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Abstract. As deep learning develops, the major research method-
ologies of time series forecasting can be divided into two categories,
i.e., iterative and direct methods. In the iterative methods, since a
small amount of error is produced at each time step, the recursive
structure can potentially lead to large error accumulations over longer
forecasting horizons. Although the direct methods can avoid this puz-
zle involved in the iterative methods, they face abuse of conditional
independence among time points. This impractical assumption can
also lead to biased models. To solve these challenges, we propose
a direct approach for multi-horizon probabilistic forecasting, which
can effectively characterize the dependence across future horizons.
Specifically, we consider the multi-horizon target as a random vector.
The direction of the vector embodies the temporal dependence, and
the length of the vector measures the overall scale across each hori-
zon. Therefore, we respectively apply the von Mises-Fisher (VMF)
distribution and the truncated normal distribution to characterize the
target vector’s angle and magnitude in our model. Extensive results
demonstrate the superiority of our framework over eight state-of-the-
art methods.

1 Introduction

Time series forecasting has historically been a key area of academic
research and industrial applications [5, 44, 6, 9, 17, 34, 39]. The com-
mon requirement of time series forecasting is measuring the uncer-
tainty of the output by predicting its probability distribution, which
is termed “probabilistic forecasting”. In addition, the practical use
of probabilistic forecasting generally requires forecasting more than
one step, i.e., multi-horizon forecasting. Modern machine learning
methods have been proposed for multi-horizon probabilistic fore-
casting, which can be divided into iterative and direct methods as
follows.

Iterative approaches typically make use of autoregressive deep
learning architectures, which produce multi-horizon forecasts by
recursively feeding samples of the target into future time steps.
Iterative approaches generally make use of the “chain rule” in
the training stage, which decomposes p(yT+1:T+H |y0:T ,x) as∏T+H

t=T+1 p(yt|y0:t−1,x) [31], where y0:T = (y0, y1, . . . , yT )
T de-
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notes a slice of the time series and x represents some external fea-
tures. Due to the chain rule, iterative approaches transform the es-
timation of p(yT+1:T+H |y0:T ,x) into a one-step-ahead prediction
in the training stage and feed the prediction of yt−1 back as ground
truth to forecast yt. However, as pointed out in [2, 21, 36], the dis-
crepancy between actual data and estimates during prediction can
lead to error accumulation. Since a small amount of error is pro-
duced at each time step, the recursive structure of iterative methods
can potentially lead to large error accumulations over long forecast-
ing horizons. Therefore, the iterative approaches are less robust and
might lead to a biased model [7, 32, 8].

For the direct methods [36, 23, 12], they can alleviate the above-
mentioned issues involved in iterative methods, which can directly
forecast all targets by using all available inputs. They typically use
sequence-to-sequence architecture, a type of network structure map-
ping sequences directly to sequences. These methods commonly
choose the quantile loss function as the training objective. They try
to jointly minimize the quantile loss at each future horizon, where
a decoder structure propagates encoded historical information and
processes external features that can be acquired in advance. How-
ever, minimizing a loss function at each horizon, which is equivalent
to transforming p(yT+1:T+H |y0:T ,x) into

∏H
h=1 p(yT+h|y0:T ,x),

is somewhat abuse of conditional independence. The discrepancy
between p(yT+1:T+H |y0:T ,x) and

∏H
h=1 p(yT+h|y0:T ,x, h) can

also lead to biased models.
Taking all the aforementioned challenges into account, we propose

a direct approach for multi-horizon probabilistic forecasting which
can effectively capture the characteristics of the dependence across
future horizons. We consider the multi-horizon target yT+1:T+H as
a random vector in an H-dimension vector space. When there ex-
ists a certain dependence mechanism among yT+h (1 ≤ h ≤ H),
yT+1:T+H is likely to be distributed around a specific direction,
which can be characterized by the angles of a vector relative to an
orthonormal basis of the vector space. Therefore, we apply the von
Mises-Fisher (VMF) distribution, which is a probability distribution
on the surface of a unit-sphere, to characterize the distribution of the
direction of yT+1:T+H . Once the direction of yT+1:T+H is learned,
and suppose ||yT+1:T+H ||2 is given, the forecast can be made by
multiplying ||yT+1:T+H ||2 with its direction. Hence, we normalize
yT+1:T+H by dividing its length and adopt a prior distribution on
||yT+1:T+H ||2 to obtain a complete tractable likelihood function.
Recall that the direction of yT+1:T+H is defined via angles, and
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its length is determined by the scale of each yT+h, the similarity
measurement of the attention module involved in our model is cor-
respondingly modified, which is capable of evaluating the joint sim-
ilarity between angles and scales, namely the “Angle&Scale” simi-
larity. The key features of our method are to preserve the temporal
dependence, or as we explained before, the angles of yT+1:T+H ,
and automatically project ||yT+1:T+H ||2 to each yT+h to estimate
its scale. We summarize these features as “angle-preserving” and
“auto-scaling”, where auto-scaling is important for handling data
with different magnitudes [29]. One remaining challenge is optimiz-
ing the likelihood function due to the Bessel function, an essential
part of VMF distribution and commonly leading to underflow prob-
lems [20]. Without the sacrifice of accuracy, we estimate and alter-
natively optimize the upper bound of the Bessel function.

