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Abstract. Federated learning (FL) has a great potential in large-
scale machine learning applications by training a global model over
distributed client data. However, FL deployed in real-world applica-
tions often incur collaboration bias and unstable convergence with
inconsistent local predictions, resulting in poor modelling perfor-
mance on heterogeneous and long-tailed client data distributions. In
this paper, we reconsider heterogeneous FL in a two-stage learning
paradigm where representation learning and classifier re-training are
separated to incorporate different sampling schemes. This allows us
to deal with the dilemma of obtaining more generalizable features
and fine tuning a biased classifier building on client model aggre-
gations. Specifically, we propose a novel hybrid knowledge distil-
lation scheme, called FedHyb, to facilitate the two-stage learning.
From the view of knowledge transfer, we show that FedHyb enables
several desirable properties in the global feature space and optimiza-
tion with fine-tuning, thus achieving better test accuracy and con-
vergence speed, especially with a higher level of data heterogeneity
and an increasing number of distributed clients. FedHyb does not re-
quire any information exchange between clients preventing privacy
leakage, and is more robust under poisoning attacks comparing with
other FL methods designed on heterogeneous data.

1 Introduction

Federated learning (FL) enables multiple participants to collectively
train a common global model by deploying local models at the side of
clients without uploading their private data [18]. Despite success in a
homogeneous setting, the distributed learning framework still faces
challenges in real-world applications where the differences between
client participants can impose large effects on model aggregation and
federated optimization, leading to significant performance deteriora-
tion of FL [29]. For example, in visual recognition applications, real
datasets often follow a long-tailed distribution where a small por-
tion of classes have a dominant number of instances in the training
set comparing to those from the other classes [33]. Figure 1 demon-
strates the class-imbalanced distribution with a different degree of
data heterogeneity controlled by the Dirichlet distribution coefficient
α by sampling the CIFAR-10 dataset over ten image classes across
multiple clients. Because each client model is updated on its own
data of different tail classes, FL with a long-tailed client distribution
tends to incur collaboration bias and unstable convergence. This can
result in poor performance of the local models due to local overfitting
and a large variance of the aggregated global model [8].
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Figure 1. Imbalanced data distribution with a different degree of data
heterogeneity over class categories and clients on CIFAR-10.

To resolve the problem of data heterogeneity with FL, most of the
existing work adopt one or more of the following strategies: 1) to
alleviate local overfitting by making local objectives consistent with
the generic global performance [13, 12, 21], 2) to reduce variance
of the global model by optimizing server aggregation [15] or par-
ticipating client clustering/selection [1, 22, 25], and 3) to improve
model generalization by combining FL with other methods such as
data augmentation [4] and meta-learning [17]. Nevertheless, how to
improve communication efficiency and attack robustness while con-
quering heterogeneity and avoiding privacy leakage remains a key
challenge with FL [29].

On the other hand, deep long-tailed learning methods have made
remarkable progress in recent years [33]. In particular, a two-stage
learning paradigm was proposed by decoupling representation learn-
ing and classifier training on heterogeneous and long-tailed data [30].
The study finds that 1) instance-balanced (natural) sampling learns
the best and most generalizable representations and 2) re-adjusting
the classifier with class-balanced sampling leads to significant per-
formance improvement in long-tailed recognition. In [21], an empir-
ical study on a FedAvg model and client datasets showed that the bi-
ased classifier is the primary factor degrading the performance of het-
erogeneous FL. Accordingly, it proposed to re-train the global model
based on FedAvg [18] with a set of balanced features, called feder-
ated features, whose gradients are made close to those of real data
during the client updates. However, the class-balanced federated fea-
tures learned at the server do not follow natural sampling. Thus, the
resulting global representations are less generalizable when they are
applied to other datasets different from the client data distribution.

In this paper, we propose to coordinate the above seemingly con-
tradicting sampling strategies in the two-stage learning paradigm for
FL on heterogeneous and long-tailed client data. This is facilitated
by a hybrid knowledge distillation scheme, namely FedHyb, as illus-
trated in Figure 2. Specifically, we adopt the conventional instance-
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Figure 2. The proposed FedHyb scheme for two-stage learning on heterogeneous and long-tailed client data.

based sampling with local labelled dataset at individual client sides.
The updated client models are sent to the server to obtain aggregated
feature representations which inherently follow the real-data natu-
ral distribution over the clients. Instead of building the global model
directly on weight aggregation as in FedAvg, we propose a server en-
semble distillation scheme that transfers the aggregated client infor-
mation to the global model more comprehensively at three different
levels. The server distillation process is guided by a class-balanced
unlabelled dataset. The auxiliary dataset can be either from a third
party or even synthetically generated, where the sample is not in
the client data distribution, for supervising the ensemble knowledge
transfer. In this way, we are able to learn more generalized feature
representations from model aggregation while re-training the classi-
fier using a set of balanced data and thus achieving better final test
accuracy.

