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Abstract. Neural networks often suffer from catastrophic interfer-
ence (CI): performance on previously learned tasks drops off signif-
icantly when learning a new task. This contrasts strongly with hu-
mans, who can continually learn new tasks without appreciably for-
getting previous tasks. Prior work has explored various techniques
for mitigating CI and promoting continual learning such as regu-
larization, rehearsal, generative replay, and context-specific compo-
nents. This paper takes a different approach, one guided by cognitive
science research showing that in naturalistic environments, the prob-
ability of encountering a task decreases as a power-law of the time
since it was last performed. We argue that techniques for mitigating
CI should be compared against the intrinsic mitigation in simulated
naturalistic learning environments. Thus, we evaluate the extent of
the natural mitigation of CI when training models in power-law en-
vironments, similar to those humans face. Our results show that nat-
ural rehearsal environments are better at mitigating CI than existing
methods, calling for the need for better evaluation processes. The
benefits of this environment include simplicity, rehearsal that is ag-
nostic to both tasks and models, and the lack of a need for extra neu-
ral circuitry. In addition, we explore popular mitigation techniques in
power-law environments to create new baselines for continual learn-
ing research.

1 Introduction

Humans learn to perform new skills throughout their lifetime without
appreciable forgetting of old skills. Within the context of machine
learning (ML) algorithms, the ability to incrementally acquire new
knowledge while retaining previously learned experiences is known
as continual learning or lifelong learning [24, 26]. ML models are
typically trained to perform a single task. They would be more useful
if they could learn new tasks sequentially over time while remember-
ing multiple old tasks. However, when models learn new tasks, this
often leads to a drastic drop in the performance of old (i.e., previously
learned) tasks. This phenomenon is known as catastrophic interfer-
ence (CI), and it is a major challenge for ML models. The current
study looks to cognitive science to emulate the distribution of data
observed in human-like learning environments and explores the nat-
ural mitigation of CI in neural networks trained in such simulated
environments.
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Neural network models are capable of learning to perform a vari-
ety of tasks. However, when a new task is introduced, these models
must be re-trained on the new task as well as all old tasks due to CI.
Unfortunately, this is computationally inefficient. Ideally, neural net-
works should learn continuously, incrementally acquiring new tasks
while minimally forgetting prior tasks. There is extensive research
on methods to mitigate CI in ML models. These include weight reg-
ularization, selective forgetting, and memory replay to maintain the
performance of previously learned tasks [40]. These methods are typ-
ically tested on the availability of uniformly distributed samples of
each task, which is not representative of the regularity with which
tasks repeat in natural environments. Here, we introduce a different
approach, one that derives from cognitive science studies of natural-
istic learning environments.

1.1 Naturalistic cognitive learning environments

Anderson and Schooler [1] found that human memory is optimized
for the natural distributions of environmental events such as the
words in newspaper headlines, the utterances of parents around chil-
dren learning to speak, and email messages. A Bayesian analysis re-
vealed that the probability of needing to retrieve a particular item
from memory declines as a power function of the time since that
item was last retrieved. Their findings have been replicated [31] and
extended to environments ranging from laboratory studies of human
memory [2] to field studies of the social environment of chimpanzees
[35]. Moreover, human learning appears to be sensitive to this dis-
tribution, as human performance with practice at skills improves ac-
cording to a power-law [25]. Some studies have also proposed al-
ternatives to this power-law of practice. Heathcote et al. [10] argue
that the exponential-law is a better fit than the power-law for data
sources where individual samples cannot be aggregated, for exam-
ple, as a practice function for individual learners. Given this compet-
ing account, we also consider the exponential naturalistic learning
environment in this study.

Moving beyond cognitive science, numerous real-world environ-
ments also follow naturalistic power-law distributions 2. We, there-

fore, argue that techniques for mitigating CI should be compared

against potentially intrinsic mitigation in naturalistic learning

environments where rehearsal follows the same power-law distri-

bution. This mimics learning systems (i.e., people) in the real world,
2See the supplementary material for a non-exhaustive list of environments

where such frequency distributions are observed
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who may not be storing examples of previously seen tasks in memory
but rather “rehearsing” those examples that reoccur naturally.