Our contributions are three-fold: (1) We propose a probabilis-
tic forecasting model (VMFTransformer) based on Transformer and
VMF distribution, which captures the temporal dependence of multi-
horizon targets. We also demonstrate our model’s performance is
state-of-the-art on real-world datasets; (2) We design a novel sim-
ilarity measurement termed “Angle&Scale” similarity for the atten-
tion module; (3) We present a more efficient optimization method for
the Bessel function in the VMF distribution without the sacrifice of
accuracy.

2 Related work

Time Series Forecasting. Recent time series forecasting models
based on deep learning (e.g., recurrent and convolutional neural net-
works) [29, 27, 36] provide a data-driven manner to deal with time
series forecasting tasks and achieve great accuracy in most applica-
tion fields. Due to complex dependencies over time of recurrent net-
works and the limits of convolutional filters, these methods have dif-
ficulties in modeling long-term and complex relations in the time se-
ries data. Recently, Transformers [33] based on self-attention mech-
anism [12] show promising performance in time series forecasting
[22, 38, 43, 19]. Considering the dependencies of each time point
in a sequence, Transformer-based methods [22] are proposed by as-
signing different importance to the different time points. Progresses
have been made in reducing the computation complexity of the self-
attention and enhancing the capacity of information extraction of the
Encoder-Decoder structure [43, 38, 19]. In addition, Matrix factor-
ization methods [40] and Bayesian methods that share information
via hierarchical priors [4] are used to learn multiple related time se-
ries by leveraging hierarchical structure [16].
Von Mises-Fisher (VMF) distribution. The von Mises Fisher Dis-
tribution (VMF) is an important isotropic distribution for directional
data that have direction as well as magnitudes, such as gene expres-
sion data, wind current directions, or measurements taken from com-
passes [11]. The von Mises–Fisher distribution is a probability distri-
bution on directions in R

p. It can be regarded as a distribution on the
(p− 1)-sphere of unit radius, which is on the surface of the D-ball of
unit radius. If p = 2, the distribution reduces to the von Mises distri-
bution on the circle. Recently, it has been successfully used in numer-
ous machine learning tasks, such as unsupervised learning [1, 14],
supervised learning [30], contrastive learning [35], natural language
processing [20], computer vision [15, 42], and so on. Our work is the
first to introduce the von Mises-Fisher distribution to the time series
forecasting task.
Direction of Time Series Slice. Suppose yT+1:T+H is a slice of a
time series, the direction of yT+1:T+H , which is an H-dimension
unit-vector, can be defined by the cosine of its angles relative to the

orthonormal basis {eh}Hh=1
1 of the vector space. Technically, the di-

rection of yT+1:T+H is

yT+1:T+H

||yT+1:T+H ||2
=

(
〈yT+1:T+H , e1〉
||yT+1:T+H ||2

, . . . ,
〈yT+1:T+H , eH〉
||yT+1:T+H ||2

)T

,

(1)

where 〈, 〉 denotes the inner product and ||yT+1:T+H ||2 =√∑H
h=1 y

2
T+h denotes the Euclidean norm of yT+1:T+H .

3 Methodology

The core idea of this work is to consider a multi-horizon target as a
vector in a high-dimensional space, where its direction or angle rela-
tive to the orthonormal basis characterizes the dependence structure,
and its length is determined by the scale of the targets at each horizon.
Therefore, performing probabilistic forecasting requires first evaluat-
ing the probability distribution of directions. For this purpose, we ap-
peal to the VMF distribution. Recall that the VMF distribution only
applies to vectors distributed on a unit sphere; we, therefore, adopt
a probability distribution on the length of the vector representing the
multi-horizon target. We choose the truncated normal distribution for
vector length, which turns out to be a prior distribution, and provide
the detail in Section 3.2. We visualize this idea in Figure 1.

The rest of this section is organized into 4 subsections. We first
formally define the problem of forecasting in Section 3.1, and then
derive the loss function for model training in Section 3.2. Next, we
introduce the model structure in Section 3.3. Finally, we present a
random sampling method for performing probabilistic forecasts in
section 3.4.

3.1 Problem Statement

We are given a dataset of N time series where the i-th time series
consisting of tuples (yi,t,xi,t) ∈ R × R

d, t = 0, . . . , T , where
yi,t is the observation at time t and xi,t are corresponding input co-
variates. Given a forecast horizon H ∈ N

+, the goal is to estimate
the joint predictive distribution of future observations

p({yi,T+1:T+H}Ni=1|D),

where yi,t+1:t+H = (yi
t+1, y

i
t+2, . . . , y

i
t+H)T , and D ={

{yi,t}Tt=0, {xi,t}T+H
t=0

}N

i=0
represents the history of the time series

and all known input co-variates.