The contributions of this paper are:

• We design a two-stage learning scheme called FedHyb that con-
sists of client-side self distillation to alleviate local over-fitting
and server ensemble distillation to improve model aggregation and
generalization for FL on heterogeneous and long-tailed client data.
The proposed FedHyb scheme does not require any information
exchange between clients nor global data distribution for feder-
ated optimization, and thus preventing privacy leakage.

• We show that FedHyb enables the desirable properties of represen-
tation learning and flatter loss landscapes for fine-tuning the ag-
gregation model, both of which help to improve the global model
accuracy with an increasing number of clients at different degrees
of data heterogeneity.

• We provide theoretical convergence analysis and empirical results
to demonstrate the communication efficiency of FedHyb. In gen-
eral, compared with existing SOTA methods of heterogeneous FL,

FedHyb requires less communication rounds to reach a target ac-
curacy and yields a more stable and robust training performance.

2 Related Work

Previous work showed that model aggregation of homogeneous FL
by FedAvg has a poor performance in terms of both test accuracy
and communication cost on non-independent identically distributed
(Non-IID) data due to inconsistent update optimization directions of
participants [14]. Since then, different methods were proposed to al-
leviate various problems caused by data (statistical) heterogeneity for
FL in more realistic settings. Instead of categorizing on strategies, a
recent survey reviewed current heterogeneous FL methods by intro-
ducing a new taxonomy at three different levels [29]. The data-level
methods introduce operations to smooth the statistical heterogene-
ity of local data across clients. This category includes private data
processing such as data augmentation [4, 34] and external data uti-
lization [31]. Model-level methods tend to operate at the model level,
which aim to learn a local model for each client that adapts to its pri-
vate data distribution while learning the global information. These in-
clude adding regularization (e.g., FedProx [13]), incorporating con-
trastive learning (e.g., MOON [12]), meta learning [17], improving
consistency [15, 21], and sharing partial structures [6]. Server-level
methods require server participation, such as participating client se-
lection [25, 22] or client clustering [1].

Recently, there is a trend to combine FL with knowledge distilla-
tion, known as federated distillation (FD), which can leverage exter-
nal data sources and knowledge transfer to improve FL performance.
FD belongs to both data-level and model-level methods [29]. There
are mainly two ways of deploying FD: 1) by client distillation and 2)
by server distillation.
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In client distillation such as [10, 34, 5], each client obtains the av-
eraged soft predictions from all clients to constrain local updates and
prevent falling into local optimality. For example, FedMD [10] im-
plements client-side communication by leveraging FD and transfer
learning. It calculates a global consensus through a common aver-
aging strategy from all client models. Such client distillation meth-
ods often require a public dataset be provided to all clients, and
the performance heavily depends on the public data quality. To re-
solve this limitation, FedHKD [5] computes mean representations
and the corresponding mean soft predictions for the data classes as
“hyper-knowledge”. The globally aggregated hyper-knowledge in-
stead of public dataset is used by clients in the subsequent training
epoch. However, it still requires data exchange between clients that
may cause privacy leakage [27], and is prone to poisoning attacks by
malicious clients [1]. In our design of FedHyb, the self-distillation
scheme avoids client-side communication.

In server distillation, the server typically aggregates client models,
averages the clients’ soft predictions, and uses an auxiliary dataset
to fine-tune the global model [32]. To alleviate the reliance on pub-
lic data for distillation, FedDF [16] utilizes unlabeled or generated
data to construct the auxiliary dataset. Similarly, FedGen [34] is also
unsupervised learning where each client directly regulates the local
updates using unlabeled samples generated on-the-fly on the server,
whereas FedFTG [32] trains a conditional generator to fit the input
space of a local model and uses it to generate pseudo data. How-
ever, these methods have excessive computation costs in training the
generator and using KL divergence to learn the global knowledge.
DaFKD [26] takes into account the domain knowledge for train-
ing local models and endows the local models with different impor-
tance to learn soft predictions across clients. Nevertheless, the SOTA
method still relies on the ensemble of local predictors for distillation,
making it sensitive to misleading and ambiguous knowledge injected
by poorly performed local model(s). Sharing soft predictions only
exacerbates this problem [22]. In our design of FedHyb, the server
ensemble distillation scheme incorporates rich information from data
representations for global model optimization.