Taking inspiration from this characterization of natural environ-
ments [1], Lyndgaard et al. (2022) investigated whether training in
power-law environments mitigates CI. They trained a neural network
on a sequence of tasks, with the proportion of training samples for a
previous task decreasing as a power function of the number of inter-
vening tasks. The results suggested that a power-law training envi-
ronment might mitigate CI. However, their study included simplistic
training tasks from the cognitive science literature i.e., sequentially
learning the boolean functions AND, OR, XOR, and NAND. In par-
ticular, they did not use the more complex SplitMNIST, SplitCIFAR-
100, or SplitTinyImageNet tasks that are standard in ML studies of
continual learning. Furthermore, they did not compare training in
power-law environments to the performance of other CI mitigation
methods or an upper baseline. Here, we expand upon their work by
conducting a comprehensive evaluation of the CI mitigation proper-
ties of power-law environments.

1.2 Research questions

The current study simulates a naturalistic power-law learning envi-
ronment and assesses the extent of natural mitigation of CI. We eval-
uate it on standard problems in the continual learning literature –
SplitMNIST, SplitCIFAR-100, and SplitTinyImageNet – and com-
pare its performance to appropriate upper and lower baselines. Ad-
ditionally, we compare its performance to representative CI mitiga-
tion approaches and also to training in other, non-power-law training
environments. In more detail, the study addresses the following re-
search questions:

1. Simulation: Can we simulate rehearsal methodologies (i.e.,
power-law training environments) inspired by the naturalistic
learning environments of humans?

2. Natural mitigation: What is the extent of CI mitigation when
using the natural rehearsal of power-law training environments?

(a) How does this training environment compare to current base-
lines in traditional training environments?

(b) How does this training environment compare to an alternative
naturalistic environment (i.e., an exponential environment)?

(c) Does this natural mitigation of CI persist when the number of
phases (i.e., tasks) increases?

3. Combination with other approaches: In a power-law rehearsal
environment, how well do prevalent approaches to mitigating CI
perform, i.e., is their value in combining methods?

2 Related Work

There is a considerable body of research in continual learning or
lifelong learning in neural networks [36, 23, 24, 26]. Methods
for mitigating CI largely fall into four major categories: context-
specific components, parameter-isolation, regularization-based, and
rehearsal-based methods. Some methods like Learning without For-
getting (LwF) [19] fall into multiple categories. We review represen-
tative methods in each of the categories below.

Methods based on context-specific components use specific
adapters or additional components for each task or context [43, 40].
These adapters need additional information about the contexts or
tasks and incrementally need more computation units. A limitation

of this approach is that this information and additional resources may
not be readily available during the incremental addition of new tasks.

Parameter-isolation approaches [22, 33] seek to isolate neural net-
work weights that have a greater probability of being relevant to pre-
vious tasks. Mallya and Lazebnik attempt to identify and iteratively
prune redundant parameters in a neural network to allow it to learn
new tasks. Taking a different approach, Hard Attention Networks
[33] mask different areas of neural network layers to explicitly allo-
cate network capacity to different tasks. A limitation of this approach
is that they are model architecture-dependent and may not generalize
to all training algorithms.

Many recent works explore parameter regularization techniques
[15, 42, 19, 30]. One popular technique, Elastic Weight Consolida-
tion (EWC) [15, 32], slows down adjustments to existing weights
based on their importance to previously learned tasks. Similarly,
Zenke et al. propose the use of intelligent synapses that mimic the
complexity of biological synapses. During training, the importance
of each synapse is computed by considering its local contribution to
the change in the global loss. This helps prevent the loss of informa-
tion from changing synapses important for a particular old task while
learning a new task. Many other regularization techniques attempt to
determine the importance of weights during regularization [18] and
increase the penalty for altering important weights. However, in the
general case, neural network behavior is dependent on initialization,
training order, and many other factors. This makes it difficult to ac-
curately estimate the importance of weights to tasks.

