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Abstract. Denoising diffusion generative models are state-of-the-
art methods for generating synthetic images that have also proved
successful in tabular and graph synthetic data generation. However,
their computational complexity has limited the application of these
techniques to graph data, focusing usually on smaller graphs, such
as those used in molecular modeling. In this paper, we propose
SAGESS, a discrete denoising diffusion approach, which is able to
generate large real-world networks. Through a generalized divide-
and-conquer framework, SAGESS overcomes the scaling limitations
of the diffusion model DIGRESS, by sampling a covering of sub-
graphs of the initial graph, training a DIGRESS module, and finally
reconstructing a synthetic graph using the subgraphs that have been
generated using the DIGRESS module. We evaluate the quality of the
synthetic data sets against several competitor methods by comparing
graph statistics between the original and synthetic samples, as well
as evaluating the utility of the synthetic data set produced by using
it to train a task-driven model, namely link prediction. In our exper-
iments, SAGESS outperforms most of the one-shot state-of-the-art
graph generating methods by a significant factor, both on the graph
metrics and on the link prediction task.

1 Introduction

Synthetic data are key to many methods in machine learning and
statistics, and their generation has sparked a significant amount of
attention in recent years. Beyond generating appealing synthetic im-
ages using Dall-E or asking ChatGPT to write prose, many real world
applications benefit greatly from synthetic data generation, for tasks
including data augmentation in the training of classifiers/regressors
[29], privacy protection of sensitive data [5] or removing bias from
data sets [27]. Synthetic graph generation for modeling social inter-
actions, generating new chemical compounds, or forecasting trans-
actions requires efficient methods.

Many complex data sets can be represented as networks, and hence
synthetic graph generators are of particular interest. Often these net-
works are viewed as realizations of a random process. The design
of generative models for random graphs has a rich history, coming
from probabilistic and structural assumptions with traditional meth-
ods such as early work in Erdős-Rényi graphs [10], stochastic block
∗ Corresponding Author. Email: slimnios@turing.ac.uk

models [15], exponential random graphs [23] or the Barabási-Albert
model [4]. These methods often oversimplify the underlying complex
structure of the graphs and are then not able to capture the distribu-
tions arising from real-world scenarios. Thus, more recently there
has been an increasing interest in designing deep models for syn-
thetic graph generation, which allows for more flexible algorithms
that are able to capture the intricacies of real networks with com-
plex dependencies between the edges. Among approaches that have
been proposed for graph generation sit autoregressive methods which
generate nodes and edges step by step. Examples include GraphRNN
[34] and GRAN [18], which improves modeling of long-term depen-
dencies using a graph-based attention mechanism. Additional meth-
ods include autoencoder based approaches, such as GraphVAE [25],
and adversarial approaches such as [6]. These are only a few meth-
ods; detailed reviews are found e.g. in [11] or in [12].

Formally, creating a synthetic graph generator is equivalent, either
explicitly or implicitly, to estimating, or sampling from, a probabil-
ity distribution over space of possibly directed, possibly weighted
and perhaps attributed graphs. When many independent realizations
from the unknown distribution are available, then standard estima-
tion methods are often successful. Yet, many real world graph data
sets consist of only a single graph, either because it is expensive
to measure, or because of the nature of the data, for example there
may only exist one instance of a global social network. Thus, there
is interest in the more difficult task of approximating the underlying
probability distribution only viewing a single sample. Classical mod-
els often navigate this task by making strong assumptions, such as an
Erdős-Rényi model, which assumes that the edges are independent
and identically distributed (i.i.d.). Recent deep learning methods of-
ten approach this challenge by the structured model of a GAE/GVAE
or by learning the distribution over subsamples of nodes and edges;
an example is NetGAN, an adversarial approach which relies on ran-
dom walks [6]. Implicitly this approach assumes that the underlying
process that generated the network is related to these samples.

From a different angle, after the superb performances of Denoising
Diffusion Models [14, 26] on image generation, various papers have
applied such models to graph learning, mostly for molecular genera-
tion such as GeoDiff [30] or chemical compound design [24]. More
versatile models have been introduced, such as DIGRESS [28], a dis-
crete denoising diffusion graph model that is able to generate high
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quality graphs with node and edge attributes. One of the main assets
of denoising diffusion models is not having to rely on adversarial
training, but they still need a large data set to train. The implication
of this is that models such as DIGRESS do not adapt well when the
task is to generate one large graph from a single sample. HIGGS
from [8] uses a hierarchical sampling approach to improve scala-
bility; its adaptation using DIGRESS is called EDGE-DIGRESS. In a
related fashion, EDGE [7] uses a discrete diffusion model in conjunc-
tion with a sparsification of the nodes by considering only a subset of
the nodes as “active” at every step. [16] provide a hierarchical graph
generation method based on explicit multinomial probabilities.