3 Proposed Methodology

Consider FL with K clients. Client k, for k = 1, 2, ...,K, can only
access its own private data with labels Dk = (x,y) at the local
side. Denote the client data volume by Nk = |Dk|. The participating
clients perform local training on Dk with the cross-entropy (CE) loss

min
ω

Fk(ω;x,y) :=
1

Nk

Nk∑
i=1

LCE

(
ω;xk

i , y
k
i

)
(1)

and send to the server the local client model parameters denoted by
ω1, ω2, ..., ωK . The server then performs a simple model aggregation
by weight aggregation to obtain the global model parameters [18]

Ω =
K∑

k=1

pkωk (2)

where pk = Nk/|D| is a weighing factor of client k’s data vol-
ume with respect to all data volumes D = ∪{Dk}Kk=1 for k =
1, 2, ...,K. The server distributes the global model parameters Ω
back to the clients. The process repeats for T rounds till convergence.
Note that, in homogeneous FL, the simple weight aggregation in (2)
is effectively equivalent to minimizing the averaged CE loss over the
client models.

3.1 Client Self-Distillation

Previous studies showed that regularization can limit the local up-
dates of the client, thereby mitigating the impact of data heterogene-
ity [13, 12, 28]. Existing work performs local logits distillation but
requires information exchange between clients [10]. If a malicious
client is involved, the privacy of other clients may be leaked through
the collaborative learning process. To resolve this problem, we per-
form client self distillation which is privacy preserving without the
need of information exchange nor a public dataset shared between
the clients.

In the self-distillation process, we firstly perform random trans-
forms, including scaling and rotations, on the local data samples
to obtain the client distillation data. This is denoted by Rm(x) for
m = 1, 2, ...,M , where M is the number of random transforms for
each x ∈ Dk with instance-based resampling. On the other hand, we
also sample M sub-networks with different network fraction width
from the original network, denoted by Sm(ω) for m = 1, 2, ...,M .
We then use the accumulated distillation loss of M sub-networks to
limit the local updates and alleviate local over-fitting. Specifically,
we introduce the following regularization term on the conventional
CE loss function for regularizing local model updates at Client k:

Lk(ω;x) =
M∑

m=1

KL (Qk (ω;x) ‖Qk (Sm(ω);Rm(x))) (3)

where the softmax output of the m-th slimmed sub-network
trained on the corresponding client distillation dataset, denoted
by Qk (Sm(ω);Rm(x)), is aligned to the original softmax output
Qk (ω;x) of client k’s local model on their KL divergence. The pro-
posed client distillation scheme involves sampling of multiple sub-
networks with different network fraction width which is fine-tuned
with client distillation data randomly generated by affine transforms
of the local dataset with instance-based resampling. It serves to en-
rich the local semantic information of learning without privacy leak-
age to other clients.

To account for different learning abilities, we further design a dy-
namic weighing scheme to adjust the individual contribution of each
sub-network in the distillation process based on their predictive per-
formance. Specifically, we calculate the importance factor of each
sub-network by sigmoid function

βm(ω;x,y) =
exp (−LCE (Sm(ω);Rm(x),y))

1 + exp (−LCE (Sm(ω);Rm(x),y))
(4)

where LCE (Sm(ω);Rm(x),y) is the CE loss of the m-th slimmed
sub-network of client k calculated on Rm(x) with the original labels
y. In this way, a sub-network with higher confidence of prediction
will contribute more to the client self distillation process.