3.2 Objective Function

This section derives the loss function based on negative log-
likelihood (NLL).
VMF Distribution. The VMF distribution is a probability distribu-
tion on the surface of a unit-sphere. For a d dimensional random unit
vector y = (y1, . . . , yd)

T ( ||y||2 = 1), the probability density func-
tion of VMF distribution is defined as

p(y;μ, κ) = Cd(κ) exp(κμ
T × y), (2)

where μ denotes the mean direction (||μ||2 = 1), and κ denotes the
concentration parameter. In other words, μ locates the most likely
direction of y = (y1, . . . , yd)

T , and κ controls the divergence of
y = (y1, . . . , yd)

T from μ. The greater the value of κ, the stronger

1 eh = (0, ..., 1, ..., 0), the h-th element is 1 while the rest are 0.
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Figure 1: Illustration of how a multi-horizon target can be viewed as a high-dimensional random vector and how the VMF distribution is applied
to describe its distribution. As shown in Figure 1.a, the example shows when performing a 3-step forecasting, the target can be packed together
into a 3-dimensional vector (yt, yt+1, yt+2) where its direction is a unit-vector, i.e. (cosα, cosβ, cos γ), determined by its angles relative to
the orthonormal basis {e1, e2, e3} in Figure 1.b. When there exists dependency among yt, yt+1, and yt+2, the random vector (yt, yt+1, yt+2)
is likely to be distributed around a certain direction, described by the VMF distribution for random vectors on unit-sphere in Figure 1.c. The
scale or length of (yt, yt+1, yt+2) is equivalent to sphere radius, whose distribution is described by the Truncated Normal Distribution in
Figure 1.c. A forecast can be made by multiplying a direction generated from the estimated VMF distribution with a length generated from the
estimated Truncated Normal Distribution.

concentration of y = (y1, . . . , yd)
T around μ. The normalization

constant Cd(κ) in Equation (2) is defined as

Cd(κ) =
κd/2−1

(2πd/2)Id/2−1(κ)
,

where Id/2−1(κ)
2 is the modified Bessel function of the first kind.

Negative Log-Likelihood. For a slice of the i-th time series
yi,t+1:t+H , recall that by Equation (1), its direction is yi,t+1:t+H

σi,t
,

where σi,t = ||yi,t+1:t+H ||2. We define the distribution of the di-
rection as a VMF distribution, which is

p

(
yi,t+1:t+H

σi,t
;μi,t, κi,t

)
= CH(κi,t) exp

(
κi,tμ

T
i,tyi,t+1:t+H

σi,t

)
,

(3)

where σi,t is a random variable. We introduce a prior distribu-
tion p(σi,t) on σi,t, and obtain a tractable likelihood function of
yi,t+1:t+H , which is

p(yi,t+1:t+H) = p
(
yi,t+1:t+H |σi,t;μi,t, κi,t

)
p(σi,t), (4)

Let T denote the set of all forecast times selected for generating
training data, by taking the logarithm of Equation (4) and multiplying
it with -1, we have derived the NLL function as

L = −
N∑
i=1

∑
t∈T

log p (yi,t+1:t+H |σi,t;μi,t, κi,t)−
N∑
i=1

∑
t∈T

log p(σi,t)

= LV MF + LPrior on σ. (5)

2 In(z) is defined as (z/2)n
∑+∞

k=0
(z/2)2k

k!Γ(n+k+1)
, where Γ(·) is the Gamma

function.

Remark 3.1. In this work, the horizon H should be at least 2, oth-
erwise, the forecasting target is a scalar and hence has no direction.

Bound of Bessel Function. Specifically, omitting the constant terms,
LV MF is

LV MF = −
N∑

i=1

∑
t∈T

κi,tμ
T
i,tyi,t+1:t+H

σi,t︸ ︷︷ ︸
loss of angle

−
N∑

i=1

∑
t∈T

(
H

2
− 1) log κi,t +

N∑
i=1

∑
t∈T

log IH
2
−1

(κi,t)

︸ ︷︷ ︸
penalty on κi,t

, (6)

where the first part computes the cosine between the forecast average
direction μi,t and the direction of yi,t+1:t+H , and the second part
penalizes the magnitude of the forecast concentration parameter κi,t.

The NLL LV MF is not directly differentiable because the Bessel
function IH/2−1(·) cannot be written in a closed form [20, 10]. In ad-
dition, optimizing the Bessel function may cause an underflow prob-
lem when d is large or x is small [20]. Therefore, we alternatively
minimize the upper bound of

∑N
i=1

∑
t∈T log IH/2−1(κi,t).