Functional regularization methods discourage changes in outputs
for a set of anchor points from previous rounds. These techniques
look at regularization in the function space as opposed to the param-
eter space. For example, Learning without Forgetting [19], or LwF,
performs knowledge distillation by keeping track of model outputs
for the same input samples over different phases and computes a
combined loss over the ground truth new task output with old model
output stored in memory. A limitation of this technique is that it can
potentially lead to error propagation and gradual erroneous behavior
build-up over learning phases. Note that recent literature [39] shows
that regularization methods fail to scale up with the complexity of
tasks while rehearsal-based methods show better mitigation of CI.

Two of the methods discussed above, weight regularization and
functional regularization, are orthogonal to the naturalistic rehearsal
environments, and therefore the approaches can be combined. Sec-
tion 3.6 explores the mitigation of CI when implementing these
methods in power-law training environments.

Rehearsal-based methods

The fourth category is composed of rehearsal-based methods, also
known as replay-based methods 3 [8, 20, 41]. These methods use
some learning samples from previous tasks as training samples upon
the introduction of a new task. The samples of previous tasks can
either be retained in a buffer upon introduction (iCaRL, ER) or gen-
erated by a separate generative model (DGR, BI-R). One prevalent
rehearsal method, Experience Replay (ER) [29], stores a fixed num-
ber of samples from the old tasks while learning the new task. An-
other, incremental Classifier and Representation Learning (iCaRL)
[28], combines the LwF algorithm with some exemplars stored from
the previously seen tasks. One generative rehearsal-based method is
Deep Generative Replay [34], where a copy of the generative model

3We use the terms "rehearsal-based methods" and "replay-based meth-
ods" inter-changeably.
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Figure 1. Comparison of all the baselines and training environments on the SplitCIFAR-100 (above) and SplitTinyImageNet (below) class incremental
learning scenarios with 10 phases. The values in the bracket indicate average test accuracy at the end of 10 phases. Note that EWC performs as poorly as the
lower baseline across all phases for both datasets. LB: Lower Baseline, UB: Upper Baseline, EWC: Elastic Weight Consolidation, SI: Synaptic Intelligence,

LwF: Learning without Forgetting, ER: Experience Replay, BIR: Brain-Inspired Replay, A-GEM: Averaged Gradient Episodic Memory, PL: Power-law, Exp:

Exponential, iCaRL: Incremental Classifier and Representation Learning.

Figure 2. Example of the Class Incremental Learning scenario (SplitMNIST dataset): In each phase, new classes are incrementally added to the training.

and classifier is stored and used to generate and label data from previ-
ous tasks, and the new labeled data is then added to the training data.
This generative process is modified in Brain-Inspired Replay [38] to
handle more complex tasks by taking inspiration from the comple-
mentary learning systems of the mammalian brain. Other methods
look at human-like memory-efficient techniques for storing and re-
playing samples and have been shown to mitigate catastrophic inter-
ference [7, 11].

A limitation of most rehearsal-based methods is that they require
the calculation of complex measures to find exemplars to anchor cer-
tain weights to previous tasks and perform guided distribution shifts.
These measures are often dependent on training parameter choices
and loss calculations, making them harder to scale to new problem
spaces. By contrast, the proposed power-law training environment-

based rehearsal approach is model- and task-agnostic, making it easy
to set up as a simulation for any task.

CI mitigation techniques inspired from cognitive
science literature

Our rehearsal environment to observe the natural mitigation of CI is
inspired by cognitive science research on how frequently humans ex-
perience previously seen tasks [1, 10] and the initial computational
explorations by Lyndgaard et al. (2022). ML researchers have pre-
viously explored mitigation techniques inspired by human behavior.
Davidson and Mozer (2020) investigated how standard convolutional
neural networks perform classification tasks when new visual tasks
are introduced sequentially, simulating the way humans learn as they
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become experts in a particular domain. Another method, REplay us-
ing Memory INDexing (REMIND) [9], looks at how the brain in-
dexes memories, and explores efficient replay strategies with vector
representations. Fearnet [13], also inspired by the complementary
learning systems of the mammalian brain, uses different networks
for long-term and short-term memory to perform pseudo-rehearsal.

Surprisingly, no prior studies have explored the impact of natural-
istic environmental structure on the learning of standard ML tasks.
The current study simulates this structure to build a novel rehearsal
methodology and shows the natural mitigation of CI.