In this paper, instead we propose a denoising-based diffusion
model by leveraging a divide-and-conquer scheme, which allows us
to generate samples from larger single graphs than DIGRESS would
permit.

Our main contributions can be summarized as follows.
•We introduce graph subsampling methods, to break large graphs

into a trainable data set.
• We propose SAGESS (SAmpling Graph dEnoiSing diffuSion

model), a pipeline with a DIGRESS module which combines small
samples to sample a large graph.

• We propose a task-driven evaluation by training link prediction
GVAE on synthetic data and testing on real data.

The paper is structured as follows. We first set up the notations for
the rest of the paper, as well as review the DIGRESS model, while
also elaborating on its limitations. We then state the problem, and
then present our solution framework SAGESS, which unfolds in two
sections: first, the sampling methods to obtain a training data set, and
second, the reconstruction pipeline of the synthetic graph. Next, we
present our experimental setup and results. Finally, we discuss po-
tential limitations and future work. An ablation study as well as a
discussion of the sampling methods, hyperparameters, and computa-
tional resources are found in the Supplementary Information (SI). [1]
The code to our model is available at

https://github.com/Slimnios/SaGess.

2 Graph Diffusion Model and Scalability

Notations and definitions presented in this section will be used
throughout this paper. Graphs in this paper are denoted as G =
(V,E) where V is the set of |V | = n nodes and E is the set of
|E| = e edges. Each node is of one of a types, and each edge is of
one of b types. We associate with G the matrices X ∈ R

n×a where
Xi,: is the one-hot encoding for the type

of node i, and E ∈ R
n×n×b where Ei,j,: is the one-hot encoding

for the feature of the edge between nodes i and j. We denote by
Pk(V ) the set of all k-point subsets of V and by Sk(G) the set of all
possible subgraphs ofG of size k. The subgraph ofG induced by the
nodes in S is denoted by G[S]; we also refer to such graphs as node
induced subgraphs.

2.1 Graph Generation using Discrete Denoising
Diffusion Model: DIGRESS

Here we review some key aspects of DIGRESS. DIGRESS [28] is
currently one of the most efficient tools in graph generation. Tak-
ing as input a data set of a variety of graphs, it learns a denoising
process in discrete space and is able to mimic the input graphs with
remarkable precision. A key aspect of this method, and more gener-
ally graph generation methods based on diffusion models [13, 28], is
the reliance on a discrete space noise scheduling. Indeed, instead of

the standard Gaussian noising and denoising procedure, these frame-
works propose to add discrete noise iteratively via random edge and
node addition and deletion.

Traditionally, these models are based on a forward and a reverse
Markov process. For a sample x, a forward process q(x1:T |x) =∏T

1=t q(x
t|xt−1) generates increasingly noisier samples up to get-

ting white noise; here T is a hyperparameter. Then the model learns
a reverse process pθ(x1:T ) = p(xT )

∏T
1=t q(x

t−1|xt) that aims to
denoise xT to obtain a synthetic sample.

The DIGRESS model takes as state space the set of node types and
of edge types. DIGRESS then defines the transition probabilities from
one state to another for nodes and edges through the noise matrices
[QX ]ti,j = q(xt = j|xt−1 = i) and [QE ]

t
i,j = q(et = j|et−1 = i)

whereQ is chosen so that the Markov chain converges to the relative
type frequencies in the initial population. Then, to get a noisy sample
Gt = (Xt, Et) each node and each edge type is sampled from the
categorical conditional distribution q(Gt|G) = (XQ̄t

X , EQ̄t
E) with

Q̄t
X = Q1

X . . . Qt
X and Q̄t

E = Q1
E . . . Qt

E .
The denoising component of the DIGRESS model is a denois-

ing neural network φθ parametrized by θ. It is trained by optimiz-
ing the cross-entropy loss (c-e) between the predicted probabilities
p̂ = (p̂X , p̂E) and the true graph G,

l(p̂G, G) =
∑

1≤i≤n

c-e(xi, p̂
X
i ) + λ

∑

1≤i,j≤n

c-e(eij , p̂
E
ij), (1)

where λ ∈ R
+ is a hyperparameter.

The trained network can be used to generate synthetic graphs via
the estimation of the reverse diffusion pθ(G

t|G) using p̂G, as fol-
lows. We put

pθ(x
t−1
i |xi = x,Gt) = q(xt−1

i |xi = x, xt
i)1(q(x

t
i|xi = x) > 0)

and

pθ(e
t−1
ij |eij = e,Gt) = q(et−1

ij |eij = e, etij)1(q(e
t
ij |eij = e) > 0),

and we set

pθ(x
t−1
i |Gt) =

∑

x

pθ(x
t−1
i |xi = x,Gt)p̂Xi (x),

pθ(e
t−1
ij |Gt) =

∑

x

pθ(e
t−1
ij |eij = e,Gt)p̂Eij(e),

to write

pθ(G
t−1|Gt) =

n∏

i=1

pθ(x
t−1
i |Gt)

∏

1≤i,j≤n

pθ(e
t−1
ij |Gt).