We evaluate both the lower and upper bounds of the function
log Id(x)(d ∈ R and d ≥ 0, x ∈ R), and summarize the result
in Proposition 3.1.

We also visualize the difference between the upper and lower
bounds in Figure 3, which vividly illustrates the range of the approx-
imation error.
Proposition 3.1. Let Id(x) be the modified Bessel function of the
first kind, and m = d− �d�, then

log (Id(x)) < log (Im(κ)) +

�d�∑
v=1

log
κ

v + m− 1 +
√

(v + m + 1)2 + κ2)
,
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and

log (Id(x)) > log (Im(κ)) +

�d�∑
v=1

log
κ

v + m− 1
2 +

√
(v + m + 1

2 )
2 + κ2)

.

Proof. Apparently,

log (Id(x)) = log

⎛
⎝Im(x)

�d�∏
v=1

Im+v(x)

Im+v−1(x)

⎞
⎠

= log (Im(x)) +

�d�∑
v=1

log

(
Im+v(x)

Im+v−1(x)

)
.

By the Theorem 4 of Diego et al. 2016 [28], for any d ≥ 0

x

d− 1
2 +

√
(d + 1

2 )
2 + x2)

<
Id(x)

Id−1(x)
<

x

d− 1 +
√

(d + 1)2 + x2)
.

We complete the proof.

By Proposition 3, we use the following approximation of∑N
i=1

∑
t∈T log IH/2−1(κi,t) to compute LV MF for model train-

ing,

N∑
i=1

∑
t∈T

⎡
⎢⎣log (Im(κi,t)) +

�H
2
−1�∑

v=1

log
κi,t

v + m− 1 +
√

(v + m + 1)2 + κ2
i,t)

⎤
⎥⎦ ,

(7)

where m is 0.5 when H is odd and 0 the otherwise.
Prior on σ. The support of the prior distribution of σi,t should be
non-negative. We choose the truncated normal distribution [3] as
prior distribution for σi,t to ensure non-negativity, and substituting it
into LPrior on σ . We show next that one advantage of choosing trun-
cated normal distribution is to reduce LPrior on σ to a mean squared
loss with penalty.

The truncated normal distribution is an extension of the normal
distribution, which compress the range of a random variable from
(−∞,+∞) into an open interval (a, b) (−∞ ≤ a < b ≤ +∞).
A truncated normal distribution is determined by four parameters
m, γ, a, b. The parameters m, γ denote the location and shape pa-
rameters, respectively, while a, b denote the lower and upper bound
of the random variable. In our case, a = 0 and b = +∞. Technically,

p(σi,t;mi,t, γi,t) =

exp

[
− (σi,t−mi,t)

2

2γ2
i,t

]
√
2πγi,t

[
1− Φ

(
−mi,t

γi,t

)] , (σi,t ≥ 0) (8)

where Φ(·) denotes the cumulative distribution function of the stan-
dard normal distribution. Based on Equation (8) and omitting the
constant terms,

LPrior on σ =

N∑
i=1

∑
t∈T

(σi,t −mi,t)
2

γi,t︸ ︷︷ ︸
meaan squared loss of scale

+

N∑
i=1

∑
t∈T

⎡
⎣γi,t + Φ

⎛
⎝mi,t

γi,t

⎞
⎠

⎤
⎦

︸ ︷︷ ︸
penalty onmi,t, γi,t

,

(9)

where the essential part of LPrior on σ for being used as a loss func-
tion, is the computation of the squared difference between the fore-
cast average vector length mi,t and σi,t.
Training Loss. A forecasting model with model parameters θ is a
multi-output function

fθ(zi,t) = (fμ
θ (zi,t), f

κ
θ (zi,t), f

m
θ (zi,t), f

γ
θ (zi,t)),

where zi,t represents the model input for forecasting yi,t+1:t+H , and
fμ
θ (zi,t), f

κ
θ (zi,t), f

m
θ (zi,t), and fγ

θ (zi,t) are model outputs corre-
sponding to μi,t, κi,t, mi,t and γi,t respectively. Based on Equation
(7), the ultimate training loss is

L(θ) = LV MF (θ) + LPrior on σ(θ), (10)

where

LV MF (θ) (11)

=−
N∑

i=1

∑
t∈T

fκ
θ (zi,t)f

μ
θ (zi,t)

Tyi,t+1:t+H

||yi,t+1:t+H ||2

−
N∑

i=1

∑
t∈T

(
H

2
− 1) log f

κ
θ (zi,t) +

N∑
i=1

∑
t∈T

log Im(f
κ
θ (zi,t))

+

N∑
i=1

∑
t∈T

�H
2
−1�∑

v=1

log
fκ
θ (zi,t)

v + m− 1 +
√

(v + m + 1)2 + fκ
θ (zi,t)2)

, (12)

and

LPrior on σ(θ)

=
N∑
i=1

∑
t∈T

(||yi,t+1:t+H ||2 − fm
θ (zi,t))