3 Methodology

In this section, we describe the steps involved in simulating rehearsal
methodologies inspired by the naturalistic learning environment of
humans. Our work follows others [39] in comparing our approach to
prevalent techniques on the SplitMNIST, SplitCIFAR-100, and Split-
TinyImageNet task setups. The datasets for the experiment and the
details of the training environment are described below.

3.1 Class incremental learning scenario

In this learning scenario, the model tries to incrementally learn a
growing number of classes [39]. This differs from other types of in-
cremental learning scenarios as the model has to both identify the
task and also learn to discriminate between samples that are not ob-
served together. Examples of Class Incremental Learning scenarios
(Class-IL) are learning multiple object discrimination tasks or clas-
sification tasks (e.g., distinguishing between cats and dogs vs. dis-
tinguishing between cows and elephants) without seeing samples of
all the different tasks at the same time (for example cats and cows).
Previous work has shown that class incremental learning is the most
difficult problem for continual learning in ML models [39, 40].

3.2 Datasets

We show the mitigation properties of naturalistic environments by
experimenting with three datasets that are prevalent in the continual
learning and lifelong learning literature.

SplitMNIST protocol

The MNIST dataset [5] contains 60,000 training images and 10,000
test images, each a 28 × 28 pixel grayscale image of a single hand-
written digit. For building the split MNIST protocol, this dataset was
split into 5 contexts with each context having 2 randomly chosen
digits. In each phase, we introduce a new context; see Figure 2. The
model learns to differentiate between digits while incrementally see-
ing new digits in different contexts.

SplitCIFAR-100 protocol

The SplitCIFAR-100 dataset [16] contains 60,000 images of fre-
quently seen objects in day-to-day life. There are 100 classes with
each class having 500 training images and 100 test images, each a
32 × 32 colored image. The task follows the class-incremental task
described by [37, 14], wherein each phase, we introduce a fixed num-
ber of new classes. Thus, the model learns to classify more classes
with each new phase. Our experimental design ensures every phase
has the same number of introduced classes and all classes are intro-
duced by the end of the last phase. The training data in a phase will

have the maximum number of samples (500) for each of the newly
introduced classes. For rehearsal-based approaches, the number of
instances for each of the previous classes included in the training
data depends upon the rehearsal type.

SplitTinyImageNet protocol

The SplitTinyImageNet dataset [17] consists of a subset of 100,000
images from the ImageNet visual classification challenge. There are
200 classes with each class having 500 training images and 50 test
images, each 64× 64× 3 pixels. The continual learning task formu-
lation is similar to that of the SplitCIFAR-100 protocol.

3.3 Model architecture

Following prior work [39], we use model architectures that are spe-
cific to each protocol formulation. For a fair comparison between the
learning environments and the alternative methods presented in Ta-
ble 1, the same model architecture is used for experiments on each
dataset. Finally, in all of our experiments, we replicate results with
5 seeds to ensure reproducibility and robustness to the initialization
of weights in a network. The details of the model architecture are
included in the supplementary materials.

3.4 Naturalistic environments

Inspired by naturalistic environments [1, 10], we introduce two
function-based rehearsal environments: power-law and exponential.
These functions determine the number of samples to rehearse of pre-
viously seen classes. For all rehearsals, we perform simple random

sampling: the number of samples of a particular task to be rehearsed
in each phase is randomly chosen from the samples of the task that
were in the previous phase. That is, the rehearsal set is not resampled
from scratch at each new phase. Rather, some samples of previous
tasks from the prior phase are randomly dropped at the new phase.

3.4.1 Power-law distribution:

Each training phase of this setup has the maximum number of sam-
ples for the newly introduced classes, while the data distribution for
the older classes introduced in previous phases follows a decreasing
power function such that the number of instances of the classes in-
troduced in the first phase will have the least representation in the
last phase. This follows naturalistic human learning where humans
see rehearsals in the environment at a decreasing power function fre-
quency. The power-law sample distribution equation for a class is
given by equation (1), where the value for x is the number of phases
passed after the introduction of the class.

f(x) = ax−b (1)

3.4.2 Exponential distribution:

Similar to the power-law, each training phase of this setup has the
maximum number of samples for the newly introduced classes, while
the data distribution for the older classes introduced in previous
phases follows a decreasing exponential function. The exponential
sample distribution equation for a class is given by equation (2),
where the value for x is the same as for equation (1).