The sampled Gt−1 serves as input of the denoising network at the
next time step. This derivation shows the complexity of the calcu-
lations; when the numbers of types, and the network, and T are all
small, they are feasible, but large networks with many different types
can pose a challenge. More details are in the Supplementary Infor-
mation (SI).

Overall, DIGRESS can perform extremely well for generating
small graphs with attributes. Unfortunately, the complexity of DI-
GRESS and the way the model is set up prevents it from being used
it to sample one large graph. The complexity lies in the dimensions
of the matricesX, Q̄t

X ,E and Q̄t
E as at least the edge matrices scale

in n2 times the number of attributes. It is indeed specified in [28]
that DIGRESS has complexity Θ(n2) per layer, due to the attention
scores and the predictions for each edge. Hence, not only we need
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to store these matrices in memory for every diffusion step, but we
also need to learn T dense matrices QE to define the Markov transi-
tions. This is fairly reasonable for small graphs, but starts to become
computationally difficult when the number of nodes in the graph in-
creases. Moreover, supposing we are able to run DIGRESS on large
graphs, we cannot train it on one single graph. DIGRESS, much like
other deep-learning algorithms, thrives when having access to a large
training set, which may not be available. Thus, there is considerable
scope for amendments of the scalability issues of DIGRESS. This
provides the motivation for proposing our framework based on sam-
pling from large graphs.

3 A Sampling Graph Denoising Diffusion Model
Generator (SAGESS)

This paper addresses the task to generate a single graph from a unique
observation. We do not have a large training set of graphs G available
to train any type of diffusion model. Our solution, which we denote
as SAGESS and which is visualized in Figure 1, can be summarized
as follows. First, we produce G – a set of graphs issued from the
initial graph G. Next, we employ DIGRESS to create samples us-
ing the data set G as training data. Finally, we rebuild a graph from
the trained diffusion model in a systematic fashion, paying particular
care to match the node ids in the samples.

3.1 Graph Sampling and Covering

The first step is to construct a representative data set to train DI-
GRESS. We propose three sampling schemes to capture different
structural properties of the graph. Each method addresses one or
more properties of the graph, from local to more global ones. De-
pending on the real world graph to which we apply SAGESS, some
sampling schemes might be more effective than others; for instance,
ego networks might benefit more from a local sampling procedure,
whereas communication data sets, for instance, might benefit more
from more a global sampling procedure such as random walks, to
capture long range dependence between edges. More discussion on
the choice of sampling methods is found in Section 6.

Uniform Node Sampling (Unif): We sample a set of node induced
subgraphs by selecting k sized subsets of nodes Sk uniformly at ran-
dom. We note that this sampling scheme is invariant under permuta-
tion of the nodes. Based on results from [20], if p denotes the proba-
bility of selecting a node, thenΘ(p−2 log n log(1/δ)) uniformly node
induced subgraphs suffice for reconstruction with probability at least
1 − δ. In our setting, p = k/n. To give a broad sense to the number
of subgraphs we need to sample, for a graph with n = 1, 000 nodes,
suppose we select uniformly at random 2 log(n) nodes. We would
then need Θ(4 log3(n) log(1/δ)) subgraphs of size 20 to reconstruct
G. In practice we set the data set of samples to 10, 000 graphs. We
provide an ablation study on this parameter as well as a graph cover-
age analysis in the SI.

Random Walk Node Induced Subgraph (RW): The second sam-
pling method is based on sampling from subgraphs induced by ran-
dom walks starting from every node in the graph G. The idea is
straightforward: for each node v1 of the n nodes in V we gen-
erate a k step random walk wk = {v1, . . . , vk} starting from
v1. Then we obtain the node induced subgraph from those walks
G[wk]. We repeat this construction d times. This gives us a data set
G = {G[wk

1 ], . . . , G[wk
d×n]}, where d is a hyper-parameter control-

ling the number of sampled graphs per node. Using results by [3]

and [9], heuristically, after order n2 log(n) steps of the walk, with
high probability all nodes in the network are covered; see the SI for
additional discussion.