Combining the above elements, the objective function of a local
model at client k is

min
ω

Fk(ω;x,y) + a
M∑

m=1

βm(ω;x,y)Lk(ω;x) (5)

where the first part is the conventional CE loss as shown in (1), and
the second part is the accumulated knowledge distillation loss based
on soft label predictions, as shown in (3), with dynamic weighing for
adaptive model regularization. The contributions of the CE loss and
the knowledge distillation loss are balanced with a hyper-parameter
a. The client self-distillation process is illustrated for two clients in
Figure 2.
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3.2 Server Ensemble Distillation

Recent advances in long tailed learning found that decoupling rep-
resentation learning from classifier fine-tuning can significantly im-
prove long-tailed class recognition [30]. In particular, retraining the
classifier with class-balanced sampling is beneficial in re-adjusting
the decision boundaries. Accordingly, we are inspired to leverage FD
to facilitate external data utilization. As pointed out in [22], ensemble
predictions may be ambiguous and exhibit high entropy when local
predictions of the clients are highly inconsistent on heterogeneous
data, which results in poor performance by weight aggregation only
[14] and harms FD with soft label predictions [29].

We propose to resolve the problem by server ensemble distilla-
tion that transfers more comprehensive aggregated information from
client updates to the global model as shown in Figure 2. Specifi-
cally, we perform three levels of aggregation including weight ag-
gregation, logits aggregation and feature aggregation. Note that the
latter two are reconstructed with the uploaded client model parame-
ters ω1, ω2, ..., ωk only and thus can save communication costs. The
server ensemble distillation scheme is guided by a class-balanced
unlabelled proxy dataset, denoted by DS := x̂. We show later in Sec-
tion 4 that this proxy dataset can be either from a third-party source
or synthetically generated that is irrelevant to the natural data distri-
bution distributed at client sides.

We first perform weight aggregation with (2) to obtain the global
model Ω and then fine-tune Ω with joint logits and feature distilla-
tions with DS . Similar to the knowledge distillation loss defined in
(3), the logits knowledge transfer is performed through imposing a
regularization term

Llogits(Ω; x̂) := KL

(
1

K

K∑
k=1

Q (ωk; x̂) ‖QG (Ω; x̂)

)
(6)

where the first term is the aggregated softmax output of the uploaded
client models by logit aggregation, and the second one is that of the
global model with current network parameters Ω before fine-tuning.

We also transfer the knowledge of feature extraction by K clients
to the server. This is done by minimizing the mean square error
(MSE) distance between the data representation output of the server
model and that of client models. The feature knowledge transfer is
performed through the following regularization term:

Lfeature(Ω; x̂) := MSE

(
HG (Ω; x̂) ,

1

K

K∑
k=1

H (ωk; x̂)

)
(7)

where the first term in MSE represents the penultimate features ex-
tracted by the global model Ω, while the second term is the aggre-
gated penultimate features obtained from the uploaded client models
with ωk for k = 1, 2, ...,K on the server auxiliary data x̂. By com-
bining both types of knowledge transfer, the server ensemble distil-
lation loss is therefore

min
Ω

ηLlogits(Ω; x̂) + νLfeature(Ω; x̂) (8)

where η and ν are used to adjust the proportion of soft prediction
knowledge and representation knowledge. Algorithms 1 and 2 sum-
marize the main procedures of the proposed FedHyb scheme at both
the server and client sides.

3.3 Effects on Feature Learning and Fine-Tuning

In this section, we show that the proposed ensemble distillation
scheme can enable desirable properties of representation and clas-

Algorithm 1 FedHyb on Server
1: Input: Public unlabeled dataset DS

2: Output: Global model Ω
3: Server executes:

4: set t = 0 and randomly initialize Ωt

5: for communication round t < T do

6: let t ← t+ 1 and broadcast Ωt to K clients
7: for client k ∈ K clients do

8: receive ωt
k from client k

9: end for

10: update Ωt with {ωt
k} by weight aggregation in (2)

11: update Ωt with DS by ensemble distillation in (8)
12: end for

13: return ΩT

Algorithm 2 FedHyb on Client k

1: Input: global model Ωt and local dataset Dk

2: Output: Client k model ωk

3: Client k executes:

4: set ωk = Ωt

5: update ωk with Dk by client logits distillation in (5)
6: return ωk

Figure 3. t-SNE visualization of 500 CIFAR-10 image examples for the
global model learned (a) without knowledge distillation (i.e., FedAvg), (b)

with logits distillation only, and (c) with the proposed ensemble distillation.

sifier learning that help to improve the model test accuracy. Firstly,
we use t-distributed stochastic neighbor embedding (t-SNE) [24] to
visualize the implicit data structure of deep features, which converts
the high-dimensional Euclidean distances between data points into
conditional probabilities that present similarities. The experiments
are performed with 500 image examples from four classes in the
benchmark CIFAR-10 dataset. Figure 3 plots the t-SNE map of deep
features extracted from the global model based on weight aggrega-
tion for the case without knowledge distillation (i.e., FedAvg), the
case with logits distillation only, and the case with joint knowledge
transfer of logits and feature representations as expressed in (8). It
shows that FL with the proposed ensemble distillation is able to learn
more compact and discriminative representations in the global fea-
ture space which helps to improve the recognition performance.