f(x) = ae−xb (2)
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Table 1. Test accuracy after the final phase of training. The bracketed values indicate one SD when running experiments with N = 5 seeds. LB: Lower
Baseline, UB: Upper Baseline, EWC: Elastic Weight Consolidation, SI: Synaptic Intelligence, LwF: Learning without Forgetting, ER: Experience Replay, BIR:
Brain-Inspired Replay, A-GEM: Averaged Gradient Episodic Memory, PL: Power-law, Exp: Exponential, iCaRL: Incremental Classifier and Representation

Learning.

Type Method SplitCIFAR-100 SplitTinyImageNet SplitMNIST
Total number of phases: 10 Phases 20 Phases 10 Phases 20 Phases 5 Phases

Baselines LB 0.076 (±0.005) 0.041 (±0.003) 0.062 (±0.002) 0.032 (±0.001) 0.198 (±0.001)
UB 0.505 (±0.002) 0.341 (±0.004) 0.978 (±0.0)

Parameter regularization EWC
SI

0.079 (±0.007)
0.081 (±0.003)

0.042 (±0.002)
0.044 (±0.002)

0.059 (±0.002)
0.058 (±0.001)

0.034 (±0.001)
0.033 (±0.001)

0.231 (±0.046)
0.208 (±0.016)

Functional regularization LwF 0.255 (±0.009) 0.087 (±0.005) 0.131 (±0.004) 0.067 (±0.001) 0.212 (±0.005)

Rehearsal methods

ER
PL
Exp
BIR
A-GEM

0.399 (±0.006)
0.429 (±0.006)
0.373 (±0.006)
0.222 (±0.011)
0.276 (±0.012)

0.386 (±0.004)
0.432 (±0.007)
0.359 (±0.008)
0.253 (±0.012)
0.214 (±0.046)

0.242 (±0.002)
0.25 (±0.009)
0.222 (±0.007)
0.083 (±0.007)
0.062 (±0.003)

0.207 (±0.006)
0.27 (±0.003)
0.183 (±0.003)
0.065 (±0.003)
0.036 (±0.002)

0.965 (±0.002)
0.959 (±0.003)
0.948 (±0.002)
0.944 (±0.006)

0.7 (±0.219)

Template based iCaRL 0.329 (±0.01) 0.186 (±0.007) 0.068 (±0.014) 0.005 (±0.002) 0.943 (±0.003)

3.5 Training and evaluation

The environment (i.e., power-law, exponential, etc.) determines the
distribution of samples for rehearsal during the training phases. We
challenge existing mitigation methods by showing that the rehearsal
of old tasks in natural environments comparably mitigates forgetting.
This implies that complex budgeting or regularization algorithms
may not be needed for continual learning in many situations.

The models are tested on uniformly distributed held-out data. This
is similar to conventional training and testing splits, however, the test
set only consists of classes that have been included in the training set
for at least one phase. The standard uniform test distribution was cho-
sen to equally weight performance by classifying all classes equally
and to enable comparisons of the intrinsic environment-based miti-
gation to existing techniques for mitigating CI.
Comparison to existing CL methods: We compare the CI mit-
igation properties of the naturalistic learning environments to the
representative methods from prior literature and the baselines de-
scribed below (Table 1). In all rehearsal-based methods (ER, PL,
Exp, AGEM), our operationalization ensures that each model cumu-
latively rehearses the same number of samples by the last phase, i.e.,
our experiments equate the number of total rehearsals across all the
rehearsal-based methods. We do not modify the implementation de-
tails of other approaches from van de Ven et al. [39]. The individual
details of the methods are described in the supplementary materials.

Beyond methods from the prior literature, the work uses the fol-
lowing as baselines to show the efficacy of a power-law training en-
vironment.

• Lower-baseline: We establish a lower-bound performance base-
line for our datasets. In this training setup, each training phase
only has access to the data for the newly introduced task. In partic-
ular, there is no rehearsal of previously seen classes. This is akin
to a regular neural network architecture which sequentially learns
new tasks. This environment is expected to show high levels of CI.