2-hop Neighborhood Sampling (Ego): The last sampling method
is based on sampling, from every node, a 2-hop neighborhood with
random node deletion. As a 2-hop neighborhood can cover most of
the graph, we aim for small samples to be able to train DIGRESS,
with ideally more than one subgraph including each node. We fix the
maximum size of a subgraph generated from the 2-hop neighborhood
of a node to be k. If the neighborhood is larger than k, we delete (the
integer part of) half of the nodes from the neighborhood uniformly at
random. We repeat this until there are less than k nodes in the largest
connected component; we denote this resulting node set by N k(v).
Again, we obtain its node induced subgraph G[N k(v)]. For k small
enough, there is randomness in our modified 2-hop neighborhoods.
We generate d subgraphs per node, with d defined previously, pro-
ducing a data set G := {G[N k

i (vj)], i = 1, . . . , d, j = 1, . . . , n}.
The algorithm is given in Algorithm 1. Similarly as for random walk
sampling, heuristically, with high probability all nodes are covered
after order n2 log n steps; see SI for details. [2] gives further theoret-
ical guarantees for this sampling procedure.

Algorithm 1 Ego Sampling
Input: G, d = � number-of-subgraphs /n�
Output: G
1: for i ∈ {1, . . . , n} do

2: for j ∈ {1, . . . , d} do

3: Gi = N (vi)
4: while |Vi| > k do

5: choose uniformly � |Vi|
2

� nodes from Vi; call this set Si

6: delete the nodes in Si from Gi

7: retain the largest connected component of Gi

8: end while

9: end for

10: end for

Each of these subgraph sampling methods provides a graph train-
ing set for DIGRESS which is obtained from one single graph. More-
over, following [20], we produce enough samples to have a good
chance to cover each node and edge in the uniform sampling scheme,
with the heuristic that this should also be adequate for the denser
sampling schemes. We also shuffle the training data set G before
feeding it to DIGRESS. Next, we detail how SAGESS reconstructs
the initial graph from the trained model.

3.2 Node Labeling and Reconstruction

Our SAGESS model first samples subgraphs to train DIGRESS, be-
cause DIGRESS is only able to generate small graphs from the train-
ing set G it learns from. As the nodes in those graphs, if not assigned
attributes, are just rows in an adjacency matrix, without intervention
in general it may not be possible to merge the resulting collection of
small graphs into a single graph with uniquely identifiable nodes.

This is where the ability of DIGRESS to handle node attributes is
important. We set the initial node ids as node features on the sub-
graphs to enable identification after generating synthetic samples.
In detail, to every graph Gk

i ∈ G we associate a feature matrix
Xi ∈ R

k×n, where k is the number of nodes in Gk
i and n the num-

ber of nodes in G, so that Xi is a one-hot encoding of the node id
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Figure 1: SAGESS Diagram

Algorithm 2 SAGESS

Input: G: Sample n× d samples using Unif/Ego/RW

Output: Gsyn

1: Train DIGRESS with G
2: while |Esyn| < |E| do

3: generate synthetic subgraph Ssyn

4: add new unique edges from (Ssyn) to Gsyn

5: end while

in the initial graph. This enables SAGESS to learn the local graph
structure as we identify the nodes with the attribute. We then gener-
ate enough small graph samples with DIGRESS and agglomerate the
new edges and nodes uniquely until we match the edge count in the
initial graph G. The agglomeration step unfolds as follows. We start
with the first generated graph. Then as long as the number of edges,
|E|, in the original graph is not reached, we generate a new synthetic
graphGk

syn with DIGRESS and take the graph union with the current
graph. The sampling process stop when |Esyn| > |E|; ifGl

syn is the
last graph sampled, we add all the new edges to Gsyn regardless of
whether the new edge count exceeds |Esyn|. As the generated sub-
graphs tend to be small, the overshoot tends to be small also. The
SAGESS algorithm is shown in Algorithm 2.

Combining these stages gives the SAGESS pipeline a diffusion
model which can generate large graphs. Further, as it builds on DI-
GRESS, SAGESS comes with theoretical guarantees inherited from
DIGRESS, in particular the permutation equivariant architecture and
a permutation invariant loss. Exchangeability of the generated dis-
tributions then follows under the exchangeable SAGESS sampling
schemes, permuting the order of the samples in the input to destroy
any potential sequential dependence. These properties ensure that
SAGESS can learn efficiently from the data.

4 Experimental Evaluation

Here we evaluate our framework against state-of-the-art graph gen-
eration methods on four real world data sets and one synthetic data
set. First, we compare graph statistics to evaluate the quality of the
generated graphs. Then we train a Variational Graph Auto-Encoder
(GVAE) to evaluate the utility of the synthetic data generated on a
link prediction task.