We also use the method in [11] to visualize and compare the train-
ing loss landscapes by the different aggregation models. In the visu-
alization method, the x-axis is the magnitude and the model weights
are perturbed by a series of Gaussian noises with varying degrees.
Following [11], each noise level is normalized to the l2 norm of each
filter to account for the effects of varying weight amplitudes of dif-
ferent models. In Figure 4, each plot has 10 landscapes using 10 ran-
domly generated directions. It can be seen that adding knowledge
distillation can encourage flatter loss landscape, which helps the opti-
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Figure 4. The loss landscapes by fine-tuning the aggregation model (a)
without knowledge distillation (i.e., FedAvg), (b) with logits distillation

only, and (c) with the proposed ensemble distillation.

mization process in fine-tuning [11]. In particular, the loss landscape
by incorporating both logits and feature alignments in the ensemble
distillation is most beneficial for fine-tuning the aggregation model.

4 Experiments

4.1 Experiment Setup

Datasets. We perform evaluations on three benchmark datasets of
SVHN [20], CIFAR-10 and CIFAR-100 [9]. Similar to existing work,
we use Dirichlet distribution Dir(α) on label ratios to generate the
Non-IID data distribution among clients, where a smaller α closer
to 0 indicates higher data heterogeneity as shown in Figure 1. In
this way, we can produce a class-imbalanced Dk of 500 samples
with data heterogeneity controlled by α for each client. The test
data from the benchmark datasets are used for performance evalu-
ation. We also construct a class-balanced unlabelled proxy dataset
DS on the server where the samples can be from a third-party re-
source (e.g., Internet[16, 3]) or synthesized with a generator (e.g.,
GAN[32, 26]). We mark our method trained on the former by Fed-
Hyb and that trained on the latter by FedHyb∗. Both types of DS are
irrelevant to Dk used on the client sides.
Network Architecture. In this work, we use the same network archi-
tecture for the basic backbone on the server and clients. Specifically,
we deploy ResNet18 for CIFAR-10 and CIFAR-100, and ShuffleNet-
V2 for SVHN, respectively.
Experimental Setting. The batch size of local training is set to 64
and the learning rate is 0.001. The number of clients increases at 10,
20, and 50. The maximum number of communication rounds T is set
to 50. The number of local epochs is set to 5. The number of sub-
network is 2. For performance evaluation, we test the proposed Fed-
Hyb scheme on the heterogeneous data sets in comparison with eight
popular FL methods: FedAvg [18], FedProx [13], MOON [12], Fed-
Gen [34], FedMD [10], FedDF [16], FedHKD [5] and DaFKD [26].
In particular, the latter five are the SOTA distillation-based methods.
Unless otherwise specified, the comparing methods are run with their
default settings reported in the corresponding paper.

4.2 Performance Analysis

Test Accuracy. Table 1 compares the test results of global and lo-
cal model accuracy on the three benchmark datasets. The data het-
erogeneity is set to a high level with α = 0.5 resulting in a long-
tailed distribution. In general, the proposed method of FedHyb is
able to achieve the highest accuracy in most cases for the global
model at the server side, especially when the number of clients in-
creases from 10 to 50. For example, FedHyb achieves a gain of

Table 1. Model test accuracy at a high data heterogeneity with α = 0.5.

Dataset Scheme Local Model Accuracy Global Model Accuracy
# clients 10 20 50 10 20 50

SVHN

FedAvg [18] 0.6766 0.7329 0.6544 0.4948 0.6364 0.5658
FedProx [13] 0.6927 0.6717 0.6991 0.5191 0.6419 0.6139
Moon [12] 0.6602 0.7085 0.7192 0.4883 0.5536 0.6543
FedGen [34] 0.5788 0.5658 0.4679 0.3622 0.3421 0.3034
FedMD [10] 0.8038 0.8086 0.7912 0.6812 0.7344 0.8085
FedDF [16] 0.7824 0.7953 0.7805 0.6321 0.7053 0.7334
FedHKD [5] 0.8086 0.8381 0.7891 0.6781 0.7357 0.7891
DaFKD [26] 0.7948 0.8059 0.7798 0.6681 0.7405 0.7794
FedHKD+DaFKD 0.7812 0.7851 0.7529 0.6617 0.7291 0.7924
FedHyb 0.8112 0.8241 0.8291 0.6902 0.7513 0.8104