• Upper-baseline: In this baseline case, we establish an upper-
bound performance baseline for our datasets. In this setup, the
model is trained over data from all classes in a single phase. This
is a non-continual learning scenario represented by the flat line in
Figure 1.

3.6 Combining naturalistic rehearsal environments
with regularization methods

The proposed rehearsal environments are orthogonal to several other
prevalent methods discussed in the literature. This enables us to
combine the different rehearsal environments (Experience Replay,
Power-law, Exponential) with the different regularization methods
(LwF, EWC, and SI). In each phase, the rehearsal environment deter-
mines the number of samples seen by the model while the regulariza-
tion methods operate on the loss functions and optimizers. (Note: We
cannot combine template-based methods like iCaRL with rehearsal
environments because those methods already store and replay data
for template creations. Similarly, environment-based rehearsal meth-
ods cannot be combined with generative rehearsal methods as the
generative model serves as a substitute for a replay buffer.)

4 Results

What is the extent of CI mitigation with natural
rehearsal in simulated power-law training
environments?

For the SplitMNIST, SplitCIFAR-100, and SplitTinyImageNet
datasets, we investigate the natural mitigation of CI in the power-
law and exponential rehearsal environments by comparing the test
accuracy of all the classes at the end of each phase. We compare this
performance to that of the baseline approaches and popular mitiga-
tion methods.

For the SplitMNIST data, Table 1 shows the average test accuracy
over all classes after 5 phases. For SplitCIFAR-100 and SplitTinyIm-
ageNet, we also test whether increasing the number of phases from
10 to 20 (i.e., while decreasing the number of classes introduced per
phase) leads to a drop in mitigation performance for all training envi-
ronments. Additionally, Figure 1 shows the average test accuracy for
all introduced classes until a phase number (n) for SplitCIFAR-100
and SplitTinyImageNet.

We make the following observations about the findings in Table 1:

• Environment-based rehearsal methods (ER, Power-law, and

Exponential) that have access to previous data in different
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Table 2. Test accuracies after the final phase of training in combination approaches. The bracketed values indicate one SD when running experiments with
N = 5 seeds. EWC: Elastic Weight Consolidation, SI: Synaptic Intelligence, LwF: Learning without Forgetting, ER: Experience Replay, PL: Power-law,

Exp: Exponential.

Rehearsal Regularization SplitCIFAR-100 SplitTinyImageNet SplitMNIST

ER

None
EWC
SI
LwF

0.399 (±0.006)
0.424 (±0.004)
0.404 (±0.004)
0.457 (±0.004)

0.242 (±0.002)
0.203 (±0.003)
0.201 (±0.004)
0.235 (±0.004)

0.965 (±0.002)
0.926 (±0.011)
0.832 (±0.087)
0.965 (±0.004)

PL

None
EWC
SI
LwF

0.429 (±0.006)
0.424 (±0.005)
0.417 (±0.004)
0.461 (±0.007)

0.25 (±0.009)
0.25 (±0.003)
0.27 (±0.004)

0.289 (±0.002)

0.959 (±0.003)
0.882 (±0.074)
0.803 (±0.06)

0.964 (±0.002)

Exp

None
EWC
SI
LwF

0.373 (±0.006)
0.387 (±0.012)
0.374 (±0.011)
0.449 (±0.006)

0.222 (±0.007)
0.251 (±0.008)
0.247 (±0.004)
0.272 (±0.003)

0.948 (±0.002)
0.875 (±0.072)
0.82 (±0.048)
0.96 (±0.003)

distributions (i.e., for old tasks) perform better than methods

where no such data are included.

• For the simpler SplitMNIST task, almost all rehearsal and
template-based methods show near-ceiling performance. Here, ex-
perience replay performs slightly better than power-law.

• For the much harder SplitCIFAR-100 and SplitTinyImageNet
tasks, power-law performs descriptively better compared to other
training environments with the expected exception of the upper
baseline.

• For the SplitCIFAR-100 and SplitTinyImageNet tasks, increasing
the number of phases (i.e., while simultaneously decreasing the
number of classes introduced per phase) leads to a greater advan-
tage for power-law compared to other techniques.