4.1 Benchmark models

To benchmark our approach, we compare against several established
competitor methods which construct synthetic data based on a single

sample. To make a meaningful comparison, we have selected meth-
ods from multiple different generation approaches, from classical ap-
proaches, through adversarial approaches, and approaches based on
a low-rank approximation. They are as follows:
DCSBM [17] A classic approach from the network science litera-
ture, the so-called degree corrected stochastic block model1 assumes
a classic stochastic block model, where the nodes are divided into
blocks, and the probability of a connection between a pair of nodes
is a function of their block membership and their degree.
NetGAN [6] An adversarial approach leveraging the GAN frame-
work, to learn the distribution of biased random walks which are then
combined via a transition matrix into a sampled graph. Edges in the
sampled graph are sampled (mostly) uniformly at random. 2

EDGE [7] Another attempt at scalability for graph diffusion model
generator is EDGE, which initially generates a node degree distri-
bution and the induced adjacency matrix, preserving sparsity. Then
it applies a diffusion model to this setup while keeping the sparcity
during the noising and denoising process. 3

CELL [22] Amodification of NetGAN which replaces the GAN for-
mulation with a formulation based on a low-rank approximation, see
paper for full discussion. In this formulation, sampled graph edges
are again sampled in an edge independent manner.4

4.2 Data sets

We evaluate our method on four real world data sets from the torch
geometric package5 and one synthetic data set, including sparse/less
sparse and directed/undirected graphs:
EuCore: An e-mail communication network of a large European re-
search institution, from [33]. Nodes indicate members of the institu-
tion, and an edge between a pair of members indicates that they ex-
changed at least one email. This graph has 1, 005 nodes and 16, 706
edges, with an edge density of 0.03311.
Cora: A citation data set from [32]. Every node is an article and an
edge links two nodes if one cites the other. It consists of a directed
graph with 2, 708 nodes and 10, 556 edges, with an edge density of
0.00288.
Wiki: A data set from Wikipedia pages from [31] with 2, 405 nodes
and 12, 761 undirected edges, with an edge density of 0.004414.
Facebook: This data set consists of friend lists from Facebook pub-
lished in [19]. This data set initially contains 10 graphs, but we

1 Implementation: https://github.com/microsoft/graspologic
2 Implementation: https://github.com/danielzuegner/netgan
3 Implementation:https://github.com/tufts-ml/graph-generation-edge
4 Implementation: https://github.com/hheidrich/CELL
5 https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
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only use the largest one (second graph) which has 1, 045 nodes and
27, 755 undirected edges, with an edge density of 0.05088.
SBM: This is a standard directed Stochastic Block Model generated
graph, with 4 blocks of sizes 400. We set the inner-cluster density
to 0.2 and the across-cluster density to 0.01. It has edge density of
0.05731.

4.3 Experiments

We evaluate our framework using three different experimental set-
tings. In our first experiment, we evaluate how close the structural
properties of the generated graphs from each of the methods are to
the original graph. For evaluation we choose the set of standard met-
rics from [22] such as number of nodes (ignoring isolated nodes),
average local clustering coefficient, assortativity and triangle count.
As some generation methods fix the number of nodes and others fix
the number of edges, we report these numbers also but do not assess
the methods on them.

To further explore our pipeline, we compare the effectiveness of
each of our sampling schemes using the same approach. We produce
and compare synthetic graphs for all data sets for the random walk
(RW), and 2-hop modified neighborhood (Ego) sampling schemes.
For the uniform (Unif) sampling scheme, we compare only on Eu-
Core, Facebook and SBM, as this sampling scheme struggles on the
remaining data sets, due to their sparsity.

As the induced subgraphs in the training set from the uniform sam-
pling tend to have very few edges (of order of magnitude n), SAGESS

may struggle to find the right amount of edges to match the edge
count of the initial graph. This observation illustrates the benefit of
selecting an appropriate sampling scheme.

The second experiment consists of a utility test; we want to evalu-
ate the usefulness of the synthetic data set produced. Hence, we pro-
pose to train a Variational Graph Auto-Encoder for link prediction;
the GVAE is trained on the generated synthetic data.

Once trained, we obtain a latent space from the synthetic data set
on the set of nodes belonging to the real data set. The evaluation
is the following: we compute the probability of each possible edge
using the GVAE encodings and evaluate them on 90% of the edges
of the real graph. In order to evaluate the precision and obtain the
precision scores in Table 2 we sample as many negative edges at
random as there are positive ones in the training data set. This can
also be interpreted as a test on how efficient the synthetic data set
can be, when employed for a data augmentation task.

Finally, we also explore the ability of SAGESS to produce mean-
ingful smaller graph samples. Indeed, it might not be needed to gen-
erate a graph of the same size as the initial graph G. Our goal is to
demonstrate that SAGESS can also generate smaller scale synthetic
graphs in terms of edges that are structurally similar to the initial
graph. We generate graphs of sizes ranging from 10% to 100% of
the number of edges in the initial graph, and observe the computed
metrics; Figure 2 shows that they approach the true values. All ex-
perimental parameters and extended analysis can be found in the SI.