FedHyb∗ 0.8109 0.8257 0.8275 0.6941 0.7508 0.8097

CIFAR-10

FedAvg [18] 0.5950 0.6261 0.5825 0.4741 0.5516 0.3373
FedProx [13] 0.5981 0.6295 0.6490 0.4793 0.5258 0.5348
Moon [12] 0.5901 0.6482 0.5513 0.4579 0.5651 0.3514
FedGen [34] 0.5879 0.6395 0.6533 0.4800 0.5408 0.5651
FedMD [10] 0.6147 0.6666 0.6533 0.5088 0.5575 0.5714
FedDF [16] 0.6341 0.6535 0.6543 0.4921 0.5453 0.5213
FedHKD [5] 0.6254 0.6816 0.6671 0.5213 0.5735 0.5493
DaFKD [26] 0.6331 0.6748 0.6581 0.5285 0.5681 0.5681
FedHKD+DaFKD 0.6065 0.6872 0.6694 0.5347 0.5672 0.5617
FedHyb 0.6591 0.6993 0.6934 0.5531 0.5920 0.5860

FedHyb∗ 0.6595 0.6987 0.6901 0.5514 0.5973 0.5829

CIFAR-100

FedAvg [18] 0.2361 0.2625 0.2658 0.2131 0.2748 0.2907
FedProx [13] 0.2332 0.2814 0.2955 0.2267 0.2708 0.2898
Moon [12] 0.2353 0.2729 0.2428 0.2141 0.2652 0.1928
FedGen [34] 0.2393 0.2701 0.2739 0.2176 0.2620 0.2739
FedMD [10] 0.2681 0.3054 0.3293 0.2323 0.2669 0.2968
FedDF [16] 0.2642 0.2913 0.3170 0.2154 0.2543 0.2732
FedHKD [5] 0.2981 0.3245 0.3375 0.2286 0.2795 0.2988
DaFKD [26] 0.2682 0.2978 0.3278 0.2291 0.2857 0.2818
FedHKD+DaFKD 0.2818 0.3193 0.3324 0.2105 0.2748 0.2901
FedHyb 0.3074 0.3220 0.3515 0.2332 0.3012 0.3263

FedHyb∗ 0.2997 0.3185 0.3426 0.2431 0.3075 0.3247

11-24% on server accuracy comparing with FedAvg, about 2-3%
comparing with the SOTA method of FedHKD with client distilla-
tions, about 2-3% comparing with the SOTA method of DaFKD with
server distillations. In terms of the client model accuracy, FedHyb
still leads the performance in most cases and on a par with FedHKD
in the case of 20 clients for SVHN and CIFAR-100. FedHyb also
outperforms the combined approach of FedHKD+DaFKD, indicat-
ing the advantage of the two-stage learning paradigm over a straight-
forward combination of client and server distillation methods. Note
that the proposed server ensemble distillation scheme trained with
different proxy dataset DS , i.e., FedHyb vs. FedHyb∗, perform very
closely over all three benchmark datasets. This indicates the role of
proxy data in fine-tuning the aggregation model as guiding the align-
ments rather than recognition in the conventional tasks. In fact, it is
the class-balanced proxy dataset that helps to re-adjust the decision
boundaries of a biased classifier obtained by aggregating the client
updates over heterogeneous data.
Convergence Analysis. The communication bottleneck of FL is the
connection between the central server and clients, which is gener-
ally slow due to two-round communications, i.e., one broadcast and
one aggregation, per iteration of training. Thus, convergence of the
global model significantly affects the speed of the overall FL process.
In particular, it was demonstrated in [14] that the heterogeneity of
training data further slows down the convergence speed. It also pro-
vided theoretical guarantees for the convergence results of FedAvg
with federated averaging using (2) on Non-IID data. That is

E [F (Ωt)]− F ∗ ≤ κ

γ + t− 1

(
2B

μ
+

μγ

2
E ‖Ω1 −Ω∗‖2

)
(9)

where after t rounds the difference expectation between the global
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Figure 5. Convergence analysis by the upper bound E‖Ωt −Ω∗‖2.