2

fγ
θ (zi,t)

+

N∑
i=1

∑
t∈T

[
fγ
θ (zi,t) + Φ

(
fm
θ (zi,t)

fγ
θ (zi,t)

)]
. (13)

3.3 Model

The seq2seq architecture is based on Transformer [33], which adopts
an encoder-decoder structure with a multi-head self-attention mech-
anism to capture both long- and short-term dependencies. This
encoder-decoder structure has been demonstrated a significant con-
tribution to time series forecasting [38, 23, 22]. We visualize our
model architecture in Figure 2.
Encoder. We adopt a similar structure of encoder as the vanilla
Transformer [33], where all attention modules are modified to bet-
ter suit L(θ), and detailedly explained later. The encoder focuses on
the history of time series, of which time-index features are processed
via implicit neural representation (INR) as suggested in [37]. Differ-
ent from the vanilla Transformer, our encoder is composed of a stack
of one input layer as the first layer, and N identical layer namely
“encoding layer”. Each layer has two sub-layers, of which the first is
a multi-head attention mechanism, and the second is a position-wise
fully connected feed-forward network. We also employ a residual
connection around each sub-layer followed by layer normalization.
Both the time series and time-index features are directly fed into the
attention layer of the input layer, while only the history of the time
series is used for the residual connection around the attention layer.
Sequentially, the output of the former layer and the history of the
time series are fed into each of the encoding layers (Figure 2).

Remark 3.2. This design enhances the impact of the original time
series to capture its direction as a random vector better, while the
attention layers extract significant time-index features.

Decoder. Different from the encoder, the decoder structure is very
similar to the vanilla Transformer decoder [33], and is composed of
a stack of N identical layers but also with the modified multi-head
self-attention mechanism. Each of the identical layers consists of 3
sub-layers. The inputs of the decoder consist of the time-index fea-
tures of the future target processed via INR and the output of the

Y. Zhou et al. / VMFTransformer: An Angle-Preserving and Auto-Scaling Machine for Multi-Horizon Probabilistic Forecasting 2961



���������	
���	���


������ �������

�����������


����
��������

� �

� �

�

�

� ��

���

��

��

Figure 2: Model architecture. The encoder is composed of an input layer and N identical encoding layer, while the decoder is composed of N
identical layer (Left panel). The attention mechanism first passes the input sequence into convolution kernels for computing queries (Q), keys
(K), and values (V ), where “Conv, k1”, “Conv, k2”, and “Conv, k3” mean convolution of kernel size k1, k2, and k3 with stride 1 respectively.
The similarity between Q and K is measured by multiplying the co- sine of the angle by the difference of their norms.

encoder which is fed to the third sub-layer of each decoder (Figure
2). In addition, we do not conduct masking on the decoder as we are
performing direct forecasting and hence have no concern about using
future outputs [33].
Attention Mechanism. An attention function is to map a query and
a set of key-value pairs to an output, where the query, keys, values,
and output are all vectors [33]. To compute the attention function on
a set of queries simultaneously, all queries are usually packed into a
query matrix Q. The keys and values are also packed into matrices
K and V respectively [33].

The conventional attention function measures the similarities be-
tween queries and keys, which are row vectors of Q and K respec-
tively, by a ‘dot-product’ operation and feeds the similarities into a
softmax function to normalize the similarities summing to 1 [33].
Afterward, the output of the attention function is computed as the
weighted average of the values, where the weights are the outputs of
the softmax function. We adopt the multi-head convolutional self-

attention mechanism, which has effectively enhanced awareness of
local context, e.g. local shapes of time series [22].

We modify the similarity measurement between queries and keys
to better suit our objective function. We measure the similarity be-
tween a query vector and a key vector by computing the cosine of
the angle between them and multiplying it by the difference between
the lengths. For the rest of this article, we refer to this similarity
measurement as the “Angle&Scale” similarity. The softmax function
is then applied to obtain the weights of the values.

Technically, let L be the input length or lookback window
[37], the encoder attention mechanism of the input layer trans-
forms yi,t−L+1:t via a convolution kernel into a query matrix
Q = yi,t−L+1:t ∗ WQ (WQ ∈ R

k×1×dq ,Q ∈ R
L×dq ), and

transforms time-index features Xi,t−L+1:t = (xi,t−L+1, . . . ,xi,t)
(Xi,t−L+1:t ∈ R

L×d) into key matrix K = Xi,t−L+1:t ∗ WK

( WK ∈ R
k×d×dq ,K ∈ R

L×dq ) and value matrix V =
Xi,t−L+1:t ∗ W V (WK ∈ R

k×d×dv ,V ∈ R
L×dv ) respectively,

where ∗ denotes the convolution operator. The first two dimensions
of convolution kernels WQ, WK , and W V indicate the kernel
shape, while the last dimension indicates the number of kernels. All
inputs are convoluted with the first two dimensions of convolution
kernels to generate a scalar output and combined together along the
last dimension.