Our results provide strong empirical evidence for natural mitigation
of CI in rehearsal environments, with performance that exceeds ex-

isting methods. These results show human-like ability to remember
previously seen classes while learning new ones when the distribu-
tion of the class samples follows a power-law.

When combined with different rehearsal environments,
how well do prevalent regularization approaches
mitigate CI?

Regularization methods add a penalty term in the loss function to
ensure that the gradient updates result in less catastrophic forget-
ting for the previous classes. We explore the performance of these
regularization methods when used in conjunction with different re-
hearsal environments. Table 2 shows that parameter regularization
methods do not generally improve performance above and beyond
rehearsal environments in isolation. However, there is one important
exception: LwF shows improved CI mitigation in all rehearsal

environments (SplitMNIST: AccPL, LwF − AccPL, None = 0.005,
SplitCIFAR-100: AccPL, LwF − AccPL, None = 0.032, SplitTinyIma-
geNet: AccPL, LwF − AccPL, None = 0.039)

We attribute this pattern of results to the training loss objectives of
the three regularization methods. In EWC and SI, while training in
the current phase, parameter regularization restricts weight changes
for parameters that are important for previously seen classes. How-

ever, in rehearsal-based methods, the accumulation of data from pre-
vious tasks in the current training corpus results in the loss term up-
dating fewer parameters for new classes. Thus, with more phases, the
parameter regularization term becomes less effective. By contrast,
in LwF, the network is encouraged to not change at certain anchor
points. Thus, adding functional regularization does improve the per-
formance.

Generalization and robustness checks

We conducted multiple experiments (ablation studies) to understand
the generalizability and robustness of our rehearsal environments in
mitigating CI. We provide the operational details of these experi-
ments in the supplementary materials. Brief descriptions along with
the key takeaways of the different experiments are as follows:

• Minimum proportions of samples required per class: In power-
law and exponential learning environments, classes introduced
in phase 1 have the least representation of the rehearsal data in
all subsequent phases. This proportion also determines the con-
stants in the power-law function curves. We vary the minimum
amount of rehearsal data required for previous classes to observe
whether the mitigation properties of the power-law rehearsal envi-
ronment are maintained. We compare the power-law environment
to the Experience Replay and the exponential rehearsal environ-
ment by matching the total number of rehearsed samples with the
power-law curve. For the SplitCIFAR-100 and SplitTinyImageNet
data, there is a steady decline in test accuracy when varying the
minimum proportion of samples with different sample percent-
ages. However, we find that power-law rehearsal environments
outperform other environment-based rehearsal methods (ER, Exp)
across almost all variations in the minimum number of samples of
a class in any phase (refer to Table 3).

• Varying the number of hidden layers in the model: Increasing
the number of fully connected hidden layers can affect the perfor-
mance of models trained in different environments. The correla-
tion between model complexity (size) and accuracy is not always
direct and positive. The performance of the power-law rehearsal
environment is better than all other model architectures and all
mitigation techniques for all model complexities (more informa-
tion in the supplementary materials).
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Table 3. Test accuracy on SplitCIFAR-100 as a function of the minimum proportion of samples for each previous task in the last phase of power-law rehearsal
environments. Experience replay and exponential rehearsal environments are balanced to match the same number of total samples rehearsed as the power-law

environment. The bracketed values indicate one SD when running experiments with N = 5 seeds. ER: Experience Replay, PL: Power-law, Exp: Exponential

Dataset Distribution Minimum proportion of samples
1% 2% 5% 10%

ER 0.264 (±0.005) 0.292 (±0.004) 0.324 (±0.004) 0.399 (±0.006)
SplitCIFAR-100 PL 0.289 (±0.01) 0.359 (±0.036) 0.392 (±0.007) 0.432 (±0.007)

Exp 0.223 (±0.013) 0.237 (±0.012) 0.308 (±0.011) 0.373 (±0.006)
ER 0.171 (±0.006) 0.194 (±0.003) 0.22 (±0.002) 0.242 (±0.002)

SplitTinyImageNet PL 0.161 (±0.002) 0.193 (±0.004) 0.241 (±0.004) 0.25 (±0.009)
Exp 0.141 (±0.002) 0.152 (±0.001) 0.192 (±0.007) 0.222 (±0.007)

• Varying the total size of training data for each class: Varia-
tion in the total size of training data for each class increases the
problem complexity. Naturalistic environments (Exp, PL) have the
least drop in performance with an increase in problem complexity
(refer to the supplementary materials).