4.4 Runtimes, Comments and Improvements

The implementation of SAGESS has been optimised to mitigate two
main potential bottlenecks. The first one is related to the feature ma-
trix being one-hot encoded; this results in a sparse matrix that could
only be addressed by a single core. This bottleneck has been ad-
dressed, so that SAGESS is able to assign multiple workers to the
dataloader. The second bottleneck arises from the subgraph sampling

procedure. As subgraphs are sampled one node at a time, although
uniform and random sampling are very fast, ego-sampling can be
quite time-intensive, depending on the data set. This bottleneck has
been navigated by a modification which allows to sample subgraphs
for multiple nodes in parallel.

5 Results

Throughout our experiments, we have shown that SAGESS is a
powerful tool which can create high quality synthetic graphs. This
is demonstrated in our first experiment, where the statistics on the
synthetic graphs (Table 1) produced by SAGESS perform well in
comparison to the benchmark models, across all the benchmark
data sets. In particular, the SAGESS-RW method performs well in
the first four data sets, although it struggles to some extent in the
synthetic SBM data set. It is worth noticing that SAGESS tends
to generate local structures, such as triangles, which are closer to
the input network than those of the other baselines. This is due to
DIGRESS being efficient at sampling motifs, and the subgraphs used
for training contain many of them due to the nature of the sampling,
which samples subgraphs with interdependencies between the edges.
It is important to point out that even if we train on local substructures
via the subgraphs, we manage to accurately obtain global metrics
like characteristic path length or clustering coefficient. In contrast,
EDGE, by design, will match degree related statistics accurately but
will perform poorly on the global and structural metrics.

In our second experiment, link prediction, with the results pre-
sented in Table 2, we find that SAGESS overall performs consistently
compared to the other methods. We also notice that while SAGESS

is close to other methods in terms of statistics on some data sets, the
utility performance on the link prediction is somewhat more diverse.
For example, while the DCSBM method performs well in terms of
graph statistics on the synthetic SBM data set (see Table 1), SAGESS

still outperforms it by a significant factor in the link prediction task.
As an aside, Table 2 in the SI shows the proportion of edges which
are present in the real data as well as in the synthetic data; absent
edges are not included in this statistic. It shows that SAGESS gen-
erates samples with considerable amount of overlap with the under-
lying network. Whether or not this feature is desirable depends on
the application task. Table 3 in the SI gives the densities of the net-
works; Facebook and SBM are of an order of magnitude denser than
EuCore, Cora and Wiki. We do not observe any strong correlation
between density and performance.

Figure 2 indicates that SAGESS can generate graphs with a sub-
stantially smaller number of edges, while maintaining reasonable ap-
proximations of the graph statistics. For example, smaller samples
have connectivity and structural properties that are similar to the ini-
tial graph even with a number of edges which is only 40% the number
of edges in the initial network. This is not only an interesting feature
of the SAGESS sampling scheme/generator, it is also useful from a
computational perspective, when one needs to deploy it on machines
with limited resources or shorter time frames, especially as the com-
plexity of graph operations often depends on the number of edges as
well as nodes.

In Table 3 we compare the runtimes between our framework (us-
ing Ego sampling) with the improvements mentioned in the previous
section. The runtimes reported consist of the sum of both training of
the model and generation of a synthetic graph. For our framework
the sampling step is also included in the runtimes. We note that the
runtimes are affected mainly by the number of nodes in the graph.
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Table 1: Comparing network statistics of graphs generated from each synthetic data method on five different graph data sets. This table includes
the graph statistics of Table 2 in [22], from a similar experiment, with cluster coef. denoting the average local clustering coefficient and CPL
denoting the characteristic path length; we also report the number of nodes and the number of edges. The text in bold ABC indicates the
closest statistic to the real data, whereas the text underlined ABC indicates the second closest.

Method num num num num max cluster assort. power CPL
nodes edges triangles squares deg coef. law exp

EuCore (Real) 1005 16, 706 105, 461 4, 939, 311 346 0.39935 −0.01099 1.3621 2.58693
SAGESS-Uni 939 16, 716 114, 900 6, 280, 664 287 0.34024 −0.06321 1.35697 2.49139
SAGESS-RW 878 16, 709 131, 429 6, 995, 335 351 0.42338 −0.04234 1.35192 2.50512
SAGESS-Ego 867 16, 707 114,593 5,257,738 342 0.39000 −0.023969 1.3296 2.43646

NetGAN 986 16, 064 62, 278 2, 505, 330 279 0.25569 −0.06196 1.34179 2.48189
CELL 1005 16, 064 74, 251 3, 336, 294 273 0.29808 −0.07655 1.36279 2.56782
EDGE 1003 15, 915 47, 987 2, 549, 947 217 0.130935 −0.239587 1.359872 2.503124
DCSBM 951 15, 906 75, 743 3, 699, 308 305 0.19673 −0.010515 1.35087 2.47134