Let qi and kj be the i-th row vector of Q and the j-th row vector
of K respectively. The similarity between qi and kj is defined as

si,j =
qT
i kj

||qi||2||kj ||2
× exp

[
− (||qi||2 − ||kj ||2)2

]
. (14)

It should be noted that in Equation (14), the difference between
||qi||2 and ||kj ||2 is passed into a Gaussian kernel with a radial pa-
rameter of 1. This operation is to ensure the difference ranging from
0 to 1, such that the magnitude of the cosine and difference would be
at the same level.

Each row vector of the output of the attention layer O =
[o1, . . . ,ot]

T ∈ R
L×dv , is defined as the normalized weighted aver-

age of the row vectors of the value matrix V , concatenating its norm.
By Equation (15), we formalize this definition as

oi =

[ ∑t
j=1 softmax(si,j)v

T
j

||
∑t

j=1 softmax(si,j)vT
j ||2

◦ ||
t∑

j=1

softmax(si,j)v
T
j ||2

]
.

(15)

It should be noted that all subsequent encoding layers take the out-
puts of the former layer to compute K and V , but still use yi,t−L+1:t

to compute Q. The attention layers of the decoder also perform the
Angle&Scale similarity but use the same input to generate Q , K
and V via convolution kernels as shown in Figure 2.
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Table 1: Comparison of performance of VMFTransformer with competitive models on three public datasets. The best results are marked in
bold (lower is better).

Electricity Solar Traffic

H Models MAE MSE q-50-loss q-90-loss MAE MSE q-50-loss q-90-loss MAE MSE q-50-loss q-90-loss

PatchTST 0.0610 0.0081 0.1840 0.2291 0.1938 0.0936 0.5611 0.5678 0.2746 0.2251 0.4690 0.4367
DLinear 0.1069 0.0309 0.1161 0.1180 0.2110 0.1336 0.2319 0.2129 0.2317 0.2720 0.3418 0.3462
DeepAR 0.0167 0.0187 0.0734 0.0580 0.2619 0.3243 0.4626 0.3097 0.1667 0.2042 0.1526 0.1082
SimpleFeedForward 0.0152 0.0113 0.0784 0.0433 0.3023 0.4213 0.5341 0.3591 0.2751 0.3775 0.2518 0.2011
TFT 0.0251 0.0363 0.1107 0.0588 0.2748 0.3189 0.4855 0.2471 0.2164 0.2912 0.1981 0.1478
Transformer 0.0138 0.0144 0.0789 0.0500 0.3031 0.4502 0.5354 0.3502 0.1796 0.2050 0.1644 0.1087
Autoformer 0.1236 0.0252 0.1224 0.0653 0.2106 0.1684 0.2233 0.2112 0.2612 0.1541 0.2156 0.1454
Informer 0.0844 0.0144 0.2167 0.1816 0.2607 0.1823 0.3456 0.2480 0.4620 0.6446 0.6055 0.6649

24

VMFTransformer 0.0116 0.0077 0.0722 0.0427 0.2092 0.1333 0.2125 0.1371 0.1567 0.1185 0.1490 0.0935

PatchTST 0.0957 0.0169 0.1171 0.1189 0.1836 0.0942 0.3462 0.3976 0.0898 0.0179 0.3041 0.3019
DLinear 0.1559 0.0595 0.1750 0.1874 0.2129 0.1250 0.2458 0.2326 0.2633 0.3096 0.3879 0.3968
DeepAR 0.0224 0.0300 0.1463 0.0862 0.3076 0.3806 0.5613 0.2349 0.1712 0.2115 0.1553 0.1012

SimpleFeedForward 0.0210 0.0281 0.1397 0.0730 0.3228 0.4122 0.5890 0.2557 0.2590 0.2901 0.2348 0.1360
TFT 0.0286 0.0468 0.2242 0.1122 0.3335 0.5125 0.6085 0.2030 0.1670 0.1952 0.1514 0.1019
Transformer 0.0198 0.0295 0.1172 0.0670 0.3463 0.4903 0.6318 0.3115 0.1918 0.2081 0.1739 0.1063
Autoformer 0.1197 0.0241 0.1342 0.0790 0.2784 0.1843 0.2354 0.1588 0.2231 0.1746 0.2559 0.1948
Informer 0.1460 0.0335 0.3753 0.2440 0.2274 0.1616 0.5434 0.2960 0.5549 0.8068 0.7194 0.6800

168

VMFTransformer 0.0128 0.0204 0.0839 0.0597 0.2136 0.1390 0.2318 0.1473 0.1567 0.1185 0.1225 0.1099

