Ecology Dataset. As illustrated in Fig.2 and statistical
results (in Appendix), HCBO does not outperform all compared meth-
ods. This can be explained with Fig.3, which shows the optimal target
value of I is similar to that of X∗

e . The similarity reduces the impor-
tance of selecting X∗

e but emphasizes the need to fully exploit the
potential of X∗

e . Since HCBO is not good at optimizing a particular
subset, HCBO converges slower than some compared methods. This
indicates room for further improvement of HCBO.

On Health Dataset. In the harder non-additive real-world with CID
de = 1 as shown in Fig.3, standard optimization methods, including
ALEBO that converges prematurely, fail to reach global optimum,
but HCBO and CBO can reach, cf. Fig.2. In addition, HCBO defeats
CBO in two respects. Firstly, HCBO identifies X∗

e through ES-ESS,
ensuring that there is chance for HCBO to achieve global optimum.
Secondly, the found ECCIS(M) with size 3 is smaller than CBO’s
MIS(M) with size 7. Therefore, HCBO can save cost on unnecessary
intervention sets and pay more cost to fully search and optimize X∗

e .
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5.4 Ablation Study: Exploration Set (To Q3)

We compare ECCIS with two types of randomly initialized explo-
ration sets, including (a) SCRIS Same cost random intervention set;
(b) DCRIS Different cost random intervention set. For a fair compari-
son, they both share the same number of intervention sets as ECCIS.
Specifically, SCRIS must cover all different costs in ECCIS. DCRIS
are randomly initialized without this constraint. Results on the repre-
sentative high-dimensional problem additive-100-33 in Fig.4 show
that ECCIS significantly outperforms others. Even the best result
among all random exploration sets are inferior to that of ECCIS.

Figure 4. Comparison between ECCIS and other exploration sets (repeated
5 times). Each scatter means the optimum during optimization.

5.5 Ablation Study: ISSF (To Q4)

To explain the advantages of ISSF, ISSF is compared with varieties of
settings to demonstrate its ability to stably identify CID, cf. Fig.5 and
Fig.6. We compare varieties of CID identification methods, including
UCB, EI, Mean and ISSF. CID identification methods score each in-
tervention set in ECCIS(M), and select the intervention set with the
highest score to intervene. General acquisition functions, like UCB
and EI, score intervention sets with their optimal acquisition function
values. Mean method utilizes the mean of target variable in DI

X to
score X . Proposed HCBO utilizes ISSF to score X . Since HCBO

Figure 5. Comparison of set selection functions: ISSF, UCB, Mean, and EI.

Figure 6. The update of estimated ranks of multiple GP models by different
set selection functions during 600 optimization iterations. The darker the GP

model is, the higher the rank is. For each iteration, HCBO selects the
intervention set ranking the first to intervene. The horizontal color variation
indicates the update of the global information with optimization iteration.

uses UCB acquisition function to select optimal intervention value x∗,
HCBO is denoted as ISSF-UCB here. We compare the following meth-
ods with our ISSF-UCB: UCB-UCB, Mean-UCB, EI-EI. We compare
EI-EI as it is used by CBO [1]. The overall performance comparison
in Fig.5 demonstrates that HCBO outperforms all other variants. For
other variants, UCB-UCB outperforms Mean-UCB and EI-EI, for
Mean-UCB and EI-EI fail to optimize beyond the results of the initial
dataset. We research why this happens by conducting a case study as
shown in Fig.6, and we note the following observations. (a) Compared
to others, ISSF evaluates different intervention sets to update global
information. In Fig.6, HCBO exploits GP model 15, 23, 3, . . . respec-
tively. This helps balance exploration and exploitation on intervention
sets. (b) EI fails to estimate the potential of intervention sets, espe-
cially in high-dimensional scenarios. Its scores on intervention sets
decrease according to the size of the intervention sets. This feature
makes it only focus on small intervention sets, ignoring the potential
of large intervention sets. (c) UCB and Mean can detect good high
dimensional intervention sets. However, they fail to adjust their pref-
erences for intervention. They perform over-exploitation on a single
intervention set, falling into local optima.

5.6 Hyperparameter Analysis (To Q5)

We compare different strategies to select the hyperparameter β1 within
the ISSF component, including static strategies, where β1 is fixed at a
specific value, and dynamic strategies, where β1 is updated periodi-
cally. We find that: (a). Dynamic strategies prevail static strategies. (b).
Dynamic strategy performs better when β1 is updated more frequently.
We choose a conservative dynamic approach “Average-50” for HCBO.
Further details are provided in Appendix.

6 Conclusion

This study introduces high-dimensional causal Bayesian optimization
(HCBO) as an innovative solution to CBO challenges, utilizing causal
intrinsic dimensionality (CID) to address the curse of dimensionality
from the number of variables of the causal graph and scale inconsis-
tency among GP models. HCBO represents a significant advancement,
capable of managing causal graphs up to 200 sizes, markedly improv-
ing from the previous limit of about 10. HCBO’s contribution lies in
proposing an efficient search strategy for CID, i.e., ES-ESS, which
makes CID theory practically applicable. Additionally, HCBO ad-
dresses the issue of scale inconsistency when comparing multiple GP
models, which can invalidate general acquisition functions, and offers
a simple and feasible solution, i.e., ISSF.

Despite progress, HCBO’s effectiveness is more suitable for SCM
following additive equation assumption. Designing a targeted calcula-
tion method of causal coverage for non-additive causal graphs would
be addressed in future work. In addition, future directions would focus
on enhancing autonomous generation and validation of causal graphs,
as well as developing adaptive scaling within the ISSF to broaden
HCBO’s applicability across diverse high-dimensional problems.
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