Cora (Real) 2708 10, 556 1, 630 4, 664 168 0.24067 −0.06587 1.93230 6.31031
SAGESS-RW 2548 10, 557 1, 806 14, 952 220 0.25728 −0.05969 1.84290 5.43069
SAGESS-Ego 2540 10, 562 1,696 7, 923 171 0.23911 −0.06868 1.92240 5.77869

NetGAN 2485 10, 138 932 2, 394 128 0.15687 −0.07384 1.86148 5.86039
CELL 2708 10, 556 521 1, 295 97 0.07930 −0.08226 1.88642 6.03067
EDGE 2708 6, 053 83 687 168 0.00422 −0.05556 1.80236 4.82168
DCSBM 2621 10, 097 2, 380 2,809 237 0.06991 −0.01709 1.85581 4.47947

Wiki (Real) 2405 12, 761 23, 817 407, 302 263 0.37581 −0.07875 1.54227 3.65161
SAGESS-RW 2348 12, 763 26,296 466,120 280 0.38389 −0.09282 1.54076 3.53405
SAGESS-Ego 2275 12, 763 26, 897 506, 620 312 0.37530 −0.10494 1.55261 3.47834

NetGAN 2405 11, 596 10, 701 104, 243 241 0.20179 −0.10076 1.52944 3.60293
CELL 2357 11, 592 10, 136 121, 014 258 0.22965 −0.10769 1.54027 3.62619
EDGE 2405 12, 701 4, 915 85, 516 265 0.041027 −0.078539 1.5151 3.327667
DCSBM 2251 11, 595 9, 439 167, 655 263 0.08492 −0.01821 1.54596 3.45205

Facebook (Real) 1045 27, 755 446, 846 34, 098, 662 1044 0.57579 −0.02543 1.28698 1.94911
SAGESS-Uni 1043 27, 758 429,428 35,261,545 999 0.52098 −0.01607 1.29003 2.00800
SAGESS-RW 1009 27, 764 490, 844 43, 006, 252 1001 0.56138 −0.02266 1.29398 1.96014
SAGESS-Ego 1005 27, 761 515, 928 45, 421, 130 295 0.43074 0.34074 1.29381 2.65926

NetGAN 1045 27, 755 262, 574 15, 635, 262 849 0.39773 −0.01821 1.27429 2.13730
CELL 1045 27, 755 250, 968 14, 855, 676 474 0.30854 0.12788 1.27490 2.38650
EDGE 1045 27, 253 155, 502 9, 551, 169 1010 0.16818 −0.084674 1.28118 1.97056
DCSBM 1041 27, 092 339, 448 26, 714, 948 733 0.37549 0.07125 1.28845 2.33021

SBM (Real) 1600 73, 312 344, 574 20, 955, 308 155 0.15418 −0.00188 3.58894 2.08276
SAGESS-Uni 1600 73, 313 342,639 21, 054, 221 164 0.14830 0.03572 2.16732 2.04884
SAGESS-RW 1600 73, 367 490, 663 34, 384, 218 207 0.20062 0.22337 1.70495 2.13963
SAGESS-Ego 1600 73, 326 366, 162 22, 979, 792 174 0.15622 0.07177 1.89330 2.06118

NetGAN 1600 73, 312 367, 143 22, 775, 320 144 0.16054 0.19039 2.39375 2.12747
CELL 1600 73, 312 341, 351 20,783,575 139 0.15186 −0.00156 2.72805 2.08060
EDGE 1600 69, 305 122, 382 8, 285, 350 138 0.05873 −0.00185 1.74766 1.96714
DCSBM 1600 73, 357 353, 934 21, 794, 585 130 0.15671 −0.00343 2.79204 2.08274

This is an expected outcome as increasing the number of nodes in-
creases the one-hot encoding representation size. We observe though
that SAGESS outperforms the other methods by a significant factor
when it comes to the denser graphs. Hence, in scenarios with very
dense graphs SAGESS is fast and, in our comparison, the best option.

SAGESS comes with a user-friendly code repository containing
scripts for environment setup, training and dataset customization. To
ensure compatibility with HPC clusters and long-term usability, it
also includes scripts for setting up a Docker environment and for
submitting training jobs using Slurm workload management. This al-
lows SAGESS to be run seamlessly on different systems and maintain
long-term compatibility.

We present and discuss more results in the SI, including an abla-
tion study of , and a graph coverage analysis of the sampling meth-
ods.