Table 2. Communication rounds (on average) required to reach a target
model accuracy (acc.) on CIFAR-10 with α = 0.5.

Scheme acc.=70% acc.=80% acc.=90% acc.=100%
FedAvg 10.33 22.67 34.33 41.00
FedProx 12.67 22.33 32.00 40.33
Moon 18.67 27.00 35.33 44.67
FedGen 16.00 33.33 38.67 42.33
FedMD 9.33 21.67 27.00 39.67
FedDF 8.67 19.00 28.67 37.33
FedHKD 12.33 23.33 27.67 40.33
DaFKD 9.00 19.67 29.67 38.33
FedHyb 7.33 15.67 25.33 32.67

objective and its optimal value, i.e., E [F (Ωt)] − F ∗, is upper
bounded by the l2-norm distance expectation of the global model
and its optimal case in the parameter space when all other problem-
related parameters and conditions are determined.

We then plot the upper bound variable E‖Ωt −Ω∗‖2 with respect
to the communication round t for the fastest comparing methods in
Figure 5(a). It can be seen that the proposed method of FedHyb can
significantly reduce the upper bound and thus accelerate the global
model convergence at about t = 30 in advance. Figure 5(b) further
evaluates the stability of network convergence by drawing box-plots
of the first-round model discrepancy for the comparing methods. In
addition to a remarkably lower expectation of the upper bound vari-
able, the variance of the l2-norm difference between the global model
and the optimal case is also the smallest for FedHyb in the parameter
space, indicating a more stable and robust training performance.
Communication Efficiency. As shown above, FedHyb is able to ac-
celerate the global model convergence with better stability and ro-
bust training performance. This directly affects the communication
speed by improving the FL training efficiency. Table 2 verifies the
convergence analysis by comparing the communication rounds be-
tween FebHyb and the other methods for the global model to reach
a target accuracy on CIFAR-10 with ten clients and α = 0.5. It can
be seen that FedHyb achieves the best convergence speed in all cases
by requiring less communication rounds on average for running three
times of the training process.
Data Heterogeneity. We further test the global model accuracy on
CIFAR-10 and SVHN with an increasing level of data heterogene-
ity by varying α. The results are plotted in Figure 6 and Figure 7.
As α increases, the data heterogeneity decreases as the client data
becomes more evenly distributed over different image classes. It can
be seen that almost all methods have their test accuracy improved as
the data heterogeneity decreases, indicating a severe impact of the
heterogeneity degree on the model performance. In particular, Fed-

Figure 6. Impact of heterogeneity
(on CIFAR-10).

Figure 7. Impact of heterogeneity
(on SVHN).

Figure 8. Impact of long-tail (on
CIFAR-10).

Figure 9. Impact of proxy data size
(on CIFAR-10).

Hyb outperforms the comparing methods in all cases. For examples,
it achieves a significant gain over the baseline method of FedAvg by
almost 20% and the SOTA methods of FedHKD and DaFKD by up
to 3% when α = 0.2, demonstrating the effectiveness of our method
under extreme data heterogeneity distribution.
Data Long-Tail. In this section, we test our method on a special type
of heterogeneous data with long-tailed distributions. Specifically, we
generate the long-tailed datasets, namely CIFAR-10-LT, based on the
original dataset of CIFAR-10. The degree of long-tailed distribution
can be controlled by introducing an imbalance factor (IF) as in [2].
Note that a higher IF value indicates a more imbalanced data distri-
bution with a longer tail as the client data becomes more unevenly
distributed over different image classes. In our experiments, we test
on four CIFAR-10-LT with different long-tailed heterogeneous data
distributions by setting IF=10, 20, 50, 100, respectively. The results
are plotted in Figure 8. It can be seen that IF has a significant impact
on the model performance for all comparing methods as the test ac-
curacy decreases with an increasing degree of data long-tail. Some
method such as MOON [12] can suffer from significant performance
degradation under extreme long-tailed distribution, whereas the pro-
posed method of FedHyb is more robust when the IF degree is in-
creased from 10 to 100. In all cases, FedHyb outperforms the other
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Figure 10. Model robustness under different poisoning attacks with
malicious clients.

Table 3. Model test accuracy on real-world dataset.