• Domain-Incremental Learning Scenario: In this learning sce-
nario, the problem structure has a shift in the input distribution
but has the same possible output space as the previous tasks [39].
Although these tasks are not as difficult as Class incremental tasks
for ML models, they remain the most popular forms of continual
learning problems in practice [3, 39]. Our experiments for power-
law rehearsal environment simulation in Domain-IL tasks show
strong mitigation behavior.

5 Conclusion

We apply the naturalistic learning environments that humans experi-
ence to the continual learning problem in neural networks. Our simu-
lations offer an evaluation of sequential learning capabilities and are
realistic in accounting for the rehearsal of data in the real world.

We simulate model training in different environments on three
Class-Incremental Learning scenarios: MNIST handwritten digit
recognition tasks and the CIFAR 100 and TinyImageNet object clas-
sification tasks. The networks are trained on multiple phases to un-
derstand the extent of CI in different setups. We show that the intrin-
sic mitigation in the rehearsal environments performs comparably to
prevalent CI mitigation techniques in the literature, suggesting that
in domains with a power-law distribution of tasks, complex CI miti-
gation strategies may not be required. Most importantly, the power-
law rehearsal environment shows state-of-the-art accuracy on the
SplitCIFAR-100 tasks. These models behave like humans in showing
less forgetting of previous tasks as they continue to encounter new
tasks in a decreasing power-law manner. Furthermore, we explore
combining rehearsal environments with other types of approaches
and show that functional regularization methods (i.e., LwF) in con-
junction with rehearsal environments further increase performance.
Finally, the environments are robust to variations in the minimum
proportion of samples seen, the number of layers of the model, the to-
tal number of samples of each class, and the learning scenario types.

Overall, our experiments demonstrate that the naturalistic power-
law training environment mitigates CI better than most other meth-
ods in the literature. As such, it provides a new standard for future
research in continual learning.

6 Experimental Infrastructure

All experiments were conducted with PyTorch [27] on NVIDIA RTX
6000 GPUs with 24GB GPU RAM.

7 Limitations and Future Work

Naturally occurring frequency distributions are proposed to empiri-
cally follow power-law curves, which, in reality, are "power-law like"
stochastic distributions that contain random spikes and lows. We sim-
ulate each class to have a perfect power-law distribution which may
not accurately represent naturally occurring data. Furthermore, while
empirical evidence shows that many naturally occurring situations
follow a power-law frequency distribution, they do not represent all
possible naturally occurring situations. Future work can explore sim-
ulating stochastic naturalistic environments.

While we explore mitigation of CI for three popular datasets,
future work can explore more diverse problems containing multi-
ple visual properties of an image, for example, color and texture-
based images as found in the CLEVR dataset [12]. The models uti-
lized to solve these problems would also be more complex Vision
Transformer-based [6] architectures and might provide more insight
into the capabilities and drawbacks of the natural mitigation of a
power-law training environment.

The paper compares naturalistic rehearsal environments to repre-
sentative techniques from prior literature. While these techniques are
highly prevalent and used for comparison, they do not comprehen-
sively cover all techniques for the mitigation of CI. Future work can
compare our environments with additional techniques, and also com-
bine rehearsal environments with them.

The results show that the benefit of naturalistic environments be-
comes more pronounced as the number of phases increases. How-
ever, we did not investigate whether this advantage continues to grow
with increasing task complexity, which can be explored in future re-
search.

For all the experiments reported in the paper, we use the model
architecture and the respective hyper-parameters based on previous
work [39]. This means we fix the dropout probability, learning rate,
batch size, maximum training iterations per task, and number of units
per layer. We do not carry out experiments with different loss func-
tions and optimizers. Also, we do not implement early stopping.
The results can be somewhat different if we use optimal parame-
ters obtained from grid search; however, our current results show
that the difference between the performance of power-law and other
approaches is significant even when the sample size and the model
complexity are varied.
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