6 Discussion and Conclusion

In this paper, we propose SAGESS, a sampling-based denoising dif-
fusion probabilistic model, based on DIGRESS. It is presented as a
framework that is able to build a training data set from a single graph
observation, and use it to generate a synthetic graph from a collec-
tion of generated synthetic subgraphs. Three options for subgraph
sampling are available. The uniform sampling option is theoretically
the fastest for achieving coverage, but it does not work well for very
sparse networks. The random walk sampling option is relatively fast
and achieves good results in particular for link prediction. The 2-hop
neighborhood sampling method often matches the network statis-
tics of the underlying graph best, but it is computationally intensive.
Thus, the choice of sampling method depends on density, task, and
computational budget.

We have shown throughout a variety of experiments that SAGESS

outperforms established methods on several real world data sets, not
only by considering standard graph statistics, but also by showcasing
the adaptability and utility of our framework. In future work we shall
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Table 2: Link prediction using GVAE on the benchmark data sets,
trained on the synthetic, tested on real.

Method Score EuCore Cora Wiki FB SBM
SAGESS AUC 0.846 - - 0.860 0.680
Unif AP 0.833 - - 0.842 0.644

SAGESS AUC 0.846 0.895 0.884 0.899 0.692
RW AP 0.834 0.895 0.894 0.886 0.631

SAGESS AUC 0.846 0.888 0.871 0.889 0.699
Ego AP 0.833 0.890 0.886 0.877 0.645

NetGAN AUC 0.812 0.510 0.561 0.870 0.698
AP 0.816 0.510 0.583 0.850 0.641

EDGE AUC 0.750 0.506 0.525 0.500 0.515
AP 0.774 0.510 0.536 0.495 0.519

CELL AUC 0.857 0.790 0.841 0.871 0.700
AP 0.846 0.806 0.864 0.847 0.648

DCSBM AUC 0.656 0.510 0.497 0.498 0.538
AP 0.638 0.504 0.511 0.498 0.526

Figure 2: Graphs statistics as a function of percentage of sampled
edges from the EuCore data set using the SAGESS-RW model. The
y-axis is scaled to data; the amount of variation of the statistics is
relatively small.

also assess SAGESS against the concurrent DIGRESS-based alterna-
tive: HIGGS [8]. In contrast to HIGGS, SAGESS does not assume
an underlying community structure, and in contrast to EDGE [7],

Table 3: Methods runtimes for training and generation.

Method EuCore Cora Wiki Facebook SBM

SaGess-Ego 1h20 7h11 6h04 1h23 2h04

NetGAN 5h24 1h42 2h09 10h47 6h24

EDGE 1d15h 1d13h 5h16 1d18h 2d15h

CELL 5h19 35m 40m 8m 8h47

SAGESS does not require an explicit model for the node degrees.
However, a limitation of SAGESS is that it still does not scale well
with the number of nodes in the initial graph in terms of memory.
This is due to the one-hot-encoding of the graph node ids passed
in DIGRESS. On the same note, as the number of nodes increases,
the number of subgraph samples needed to train SAGESS also in-
creases, adding to the time complexity of DIGRESS. In essence the
memory complexity depends on the size of a subsample, resulting
in O(k2 + kn) where k is the size of the subgraph. Additionally,
while this method could trivially deal with edge attributes as DI-
GRESS does, it cannot handle node attributes since the attribute op-
tion is already used by the node ids to represent the nodes of the real
graph.

SAGESS is a pure graph generator; the only node “feature” used
is a one-hot encoding of the node ids. This feature is required to as-
semble the synthetic network from the subgraphs. Of course nodes
can have features, though, and these would be attached directly to
the node ids (enlarging the 1-hot encoding) to avoid feature con-
flicts [such as a bird on 4 legs], but this will increase computations.
In practice instead a 2-stage procedure is envisaged, first generating
synthetic networks and then adding synthetic node features.

Although DiGress allows for the use of classifier-based guidance
or classifier-free guidance, see [21], the one-hot encoding makes
these options impractical for node features. Classifier-free guidance
could steer SAGESS to generate more diverse samples, but at non-
negligible computational cost.

An advantage of SAGESS is that it can be extended to address
other related problems. While SAGESS has been designed to gener-
ate graphs from a single sample, it can be extended to data sets with
multiple graphs in the case where the nodes are identifiable, by sim-
ply designing a sampling scheme which first samples the graph and
then samples the subgraph using an appropriate scheme, although we
leave this avenue for future work. It will also be left as future work
to investigate possible applications on signed networks or even time
dependent edges, as one can add time as an edge attribute. This could
lead to a more complex generation scheme that could, for instance,
include an auto-regressive module to evaluate time dependence on
the newly encountered edges. We would also be eager to extend our
framework to other graph generation methods that handle node at-
tributes to generalize the ability of models to train on a single obser-
vation.

Finally, some caution is advised. Inference based on synthetic data
particularly in sensitive applications such as health or risk analysis
should use a number of different synthetic data generators before
reaching a conclusion. Moreover, vigilance is advised to detect ma-
licious applications of synthetic data generation, such as passing off
fake data as real.
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