Method FedAvg FedDF FedHKD DaFKD FedHyb

CheXpert 0.6341 0.6623 0.6759 0.6816 0.7032

methods by up to 11%. In particular, the gain of test accuracy is 8%
over FedAvg and about 3-4% comparing with the SOTA methods of
DaFKD and FedHKD.
Proxy Dataset Size. Figure 9 shows the impact of proxy dataset by
varying the number of samples used for server distillation. Note that
the class-balanced proxy dataset is irrelevant to the heterogeneous
client dataset. We compare the global accuracy of FedHyb with two
other server distillation methods, namely FedDF and DaFKD. It can
be seen that our method is able to further improve the global model
accuracy by increasing the proxy dataset size for fine-tuning. This
indicates a significant advantage of FedHyb in the scalability of the
server distillation process.
Attack Robustness. We use two attack methods to evaluate the ro-
bustness of our method with malicious clients who try to poison FL
[19]. In particular, random noise attacks generate perturbations based
on Gaussian distribution and introduce random noise to model pa-
rameters during training [23]. The Byzantine client adds these per-
turbations to the updates to mislead the training process and reduce
the model performance. Label flip attacks modify the client datasets
to carry out targeted attacks on the global models [1]. The attack in-
volves changing the category of each instance in the dataset to the
target of misclassified attacks. We compare the attack robustness of
FedHyb with a number of methods including the baseline method Fe-
dAvg, the client distillation method FedHKD, and two server distilla-
tion methods FedDF and DaFKD with a high heterogeneity degree of
α = 0.5. In all methods, the global accuracy decreases as the number
of malicious clients (attackers) increases. FedHyb significantly leads
the model robustness under both types of data poisoning attacks.
Real-World Dataset. We use a medical image dataset CheXpert[7]
to test the performance of the method in real-world applications. This
is a large dataset containing 224316 examples used to interpret chest
radiographic images. Table 3 compares the global accuracy of dif-
ferent SOTA methods on CheXpert. It can be seen that the proposed
method of FedHyb is able to achieve the highest accuracy, which
demonstrates its effectiveness in real-world applications.

4.3 Ablation Study

In Section 3.3, we have evaluated the effects of adding knowledge
transfer of logits and features to the server ensemble distillation
scheme by visualizing the t-SNE map and the loss landscapes for

Table 4. Ablation study on the distillation components of FedHyb.

Method FedAvg FedHyb1 FedHyb2 FedHyb3 FedHyb

CIFAR10 0.4741 0.4843 0.4967 0.5425 0.5531

SVHN 0.4948 0.6274 0.6351 0.6858 0.6902

representation learning and classifier fine-tuning, respectively. Here,
we report ablation studies by evaluating the contributions of client
and server distillations in FedHyb. Specifically, we study four vari-
ants: 1) FedHyb1 for client self distillation without dynamic weigh-
ing, 2) FedHyb2 for client self distillation with dynamic weigh-
ing, 3) FedHyb3 for server ensemble distillation only without client
self distillation, and 4) FedHyb for the proposed two-stage learn-
ing paradigm. Table 4 compares the global accuracy results of these
variants on CIFAR10 and SVHN with α = 0.5. It can be seen
that FedHyb1 performs closely to FedAvg on CIFAR-10 but can
be more effective on SVHN on the heterogeneous dataset. With dy-
namic weighing, FedHyb2 further improves the local self-distillation
process by adjusting it to the client contributions. FedHyb3 even out-
performs FedHyb2 by including server ensemble distillation. This is
consistent with the previous observation [21] that the primary cause
of the poor performance on heterogeneous long-tailed data is a biased
classifier rather than less generalized features. The complete FedHyb
scheme with hybrid knowledge transfer further boosts the server en-
semble distillation performance by incorporating better learning abil-
ities of the local client models. This also supports the test results in
Table 1 where the two-stage learning method of FedHyb outperforms
a simple straightforward combination of two client and server distil-
lation methods by FedHKD+DaFKD.

5 CONCLUSION

In this paper, we proposed a two-stage learning framework called
FedHyb for FL on heterogeneous and long-tailed client data. The
framework coordinates the seemingly contradicting strategies of
instance-balanced sampling and class-balanced sampling by hybrid
knowledge distillation. The proposed method can achieve better test
accuracy and convergence speed, especially with a higher level of
data heterogeneity and an increasing number of distributed clients.
The method does not require information exchange between clients
and is more robust under poisoning attacks compared to other FL
methods designed for heterogeneous data.
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