PatchTST 0.0843 0.0623 0.4222 0.2998 0.3112 0.2975 0.5221 0.2723 0.5836 0.4726 0.7957 0.4704
DLinear 0.2529 0.1401 0.2802 0.3319 0.2249 0.1322 0.2598 0.2319 0.4537 0.5847 0.6692 0.7092
DeepAR 0.0323 0.0897 0.1805 0.1762 0.2220 0.2004 0.3543 0.1451 0.2958 0.4112 0.2724 0.1883
SimpleFeedForward 0.0239 0.0491 0.1336 0.0854 0.2342 0.2226 0.3738 0.1603 0.2890 0.3501 0.2661 0.1579
TFT 0.0313 0.0809 0.1748 0.0975 0.2027 0.2141 0.3234 0.1084 0.2069 0.3467 0.1906 0.1266
Transformer 0.0173 0.0321 0.1246 0.0829 0.2170 0.2536 0.3463 0.1600 0.2047 0.3921 0.1885 0.1226

Autoformer 0.3857 0.2345 0.3384 0.3138 0.4082 0.2574 0.6827 0.5837 0.3897 0.3277 0.3751 0.2969
Informer 0.1698 0.0457 0.3897 0.2496 0.2647 0.2599 0.5601 0.3097 0.6165 0.8749 0.8969 0.7540

720

VMFTransformer 0.0147 0.0136 0.1028 0.0798 0.2018 0.2198 0.2556 0.5455 0.2583 0.3029 0.5738 0.3917

Figure 3: Upper (a) and lower (b) bounds of the Bessel Function. The difference between the upper and lower bounds is shown in (c).

Model Output. Recall that in Section 3.2, Equation (10), (11) and
(13) require that there are 4 outputs corresponding to μi,t, κi,t, mi,t

and γi,t respectively. Let hi,t denote the output of the decoder for
forecasting yi,t+1:t+H . We apply a fully-connected layer to hi,t to
obtain μ,

μi,t =
Wμhi,t + bμ

||Wμhi,t + bμ||2
.

For κi,t, mi,t and γi,t, we apply a fully connected layer with soft-
plus activation to ensure positivity. Specifically,

κi,t = log(1 + exp(wκhi,t + bκ)),

mi,t = log(1 + exp(wmhi,t + bm)),

γi,t = log(1 + exp(wγhi,t + bγ)).

3.4 Prediction

At the prediction stage, there is no closed-form solution for comput-
ing the quantiles of yi

T+1:T+H . We alternatively draw random sam-
ples from the probability density function of yi

T+1:T+H and estimate
each quantile empirically.
Random sampling. We first sample the scale parameter σ according

to Equation (8) and next, we draw a sample of yi
T+1:T+H according

to Equation (3). Sampling yi
T+1:T+H via Equation (3) is equivalent

to first sampling a unit vector from a VMF distribution and multiply-
ing it by σ. An H-dimensional random unit vector y subjecting to a
VMF distribution with parameters μ, κ, can be decomposed as

y = μ+ v
√

(1− t2), (16)

where v is a uniformly distributed unit tangent at μ, and t ∈ [−1, 1]
subjects to

p(t) =
(κ
2
)
H
2
−1 exp(κt)(1− t2)

H−3
2

Γ
(
H−1

2

)
γ
(
1
2

)
IH−1

2
(κ)

(17)

Therefore, we respectively sample t and v, and construct a sample
y by Equation (16). More details on the decomposition defined by
Equation (16) can be referred to in [24].

4 Experiment

4.1 Bessel Function Approximation Error

We evaluate the approximation error of the logarithm of the Bessel
function given by Equation (7). We compute both the upper and
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Table 2: Comparison of the sensitivity of the VMFTransformer to the sampling size at the prediction step. The prediction length (horizon) is
set to H=24 and H=168. Sample size (S) is set to 100, 1000, 10000, and 100000. The best results are marked in bold (lower is better). The
stability of performance is measured by the average (AVG) divided by the standard deviation (STD).

Samplesize 100 1000 10000 100000 AVG STD STD/AVG

H=24 MAE 0.2341 0.2339 0.2424 0.2368 0.2368 0.0040 0.0168
MSE 0.1846 0.1828 0.1995 0.1924 0.1898 0.0077 0.0406
50-loss 0.3243 0.3238 0.3370 0.3274 0.3281 0.0061 0.0187
90-loss 0.2435 0.2667 0.2490 0.2823 0.2604 0.0177 0.0678

H=168 MAE 0.2000 0.2014 0.2005 0.2002 0.2005 0.0006 0.0030
MSE 0.1303 0.1307 0.1286 0.1305 0.1300 0.0010 0.0077
50-loss 0.2830 0.2848 0.2834 0.2833 0.2836 0.0008 0.0028
90-loss 0.1733 0.1724 0.1749 0.1772 0.1744 0.0021 0.0118

Table 3: Comparison of similarity measurements of attention module.
The best results are in bold (lower is better).

Similarity Angle&Scale Dot-product

H=24 MAE 0.2339 0.2389
MSE 0.1828 0.1749

50-loss 0.3238 0.3317
90-loss 0.2667 0.2707

H=168 MAE 0.2014 0.2082
MSE 0.1307 0.1316
50-loss 0.2848 0.2950
90-loss 0.1724 0.2250

lower bounds on a grid where κ ranges from 1 × 10−7 to 100,
and d ranges from 2 to 100. We present the results in Figure 3.
Besides, we observe that the logarithm of the Bessel function is
bounded in a range of (-2093.07, 97.77) on the grid. The minimum
and maximum values are achieved at (κ, d) = (1× 10−10, 100) and
(κ, d) = (100, 2) respectively. Recall that the underflow problem
usually appears when d is large (empirically larger than 5) and κ is
small; in our case, we avoid this problem via the approximation. In
summary, the difference between the upper and lower bounds ranges
from 0 to 0.72, and on about 95.7% of all grid points, the difference
is smaller than 0.3. Since the absolute approximation error is smaller
than the difference, we subsequently conclude that the upper bound
of the absolute approximation error is smaller than 0.3.

4.2 Real-world Data Experiment

Dataset. We evaluate the performance of VMFTransformer on three
public datasets, which are electricity, solar energy, and traffic. Elec-
tricity contains hourly time series of the electricity consumption of
370 customers ranging from 2012-01-01 to 2014-08-31 [29]. Solar
energy, ranging from 2006-01-01 to 2006-08-31, consists of 137 5-
minute solar power time series obtained from the Monash Time Se-
ries Forecasting Repository [13]. All solar power time series are ag-
gregated to 1-hour granularity. Traffic, also used in [29], contains the
hourly measured occupancy rate, between 0 and 1, of 963 car lanes
of San Francisco Bay Area freeways, ranging from 2008-01-02 to
2008-06-22. We follow the standard protocol and split all datasets
into training, validation, and test sets in chronological order by the
ratio of 7:1:2.
Implementation details and Baselines. Our method is trained using
the ADAM optimizer [18] with an initial learning rate of 10−3. The
batch size is set to 64. The training process is early stopped within 10
epochs. Our method contains 2 encoder layers and 2 decoder layers.
All experiments are implemented in PyTorch [26]. We include a total
number of 8 baseline methods. Specifically, we select 5 state-of-the-
art transformer-based models: Informer [43], Autoformer [38], Tem-
poral Fusion Transformer (TFT) [23], the vanilla Transformer [33]
[22], and PatchTST [25] one RNN based method: DeepAR [29], one

recent state-of-the-art one-layer linear model: Dlinear [41], and one
simple feed-forward neural network.
Main Results. We evaluate models with three prediction lengths: 24,
168, and 720, corresponding to one-day, one-week and one-month
horizons, respectively. We use three metrics, i.e., mean absolute er-
ror (MAE), mean squared error (MSE), and q-risk, to evaluate the
performance of different methods. The first two measure the perfor-
mance for forecasting the mean value, while the last quantifies the
accuracy of a quantile q of the predictive distribution [29]. We set
q = 50 and 90 [29]. The results are presented in Table 1. VMFTrans-
former mostly outperforms other baseline models. VMFTransformer
overall gives 46.9% MAE reduction, 52.3% MSE reduction, 40% q-
50-loss reduction, and 29.4% q-90-loss reduction. Compared to the
two most recent methods PatchTST and DLinear, VMFTransformer
outperforms in general.

4.3 Ablation Studies.

We use the solar energy dataset for the ablation study. Sensitiv-

ity to Sampling Size. Since the prediction is conducted by random
sampling, we study if the model performance is sensitive to sam-
pling size. The sampling size (S) is set as 100, 1, 000, 10, 000, and
100, 000. In table 2, we show that the performance of VMFTrans-
former is relatively stable, especially when the prediction length is
168 (STD/AVG< 1.2%). When the prediction length is short (24),
S = 1000 tends to show the optimal performance. Therefore, we rec-
ommend S = 1, 000 for practical use. Attention Module. We com-
pare Angle&Scale similarity versus the original dot-product similar-
ity for the attention module. We set the prediction length at H=24 and
H=168. Table 3 shows that the Angle&Scale similarity outperforms
the dot-product similarity in most cases (7 out of 8). Time Com-

plexity. Our Angle&Scale similarity requires more computation than
the original dot-product similarity. The popular Transformer-based
methods such as Reformer, Informer, and Autoformer have a theo-
retical time complexity of O(LlogL), while the vanilla Transformer
is O(L2), where L is the encoding length. The theoretical time com-
plexity of our VMFTransformer is still O(L2), which is the same as
the vanilla Transformer.

5 Conclusion

We propose a probabilistic forecasting model termed VMFTrans-
former, which captures the temporal dependence of multi-horizon
targets. Extensive experiments demonstrate that our model’s perfor-
mance is state-of-the-art on public datasets. The novel similarity
measurement termed the “Angle&Scale” similarity is effective for
multi-horizon time series forecasting.
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